
R S D

A System for Relational Subgroup Discovery

through First-Order Feature Construction

v1.0 – release candidate version

– User’s Manual –

Filip Železný

March 17, 2003

Contents

1 Introduction 2

2 Quick Start 4

3 Using RSD 9
3.1 Language declarations . 9
3.2 Settings . 11
3.3 Basic Commands . 14
3.4 Assessment Functions . 17

3.4.1 Quality Calculations and Train-Test Validation 17
3.4.2 Automating the Cross-Validation Procedure 20

4 Frequently Asked Questions (none yet) 21

1

1 Introduction

RSD is a system for relational subgroup discovery in individual-centered do-
mains, based on principles described in

N. Lavrač, F. Železný, P. Flach: Relational subgroup discovery through
first-order feature construction, in: Stan Matwin and Claude Sam-
mut (eds.): Proceedings of the 12th international conference on in-
ductive logic programming. 6/2002, Springer-Verlag.

An extended treatment of the theoretical principles is presently being submit-
ted. RSD, however, can be useful as well in tasks other than subgroup
discovery, as long as they require to generate a propositionalized repre-
sentation of classified relational data achieved through constructing first-
order features.

RSD is implemented in YAP Prolog. YAP can be obtained at http://source
forge.net/projects/yap in versions for various operating systems. The RSD
package can be downloaded from http://labe.felk.cvut.cz/~zelezny/rsd.
Questions, comments and suggestions should be sent to zelezny@fel.cvut.cz.
Following are the main advantages of RSD.

• Syntactical feature construction controlled by mode declarations very sim-
ilar to those used in the popular systems Progol and Aleph.

• The user can specify various constraints (syntactical or data-related) used
by RSD’s powerful pruning rules towards performance gains.

• Filtering of irrelevant (unneeded) features.

• Generation of propositionalized data representation compatible with the
popular systems CN2 and Weka.

• Automated train-test splitting and stratified cross-validation process in
RSD’s rule induction component.

RSD consists of three Prolog programs. Their respective function is briefly
as follows.

featurize.pl Using specified mode-language declarations, this program identi-
fies all first-order literal conjunctions that by definition form a feature (1.
all output variables1 must also appear as input variables, 2. feature must
not be decomposable into two separate features), and at the same time
comply to user-defined syntactical constraints. Such features do not con-
tain any constants and the task is completed independently of the input
data.

1I will clarify in a while what input and output variables mean here.

2

process.pl Here the features get confronted with the input data. This com-
ponent extends the feature set by variable instantiations; certain features
are copied several times with some variables (specified by the user) sub-
stituted by constants detected by inspecting the input data. During this
process, some irrelevant features are identified and eliminated. The pro-
gram also generates propositionalized representations of the input data
using the generated feature set, i.e., it creates a relational table consisting
of binary attributes corresponding to the truth values of features with re-
spect to instances of data. The resulting table can be produced in a plain
text format or in the format acceptable by CN2, Weka or the following
component.

rules.pl Finds interesting subgroups in the propositionalized data set. An
interesting subgroup is a subset of instances which is sufficiently large
and has a statistical distribution of target attribute values significantly
different than that found in the entire data set. By a simple configuration
of settings, this program can also be forged to behave as a standard inducer
of rule-based predictive models, such as CN2.

Mode declarations, background knowledge (i.e. all data excluding the main
table containing the target attribute) and all parameter/constraint settings are
specified in the <filename>.b file by means of Prolog facts/clauses (settings
can also be applied on-line when running the respective program components).
The .b file is loaded by all three program components.

The relation, whose instances are classified, is represented by

• either the <filename>.f and <filename>.n files, containing positive and
negative (respectively) instances in the form of unary Prolog facts of the
target predicate. This variant is suitable only for two-class data.

• or the <filename>.pl file containing binary Prolog facts of the target
predicate, where the first argument of each fact is assumed to define the
class of the instance. This variant applies to general multi-class problems.

The files relevant to one of the two above itemized options are loaded only by the
process.pl component. It detects automatically which file(s) is (are) available
in the current (or specified) directory and consequently which option of those
above applies.

Note that the fact that the main relation predicate must be unary (or binary
if the first argument is the class value) means that the predicate serves merely
to address instances by their name (or by an identifying constant, in general),
whereas their structural description is to be found in the background knowledge.
If, however, the description is simple, the user may as well incorporate this
description into a compound term, and use such terms as the main predicate
argument instead of the name. This is the case of the East-West Trains example
presented in the following Quick Start section.

3

Let us digress a bit. If you find it inconvenient that RSD wants you to
provide data in Prolog, you may want to try the freely available data con-
vertor Sumatra TT, capable of connecting to data sources of an extensive
variety of types (exceeding the command of a mortal person) and produc-
ing a Prolog form thereof. The system is described in the award-winning
paper

P. Aubrecht, F. Železný, P. Mikšovský, O. Štěpánková: Suma-
traTT: Towards a Universal Data Preprocessor. In: Proceed-
ings of the 16th European Meeting on Cybernetics and System
Research, vol. 2, p. 818-823. Vienna, Austria, 4/2002, Aus-
trian Society for Cybernetics Studies.

This software comes with a fancy graphical interface and can be down-

loaded from http://krizik.felk.cvut.cz:8080/SumatraReg/index.html.

Some additional files are engaged in a typical process of using RSD. The
featuri ze.pl program component produces a set of features without constants
in the file <filename>_frs_noinst.pl and further a ‘symbolic’ representation
of these features in the file <filename>_frs.smb (this file is not significant to
the user). The component process.pl loads and uses both of these files to pro-
duce the ‘instantiated’ and filtered feature set <filename>_frs.pl and also the
propositional representation of a chosen form; for example a <filename>.cov
file is created to feed the rules.pl program, the rule induction component of
RSD.

Figure 1 shows the interconnection of individual components and files. Note
that the program CN2-SD is a variant of the CN2 program suited for subgroup
discovery, described in N. Lavrač et al.: Rule Induction for Subgroup Discovery
with CN2-SD, IDDM 2002.

2 Quick Start

I assume you decompressed the RSD download package into a chosen directory,
where an rsd subdirectory is created. By <rsd> I denote the complete path to
RSD, including the rsd directory. Change to <rsd>/samples/trains, contain-
ing an example data set representing the well-known East-West trains. I also
assume the YAP Prolog is in your path of executables. Run YAP, obtaining
roughly the following in the console:

$ yap <Enter>
[Restoring file /usr/local/lib/Yap/startup]
[YAP version Yap-4.3.23]
?-

Proceed as follows to consult the f.pl file, which is actually a symbolic link to
<rsd>/code/featurize.pl.

4

*.
co

v
or

 *
.tx

t

*.
at

t,
*.

ex
s

or

FE
A

T
U

R
IZ

E
.P

L

fe
at

ur
es

 w
ith

ou
t

co
ns

ta
nt

s

FE
A

T
U

R
IZ

E
.P

L

PR
O

C
E

SS
.P

L

R
U

L
E

S.
PL

su
bg

ro
up

ru
le

s

O
R

*.n file

*.pl file

*_frs.pl
file

*.
ar

ff
 f

ile
s

*.f file

W
E

K
A

C
N

2
C

N
2−

SD

*.
ru

le
s

la
ng

ua
ge

de
cl

ar
at

io
ns

,

ba
ck

gr
ou

nd

kn
ow

le
dg

e,

co
ns

tr
ai

nt

se
tti

ng
s

*.
b

fi
le

*_
fr

s_
no

in
st

.p
l

*_
fr

s.
sm

b

fi
le

s

fi
le

ne
ga

tiv
es

re
pr

es
en

ta
tio

n

fi
lte

re
d

fe
at

ur
es

w
ith

 c
on

st
an

ts

cl
as

si
fi

ed

in
st

an
ce

s

po
si

tiv
es

pr
op

os
iti

na
liz

ed

Figure 1: The cooperation of individual RSD (and external) components
through files. Rounded boxes correspond to program codes, other boxes repre-
sent data files. Bold-framed boxes denote input files provided by the user.

5

?- [f]. <Enter>
[consulting /rsd/trains/f.pl...]
[consulted /rsd/trains/f.pl in module user, 30 msec 51512
bytes]

yes
?-

Now to read the trains.b file present in the current directory, type2

r(trains). <Enter>.

When the file is read, type

s. <Enter>

to have the program show you the features constructible on the basis of the
declarations in the trains.b file. The following should appear.

f(1,A):-hasCar(A,B),carshape(B,C),instantiate(C).
f(2,A):-hasCar(A,B),carshape(B,C),carlength(B,D),
instantiate(C),instantiate(D).
f(3,A):-hasCar(A,B),carshape(B,C),carlength(B,D),has_sides(B,E),
instantiate(C),instantiate(D),instantiate(E).
f(4,A):-hasCar(A,B),carshape(B,C),carlength(B,D),has_roof(B,E),
instantiate(C),instantiate(D),instantiate(E).
f(5,A):-hasCar(A,B),carshape(B,C),carlength(B,D),has_wheels(B,E),
instantiate(C),instantiate(D),instantiate(E).
f(6,A):-hasCar(A,B),carshape(B,C),carlength(B,D),has_load(B,E),
instantiate(C),instantiate(D),loadshape(E,F),instantiate(F).

(...etc.)

Note that the instantiate/1 literals, which appear in the features, identify
variables that will be substituted by constants in a following step described fur-
ther on. To write the features into the output files (named trains_frs_noins
.pl and trains_frs.smb), do as follows

?- w. <Enter>

0.781 seconds taken to construct features.

yes
?-

2Note that if a filename was used containing special symbols (unlike here) that disqual-
ify the name from being a Prolog atom, it would have to be enclosed in apostrophes, e.g.
r(‘trains-version1’). etc.

6

Now exit YAP by pressing CTRL+D, and run it again. This time you invoke p.pl
linked to <rsd>/code/process.pl

$ yap <Enter>
[Restoring file /usr/local/lib/Yap/startup]
[YAP version Yap-4.3.23]
?- [p]. <Enter>
[consulting /rsd/trains/p.pl...]
[consulted /rsd/trains/p.pl in module user, 40 msec
80232 bytes]

yes
?-

Then again you read the declaration file along with the outputs of the previous
step and the classified data, as follows.

?- r(trains). <Enter>

20 examples read.
[reconsulting /rsd/trains/trains.b...]
[reconsulted /rsd/trains/trains.b in module user, 10 msec
13220 bytes]
[reconsulting /rsd/trains/trains_frs_noinst.pl...]
[reconsulted /rsd/trains/trains_frs_noinst.pl in module user,
20 msec 43880 bytes]

Congratulations! You succeeded loading all neccessary files.
yes
?-

Now again, if you type

s. <Enter>

the program will show you a set of features. This time this is the set of non-
redundant features which contain constants extracted from the data set and
comply to constraints related to feature’s coverage on the data. You should see
the following:

f(1,A):-hasCar(A,B),carshape(B,u_shaped).
f(2,A):-hasCar(A,B),carshape(B,bucket).
f(3,A):-hasCar(A,B),carshape(B,hexagon).
f(4,A):-hasCar(A,B),carshape(B,ellipse).
f(5,A):-hasCar(A,B),carshape(B,rectangle),carlength(B,long).
f(6,A):-hasCar(A,B),carshape(B,rectangle),carlength(B,short).

7

(...etc.)

Now write the expanded feature file as illustrated below. The program comes
up with a progress meter accompanied with a very funny message, which fortu-
nately appears only once.

?- w. <Enter>

Warning: progress meter is approximate and takes no
legal responsibility for accurate estimates.

0%|--|100%
**

0.341 seconds taken to expand features.
Hmmm, that was a quick one!
yes

Finally let us create a propositional representation (named trains.cov) accept-
able by the RSD rule inducer.

?- w(rsd,trains).
0%|--|100%

**
0.09 seconds taken to write coverage file(s).
Hmmm, that was a quick one!
yes

Note that changing the first argument of w/2 to weka or cn2 would produce
files acceptable by the respective systems, text would produce a plain text file,
and that appropriate file name extension is added automatically. To proceed to
the rule induction component, exit YAP (CTRL+D), relaunch it, and in a manner
analogous to the above procedures, type

[r]. <Enter>

to consult the linked file <rsd>/code/rules.pl. To read the train.b file along
with the result of the preceding step (i.e. the propositionalized representation
trains.cov), you again – surprise – use the command

r(trains). <Enter>

To induce rules, type

i. <Enter>

obtaining the following in response.

8

Inducing rules.

Class: east (prior = 0.5)

IF 93 AND 69 AND 16 THEN Class = east
Evaluation: 0.225 Significance: 9.0 Class distribution: [10,1]
Remaining % of initial total weight = 75.0

IF 93 AND 112 AND 16 THEN Class = east
Evaluation: 0.15 Significance: 12.0 Class distribution: [9,0]
Remaining % of initial total weight = 68.0

IF 106 THEN Class = east
Evaluation: 0.062 Significance: 7.0 Class distribution: [5,0]
Remaining % of initial total weight = 65.0

IF 9 AND 106 THEN Class = east
Evaluation: 0.048 Significance: 7.0 Class distribution: [5,0]
Remaining % of initial total weight = 64.0

(...etc.)

When rules have been generated, you may save them by typing

w. <Enter>

(this will create the trains.rules file). When you run rules.pl newly, you
may load these rules back by typing

rr. <Enter>

(after the initial command r(trains).) instead of re-inducing them. This may
be used for later evaluation purposes (explained further in this text). Finally,
the command

s. <Enter>

serves to show the rules currently in the memory.

3 Using RSD

3.1 Language declarations

Every effort has been taken to make mode-language declarations as similar as
possible to the popular systems Progol and Aleph, so that existing declarations
and background knowledge can be recycled.

All predicates which can appear in the features are declared in the *.b file.
There is exactly one head declaration describing the predicate of the classified
(main) relation. It has the form

9

:-modeh(1,<S>(+<T>)).

where <S> is the predicate symbol of the main relation (found in the .f and .n,
or .pl file(s)) and <T> specifies the type of the variable that addresses learning
instances. It may be an arbitrary atom (a self-explaining name is recommended
though). An appearance of this variable type in body predicates (see below)
will denote that an instance-addressing variable should occur in the place of
that appearance. The number 1 and the + sign in the head declaration are
included only for compatibility sakes. Note that a unary predicate is declared
by the head declaration even if one works with a .pl data file containing binary
facts; the declaration merely serves to identify the main predicate symbol and
the instance key.

The body declarations specify predicates which can appear as literals in the
feature body. They have the form

:-modeb(<R>,<S>(<M1><T1>,<M2><T2>, ... ,<Mn><Tn>)).

where

• <R>, the recall, is a number which specifies how many times the predicate
can appear in one feature body with the same input variables (those whose
mode is +, see below). This can be used for predicates giving multiple
answers (outputs) to a given input.

• <S> is the symbol of the declared predicate.

• <Mi> is the mode of the ith argument variable, which may either be +
(input variable) or − (output variable). I shall explain the meaning of the
mode in a moment.

• <Ti> is the type of the ith argument variable, which is an arbitrary atom.

The modes and types are used to constrain the feature-language bias, similarly
again to the systems Progol and Aleph. They are employed as the following
rule dictates.

A predicate will only be considered as a literal at a given place in the
feature definition, if each of its input arguments is of a type equal to
the type of an output argument of some preceding literal, or equal to
the type T found in the modeh declaration.

Predicates, which are declared by modeb/2 with no output variables, are called
property predicates. Other predicates declared by modeb/2 are called structural
predicates.

Unlike Progol, the user does not specify value-domains of variable types.
Types are here used solely for purposes of variable matching. Unlike both
Aleph and Progol, there is no variable mode labelled by the sign #, which in
these systems means that a constant value should be put in the given argument

10

place. RSD does not extract constants from a single example, as in the men-
tioned systems, but rather selects them ‘carefully’ from the whole data set in
the following manner.

There is one special reserved unary property predicate called instantiate/1,
which may not occur in the background knowledge. It specifies a variable that
should be substituted with a constant during the subsequent feature processing
by the process.pl component. Let us illustrate this on an example. Out of
the following declarations3 in the East-West trains domain

:-modeh(1, train(+train)).
:-modeb(1, hasCar(+train, -car)).
:-modeb(1, hasLoad(+car, -load)).
:-modeb(1, hasShape(+load, -shape)).
:-modeb(*, instantiate(+shape)).

exactly one feature would be generated:

f(1,A) :- hasCar(A,B),hasLoad(B,C),hasShape(C,D),instantiate(D).

However, the component process.pl would take f1 and substitute it by a set
of features, in each of which the instantiate/1 literal is removed and the D
variable is substituted by a constant, making the body of f1 provable in the
data. Provided they contain a sufficient number of trains with a rectangle load,
the following feature will appear among those created out of f1:

f(1,A) :- hasCar(A,B),hasLoad(B,C),hasShape(C,rectangle).

A similar principle applies for features with multiple occurrences of the literal
instantiate/1. Arguments of this literal within the feature form a set of
variables ϑ; only those (complete) instantiations of ϑ making the feature’s body
provable on the input database will be considered.

3.2 Settings

Each of the three RSD components has a number of configurable parameters,
which can be specified in the .b file by using the set/2 command in the following
form

:-set(<parameter>,<value>)

The set of parameter settings in the .b file is common to all three RSD com-
ponents that load the .b file; each one will obviously apply the relevant sub-
set. Tables 1 to 4 provide explanations to these settings. For the components
featurize.pl and process.pl there is a special group of formatting-related
settings. These define, for example, whether constructed features should contain
variables such as A, B, C, ... or Car1, Car2, Car3 ..., where the feature
numbers should be put, etc.

3The recall parameter has no effect on the instantiate/1 predicate.

11

featurize.pl
—

Essential Settings
Parameter Value and Function
clauselength An integer specifying the maximum length of a feature

body. Default is 8.
depth An integer specifying the maximum depth of variables

found in a feature body. See e.g. S. Muggleton: Inverse
Entailment and Progol, New Gen. Computing 13, 1995
about variable depth. Default is 4.

max occ A compound term (Symbol/Arity, Occurrences) specifying
the maximum number of occurrences of the predicate with
given symbol and arity in a feature body.
Not limited by default.

pruning Value is on or off. If off, admissible search-space pruning
functions are not used. This is not recommended.
Default is on.

Formatting Specifications
Parameter Value and Function
head name An atom specifying the head symbol of features.

Default is f.
feature num One of argument, end of name. In the former case,

feature heads are numbered as f(1,A), f(2,A), etc.,
otherwise f1(A), f2(A), etc.
Default is argument.

format vars One of alphabet, all cap type and first cap type
alphabet: Names of used variables are subsequently
A, B, C, ...
all cap type: Variables have the name of their type,
followed by an integer, for the Trains domain e.g. CAR1,
CAR2, ...
first cap type: Same as above, but Car1, Car2, ...
Default is alphabet.

Table 1: Parameter settings relevant to the featurize.pl component of RSD.
Note that the default values of the formatting specifications should be used to
create an output file correctly processable by process.pl.

12

process.pl
—

Essential Settings
Parameter Value and Function
negation One of now, later, none.

now: To features generated by featurize.pl, process.pl
will also add their versions where the complete body is
negated. (Negations of individual literals can be done by
suitably defining background knowledge predicates.)
later: tells the program that an inducer capable of
negating features will be applied on the propositionalized
representation. This influences functions described below.
Default is none.

min coverage An integer mc. All features (including negated versions)
covering fewer than mc instances will be discarded.
However, if negation is later (see above), a feature
is discarded only if both (a) coverage thereof and (b) the
coverage of its negated version are smaller than mc.
Default is 1.

filtering One of true, false. If true, each feature will be discarded
if (a) it covers the same set of instances as some previously
constructed feature, or (b) it covers all instances.
Default is true.

splitting Either false, or a number in (0, 1), or an integer.
If false: the resulting propositional representation (call it
RPR) will describe all instances of the input data.
If in (0, 1): RPR will be split into train and test sets. The
number then indicates the proportion of instances to be put
in the test split. Supported for RSD- and CN2-formatted
RPR’s. (For Weka, train/test splitting is a built-in).
If integer N : RPR is a set of N stratified cross-validation
folds. Supported only when creating RPR in an RSD rule-
inducer format. Cross-validation splits for the CN2 format
is not yet supported by RSD. For Weka, cross-validation
splitting is a built-in.
No kind of splitting is at the moment available for plain-
text RPR (it has to be done manually).
Default is false.

Table 2: Essential parameter settings relevant to the process.pl component of
RSD. ‘RPR’ abbreviates ‘resulting propositional representation’.

13

process.pl
—

Formatting Specifications
Parameter Value and Function
true sign Determines the sign used to indicate that a feature holds

for an instance in the RPR attribute table. Default is ‘+’.
false sign See above and guess :-). Default is ‘-’.
separator The symbol for separating attributes in a row of the RPR

attribute table. Default is ‘ ’ (space).
terminator The symbol that should appear in the end of rows in the

RPR attribute table. Default is ‘’ (empty char).
meter width Integer specifying the width (in characters) of the progress

meter displayed when conducting an exhaustive job.
Default is 50.

Table 3: Formatting specifications relevant to the process.pl component of
RSD. ‘RPR’ abbreviates ‘resulting propositional representation’. Note that
the first four settings apply only when generating a plain-text RPR, and are
overridden when creating files for specified learning systems (CN2, Weka, RSD
rule-inducer).

3.3 Basic Commands

Although each of the three components of RSD provides a different set of ser-
vices, the basic user’s control of all the components is quite unified. There-
fore the description below is common to all the three programs. The com-
mands are always issued in the YAP console after having consulted the re-
spective program code (e.g. for the featurize.pl component this was done
in the Quick Start section by [f]. <Enter> as the the file f.pl linked to the
<rsd>/code/featurize.pl program was present in the current directory).

In the following, expressions of the form S/A correspond to a predicate of
the symbol S and arity A.

r(filename). Reads input file(s). All three program components read the
filename.b file, but rules.pl will not complain if it does not find the
file (it simply won’t apply any settings then). The process.pl will also
read the filename_frs_noinst.pl and filename_frs.smb files, which
have been created by featurize.pl, and the classified data file(s) (see
Section 1). The rules.pl will also read the filename.cov file containing
the propositional representation created by process.pl.

s. Shows the product on the screen: On this command, featurize.pl will
create non-instantiated features and list them, process.pl will process
features and list the resulting set. The component rules.pl upon this

14

rules.pl
—

Essential Settings
Parameter Value and Function
beam width An integer specifying the width of the beam in the

beam-search performed to find rules. Default is 3.
max length An integer specifying the maximum length of an

induced rule in literals. Default is 3.
evalfn One of acc, wracc. Specifies the heuristic rule-

evaluation function (accuracy, or weighted relative
accuracy). Default is wracc.

acc est One of freq, laplace. Specifies how rule accuracy
should be estimated (plain frequency count, or the
Laplace estimate). Default is freq.

search One of cover, weighted. If cover, then the
standard instance-covering algorithm is used in the
rule-induction cycle. If weighted, then the instance-
weighting approach is taken. Default is weighted.

weight threshold Number c ∈ (0, 1). In an instance-weighting induction,
generation of rules for the current class is stopped once
the total weight of the class instances falls below c.w
where w is the initial total weight of the class instances.
Default is 0.1.

gamma In an instance-weighting induction, number specifying
the γ parameter in the weight-decay formula.
Default is 1.

sig threshold Number specifying the minimum significance value of
an acceptable rule. Default is 0.

eval threshold Number specifying the minimum heuristic evaluation
value of an acceptable rule. Default is 0.

max rules for class Integer specifying the maximum number of rules that
should be generated for one class. Default is 10.

stop on sig One of yes, no. If yes, then rule-generation for the
current class terminates once the best rule in the search
space deceeds the minimum significance value specified
by sig threshold. Default is no.
Remark: look at
http://130.88.203.73/asktheexperts/faq/
aboutwords/exceed
if you doubt the verb to deceed (my spell-checker does).

stop on eval Same as stop on sig, but related to the minimum
evaluation determined by eval threshold.

Table 4: Parameter settings relevant to the rules.pl component of RSD.

15

command will show the induced rules, but the rules must have been pre-
viously induced, or read from a .rules file (see the i/0 command below).

w. The same as the s. command above, but instead of displaying on the
screen, the results are written into appropriate files. File name is created
by taking filename from the initial r/1 command (see above) and adding
appropriate extensions.

w(filename). Just like w/0 above, but allows to specify a different file name
(extensions again added automatically).

w(system, filename). Only for process.pl, after having used the w/0 or s/0
command: creates a file containing the propositional representation of
the data using the generated features. The format is determined by the
system argument, which can be one of rsd (for the RSD rule-inducer
component), cn2, weka or text (see the formatting parameters in Table
3 for the last option). File name extension is added automatically.

i. Only for rules.pl: induces rules. Each rule will have a conjunction of
feature numbers in its antecedent (the meaning of individual features has
to be looked up in the frs.pl file), the class name in the consequent, and
a few characteristic quantities attached, calculated on the training data.

rr. Only for rules.pl: reads rules from the file filename.rules (erasing any
rules currently in memory), where filename is taken from the initial r/1
command.

rr(filename). Just like rr/0 above but allows to specify a different file name
(extension added automatically).

Two special commands, common to all three components are the following.

set(parameter, value). This command changes a parameter as described in
Section 3.2. Another usual way to specify parameters is to put this com-
mand into the .b file in the spirit of Section 3.2. Obviously, issuing this
command will overwrite the corresponding setting read previously from
the .b file. For example, you may want to repeatedly create features,
induce rules, etc., each time with altering constrain settings, in a single
session with an RSD component.

st. Shows current parameter settings on the screen (excluding those that cur-
rently acquire the default value). Note that this listing may also contain
settings not relevant to the currently running RSD component, as the
settings may have been specified commonly for all components in the .b
file.

Finally, the two following commands (relevant to featurize.pl) may be in
principle issued interactively, but it is not recommended to do so.

modeh/2 The head-literal declaration command.

16

modeb/2 The body-literal declaration command.

Rather, declarations should be a part of the .b file, as explained in Section 3.1.

3.4 Assessment Functions

The components process.pl and rules.pl have special built-in functions en-
abling for a statistical assessment of discovered rules, from the point of view of
subgroup interestingness. Also, detecting and discarding rules not lying on the
convex-hull of the ROC curve is supported.4

Although RSD has some tentative functions allowing to test the predictive
classification capacity of induced rule models, they are not yet supported ‘offi-
cially’, as the primary scope of RSD is (surprise:) subgroup discovery.

We will now illustrate the use of the assessment functions again on the East-
West trains example domain for clarity. Note, however, that data splitting (and
especially cross-validation) on this toy domain counting 20 instances may yield
funny results.

3.4.1 Quality Calculations and Train-Test Validation

The assessment procedure starts already when producing the propositional rep-
resentation by the component process.pl, where the user specifies the ratio of
the number of testing instances to the number of all instances. After features
have been created by the command s. or w., specify the ratio in the YAP
console (if you haven’t set it in the .b file already), e.g. 0.2, as follows

?- set(splitting,0.2). <Enter>

yes

Then, after issuing the command

w(rsd,trains). <Enter>

two files are generated: trains.cov and trains test.cov, of which the latter
contains the description of 20% of instances.5 The two splits are stratified, which
means that they have the same (or very close) distribution of the target-class
values.

Subsequently, after launching the rules.pl component, the training file is
read by

r(trains).

4An explanation of the method of creating subgroup-discovery suited ROC curves as well
as of the significance and other characteristics can be found in the paper referred to in the
Introduction, but is beyond the scope of this manual.

5When generating the split files for CN2 by w(cn2,trains)., the files will be: (a)
trains.att – the attribute description file, (b) trains train.exs – the training examples,
and (c) trains test.exs – the testing examples.

17

and rules are induced by the i. command. Say you first want to check the
average quality of the induced rules, as it appears to be on the training data.
Proceed as follows.

?- sq. <Enter>

Data file = trains
Number of rules = 20
Average Length of Rule = 1.95
Average Significance = 4.44
Average Coverage = 22.5% of instances
Average (over classes) Area Under Roc = 0.8336

yes

The sq. command calculates and reports self-explaining rule characteris-
tics, averaged over all induced rules (subgroups). Since the ROC diagram is
constructed for each class separately, the last reported number is further aver-
aged over all classes.

The following commands will read6 the testing file (training instances are
automatically erased from the memory), and calculate the subgroup character-
istics on the testing instances.

?- r(’trains_test’). <Enter>
[consulting trains_test.cov...]
[trains_test.cov consulted 21228 bytes in 0 seconds]

trains_test.b file not found, no settings changed.

yes
?- sq. <Enter>

Data file = trains_test
Number of rules = 20
Average Length of Rule = 1.95
Average Significance = 0.38
Average Coverage = 16.25% of instances
Average (over classes) Area Under Roc = 0.9375

yes

The message “trains test.b file not found, no settings changed.” is
not an error, it merely means that only data, not settings, have been replaced.

6Remind that that quoting marks must now be used in the argument of r/1 due to the
underline character in the name.

18

Now you may discard all rules, which do not lie on the convex hull of the
ROC curve belonging to the class present in the consequent of the respective
rule, which is done by the command

dr. <Enter>

(it can only be issued after the sq. command which constructs the ROC curves).
In the case of this example, only one rule is discarded and the new average
subgroup characteristics can again be checked by the sq. command. However,
this approach is not totally correct because rules would be filtered according to
the ROC curves generated on the basis of the testing, not training data. The
correct and exhaustive sequence of commands (which is also followed by the
automated validation procedure described in the next Section) would thus be
as follows.

1. r(trains). <Enter>
(Reads the training data.)

2. i. <Enter>
(Induces rules.)

3. w. <Enter>
(Writes the induced rules into the file trains.rules.)

4. sq. <Enter>
(Calculates and shows characteristics of unfiltered rules on training data.)

5. dr. <Enter>
(Discards rules below ROC convex hull.)

6. w(’trains-ch’). <Enter>
(Writes the filtered rules into the file trains-ch.rules.)

7. sq. <Enter>
(Calculates and shows characteristics of filtered rules on training data.)

8. rr. <Enter>
(Reads back the unfiltered rules, erasing the filtered rules from memory.)

9. r(’trains test’). <Enter>
(Reads the testing data.)

10. sq. <Enter>
(Calculates and shows characteristics of unfiltered rules on testing data.)

11. rr(’trains-ch’). <Enter>
(Reads back the filtered rules.)

12. sq. <Enter>
(Calculates and shows characteristics of filtered rules on testing data.)

19

3.4.2 Automating the Cross-Validation Procedure

Performing the validation procedure for a number of cross-validation folds would
be tiresome, therefore RSD provides means of automation.

First of all, the stratified cross-validation folds are again produced by the
process.pl component as in the example above, however, the splitting pa-
rameter is set this time to an integer N defining the number of folds. For
example, using

set(splitting,5). <Enter>

and then

w(rsd,trains). <Enter>

5 cross-validation folds will be produced, represented by 5 pairs of files

trains1.cov, trains1 test.cov ... trains5.cov, trains5 test.cov.

When the rule inducer rules.pl is launched, one may read in the trains.b
file (if there are any settings to be applied) by

[’trains.b’]. <Enter>

instead of using the r(trains). command (this is because one does not assume
the file trains.cov to exist in the cross-validation case). The rest of the job is
very simple. Just type

validate(trains). <Enter>

The program will automatically detect the number of cross-validation folds
present in the current directory (and even if there are none, it will check if
files of a single train-test split exist) and perform an adequate number of in-
duction - validation procedures, with progress commented on the screen. After
they are completed, the following message will appear

Cross-validation completed with 5 folds. Results stored in
files: ’report.txt’, ’report-test.txt’, ’report-ch.txt’ and
’report-ch-test.txt’.
yes

The mentioned files located in the current directory then contain tabulated
results measured for (respectively): all rules on the train set, all rules on the
test set, convex-hull rules on the train set and convex-hull rules on the test set.
Here the convex-hull rules are always obtained by inspecting the ROC curves
created on the basis of the train sets.

Furthermore, induced rules are stored for each training fold. All rules gen-
erated on fold number 1 are stored in the file trains1.rules, convex-hull rules
for this fold are found in trains1-ch.rules, and similarly for the rest of folds.

20

4 Frequently Asked Questions (none yet)

Got any? Mail me at zelezny@fel.cvut.cz. All questions, besides being
answered, will enter a lottery with a valuable first (and only) prize (yet to be
determined). Drawing on April 30, 2003.

21

