
Tractable Construction of Relational Features

Filip Železný

České vysoké učeńı v Praze
Fakulta elektrotechnická

Katedra kybernetiky
zelezny@fel.cvut.cz

Abstract. A popular technique for converting multi-relational data into
a single-relational form is based on constructing truth-valued relational
features of the data instances, where the features play the role of binary
attributes in the resulting representation. Here I consider a simple re-
lational feature language whose formulas correspond to conjunctions of
first-order atoms where arguments are only variables and respect user-
defined constraints on types and input/output modes. I show a sufficient
condition for polynomial time construction of such formulas and give
preliminary results on tractable enumeration of complete sets of such
formulas.

1 Introduction

This paper is concerned with efficient construction of expressions such as

hasCar(C),hasLoad(C,L1),triangle(L1),hasLoad(C,L2),box(L2)

corresponding to conjunctions of constant-free, function-free, non-negated atoms
and subject to some predefined syntactic constraints. The expression is an exam-
ple of a feature related to an individual (here a train, refer to Fig. 1) meaning that
the train has a car carrying a triangle-shaped load and a box-shaped load. Note,
so far informally, that all variables appearing as outputs, eg. C in hasCar(C),
also appear as inputs, eg. C in hasLoad(C,L1) and vice versa. This will be a
general requirement on correct features.

I am not concerned here with the semantics of features and do not treat the
problem of determining their truth value for a specific individual. Note however,
that for purposes of generating a single-relational representation of a database, a
set of features is evaluated with respect to a given individual at a time, and this
procedure is then conducted for all available individuals. Due to this item-wise
process of feature evaluation, no special, ‘key variable’ is needed which would
link the feature to some individual in the database. Below I will discuss more
on the consequences of ignoring the key variable on the syntactic construction
of features.

Let me define an atom and an expression (features will be searched among
expressions) formally. I assume there are some infinite countable sets S (‘pred-
icate symbols’) and V (‘symbols of variables’). N stands for the set of naturals
numbers.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Fig. 1. A data base containing structured items.

Definition 1. x = sx(vx,1, vx,2, . . . , vx,ax) is called an atom if sx ∈ S, ax ∈ N
and vx,i ∈ V (1 ≤ i ≤ ax). L denotes the set of all atoms. Any finite e ⊆ L
is called an expression. Denote Arg(e) = {(x, i) | x ∈ e, 1 ≤ i ≤ ax} and
V ar(e) = {va | a ∈ Arg(e)}. E denotes the set of all expressions.

From the semantic point of view, the atom order is irrelevant. This allows to
view expressions simply as sets of atoms. Note that the indexation in vx,i and ax

should be understood as a functional notation, ie. vl,j (vl,al
) will always represent

the variable at the j-th (last, respectively) argument in atom l (al is called the
arity of l).

The concept of substitution also acquires a simple meaning in this constrained
framework.

Definition 2. Let e ∈ E. A substitution is a mapping θ : V → V . For x ∈ e,
xθ = sx(θ(vx,1), θ(vx,2), . . . , θ(vx,ax)) and eθ = {xθ | x ∈ e}. Expression e θ-
subsumes expression f (denoted as e ¹θ f) iff there is a substitution θ such that
eθ ⊆ f . Finally, e is equivalent to f (written e ≈ f) iff θ is bijective and eθ = f .

A specific feature language is defined by a template, which is made of

– an expression t, determining the argument types and modes of all atoms
which may appear in a feature,

– a subset M of argument places in the above expression, which are assigned
the input-mode.

The role of typing will simply be that no variable can appear in a feature at
two argument places with different types. The reason I use the expression t for
specifying types is that any type-compliant expression will then θ-subsume t, as
I will exemplify later.

The M subset will simply list the argument places which have to hold an
input variable. Although the input-output moding of arguments has a clear

intuitive role (refer to the initial train example), my only formal requirement will
be that each variable present in a feature appears at both some input and some
output argument place. This requirement leads to closed-form, well-interpretable
features [3].

The following definition formalizes the above. Further it defines when a vari-
able is proper, ie. when it has both an input and an output role in an expression,
and defines which expression is a feature.

Definition 3. A template τ is a pair (tτ , Mτ) where tτ is an expression and
Mτ ⊆ Arg(tτ). T denotes the set of all templates. Let e ¹θ tτ . Denote Arg+

τ (e) =
{(x, i) ∈ Arg(e) | (xθ, i) ∈ Mτ} and Arg−τ (e) = Arg(e)\Arg+

τ (e). If some v ∈ V
satisfies the equivalence (v = va+ , a+ ∈ Arg+

τ (e)) ⇔ (v = va− , a− ∈ Arg−τ (e)),
then v is said to be τ -proper in e . A non-empty expression f is a τ -feature iff
f ¹θ tτ and each v ∈ V ar(f) is τ -proper in f .

Example 1. Consider a template (tτ , Mτ) suitable for the initial train example

tτ = hasCar(C), hasLoad(C, L), triangle(L), box(L)
Mτ = {(hasLoad(C, L), 1), (triangle(L), 1), (box(L), 1)}

The typing constraint is here defined by the tτ expression, isolated from the
moding constraint. This makes it explicit that verifying compliance to a typing
constraint corresponds to a subsumption check. Indeed, consider an expression

e = hasCar(X), hasLoad(X, Y), triangle(Y), hasLoad(X, Z)

e complies to the typing specified by tτ because e ¹θ tτ .1

Each variable of a feature must occur at both an argument contained in Mτ

and an argument not in Mτ . Therefore, e above is not a feature, since Z is at no
argument in Mτ .

Note that every template τ has a dual template τ−1 with inverse moding
M−1

τ = Arg(tτ) \ Mτ and every τ -feature is also a τ−1-feature. Through the
inversion, every ‘primary structural’ (such as hasCar(C)) becomes a ‘property’
and every property (such as triangle(L)) becomes a primary structural. A the-
oretical consequence is that if a feature class (say features where atoms chained
by variable sharing form a ‘tree’) can be efficiently enumerated, then the in-
verse class (here atoms forming a ‘root’) can also be efficiently enumerated.
The symmetric properties commented above are a result of disregarding the key
(individual-linking) variable, which would occur only at some ‘input’ arguments
(those in Mτ). In a sense, the sole role of the key type lies in setting the orien-
tation of the otherwise symmetric features, whereas the orientation is irrelevant
for sakes of feature construction.

Note that also the notation (tτ ,Mτ) above is understood functionally, ie. for
any template ρ ∈ T, tρ represents the prescribed typing of ρ and Mρ its moding.
Let me now specify the main problem treated in the remainder of this paper.
1 In general, there may be more than one substitution θ such that e ¹θ tτ . A straight-

forward way to avoid this ambiguity is to constraint oneself, quite naturally, to
templates where tτ contains each symbol s ∈ S (such as hasCar) at most once.

Definition 4. Let T ⊆ T and E : T → 2E. The feature existence problem for
T and E is defined as follows. The problem instance is the tuple n ∈ N , τ ∈ T .
The instance size is n. The instance solution is a τ -feature f such that |f | ≤ n
and f ≈ f ′ for some f ′ ∈ E(τ) (if such f exists), or “NO” otherwise.

The function E takes a template τ ∈ T and produces a set of expressions in
which τ -features are searched (due to the f ≈ f ′ ∈ E(τ) requirement, a solution
may be not be in E(τ) but must be equivalent to some expression in E(τ); this
avoids dependency on variable naming). The reason for specifying the problem
class this way is that different complexity results can be proved for different
functions E’s. For example, E(τ) may consist of connected expressions (where
all atoms are linked via the transitive closure of the variable sharing relation)
and then be independent of τ . Less trivially, E(τ) may be such that all τ -features
therein are loop-free (edges between atoms given by variable sharing, orientation
given by moding) and thus obviously depend on the moding of the specific τ .

2 The Bottom Set Theorem

I will first show that the problem of constructing an expression out of a finite set
of available atoms, such that a given variable is proper (has both an input and
an output occurrence) in that expression, is equivalent to a problem of satisfying
a set of propositional Horn clauses.

Lemma 1. Let τ be a template, e = {l1, l2, . . . , lp} and e′ ⊆ e two expressions,
P = {P1, P2, . . . Pp} a set of propositional variables and v ∈ V ar(e). Further let

{in1, in2, . . . , inr} = {1 ≤ in ≤ p | ∃i (lin, i) ∈ Arg+
τ (e), vlin,i = v} (1)

{out1, out2, . . . , outs} = {1 ≤ out ≤ p | ∃i (lout, i) ∈ Arg−τ (e), vlout,i = v} (2)

be two index sets.2 Let further Cin(v) denote the following set of Horn clauses

Pin1 ∨ ¬Pout1 ∨ ¬Pout2 ∨ . . . ∨ ¬Pouts (3)
Pin2 ∨ ¬Pout1 ∨ ¬Pout2 ∨ . . . ∨ ¬Pouts (4)

... (5)
Pinr ∨ ¬Pout1 ∨ ¬Pout2 ∨ . . . ∨ ¬Pouts (6)

Similarly, let Cout(v) be the following Horn clause set

Pout1 ∨ ¬Pin1 ∨ ¬Pin2 ∨ . . . ∨ ¬Pinr (7)
Pout2 ∨ ¬Pin1 ∨ ¬Pin2 ∨ . . . ∨ ¬Pinr (8)
... (9)
Pouts ∨ ¬Pin1 ∨ ¬Pin2 ∨ . . . ∨ ¬Pinr (10)

2 The former index set thus addresses those of atoms in e, which contain v at some
input argument while the latter set corresponds to atoms with v acting as an output.

Let C(v) = Cin(v) ∪ Cout(v) and ξe′ : P → {true, false} be a truth assignment

ξe′(Pi) =
{

false, if li ∈ e′;
true, if li /∈ e′. (11)

Then v is τ -proper in e′ iff ξe′ satisfies all clauses in C(v).

Proof. (Sufficiency) Let ξe′ be an arbitrary truth assignment to the variables
P1, P2, . . . , Pp, such that ξe′ satisfies all clauses in C(v). Let further u1, u2, . . . uµ

(1 ≤ µ ≤ p) be the indexes of those of the variables which are assigned the
false value by ξe′ , ie. e′ = {lu1 , lu2 , . . . , luµ

}. I need to show that v = va+ , a+ ∈
Arg+

τ (e′) (v appears at an input argument) iff v = va− , a− ∈ Arg−τ (e′) (v appears
at an output argument). Let me first show the implication

v appears at an input argument ⇒ v appears at an output argument

As the implication assumes, one of the atoms lin1 , lin2 , . . . linr
containing the

input occurrences of v (see Eq. 1) must be present in e′, ie. there must be a κ
(1 ≤ κ ≤ r) such that inκ = uk. Then Pinκ is assigned the false value by ξe′ .
Because all clauses of Cin(v) must be satisfied by ξe′ , so must be its κ-th clause

Pinκ ∨ ¬Pout1 ∨ ¬Pout2 ∨ . . . ∨ ¬Pouts (12)

Since Pinκ is false, at least one of Pout1 , Pout2 , . . . Pouts must hold the false value
to keep the clause satisfied; let it be Poutλ

(1 ≤ λ ≤ s). If Poutλ
is false then

loutλ
∈ e′. But loutλ

is a atom containing (see Eq. 2) an output occurrence of v.
Thus I have proved the above implication. The inverse implication can be shown
analogically, using the fact that all clauses in Cout(v) must be satisfied.

(Necessity) Let e′ (e′ ⊆ e) be an arbitrary expression in which v appears
as both an input and an output (there are a+ ∈ Arg+

τ (e′) and a− ∈ Arg−τ (e′)
such that v = va+ = va−). Hence at least one of the atoms lout1 , lout1 , . . . , louts

containing an output occurrence of v (see Eq. 2) must be present in e′; let it
be loutκ (1 ≤ κ ≤ s). Then ξe′ assigns the false value to Poutκ . Since all clauses
in Cin(v) contain ¬Poutκ , all clauses in Cin(v) are satisfied. At the same time,
e′ must also contain at least one of the atoms lin1 , lin1 , . . . , linr where v is at
an input argument (see Eq. 1). Let it be linλ

(1 ≤ λ ≤ r). Then Pinλ
is false

and all clauses in Cout(v) are also satisfied as they all contain the propositional
atom ¬Pinλ

. Consequently, all clauses in C(v) = Cin(v) ∪ Cout(v) are satisfied
by ξe′ . ut

It is now straightforward to extend the previous lemma to the problem of
finding a non-empty expression with all variables proper.

Lemma 2. Let all assumptions of Lemma 1 hold. Let further C =
⋃

v∈V ar(e) C(v)
and C∅ = {¬P1 ∨¬P2 ∨ . . .∨¬Pp} Then the following assertions are equivalent:

1. Expression e′ is non-empty and each v ∈ V ar(e) is τ -proper in e′.
2. Assignment ξe′ satisfies all clauses in the Horn clause set C ∪ C∅.

Proof. (1 ⇒ 2) If e′ is non-empty then some li ∈ e′, which means that Pi is
assigned the false value by ξe′ . Thus C∅ is clearly satisfied. Since each v ∈ V ar(e)
is τ -proper in e′, every clause in each C(v) (v ∈ V ar(e)) is satisfied due to Lemma
1. Therefore all clauses in C ∪ C∅ =

⋃
v∈V ar(e) C(v) ∪ C∅ are satisfied.

(2 ⇒ 1) Since C∅ must be satisfied, there is some i (1 ≤ i ≤ p) such that Pi

is false in the assignment ξe′ . Then li ∈ e′, ie. e′ is non-empty. As all clauses in
each C(v) (v ∈ V ar(e)) are satisfied, all v ∈ V ar(e) are τ -proper in e′ due to
Lemma 1. ut
Lemma 3. Let all assumptions of Lemma 2 hold. A maximal assignment (ie.
one assigning the false value to the smallest number of variables) satisfying all
clauses in C can be found (or decided that no satisfying assignment exists) in
time polynomial in r and s.

Proof. P-completeness of satisfying a set of propositional Horn clauses (the
‘HORNSAT’ problem) is shown in [5]. Finding a maximal (or minimal) assign-
ment in polynomial time is shown in [2]. ut

I am finally in the position to show the main result of this paper, which is
informally as follows. If a polynomial set ⊥ can be constructed such that all
acceptable features (up to variable renaming) are subsets thereof (let me call ⊥
a bottom set), one can find a feature (if it exists) in polynomial time. This is
despite the fact that there is of course an exponential number of subsets of the
bottom set.

Theorem 1. Let T ⊆ T, E : T → 2E and let there be ⊥ : T ×N → E such that
for all τ ∈ T , n ∈ N : ⊥(τ, n) is computable in time polynomial in n, ⊥(τ, n) ¹θ

tτ , and for all τ -features f it holds that f ≈ f ′ ∈ E(τ) iff f ⊆ ⊥(τ, |f |). Then
the feature existence problem for T and E can be solved in polynomial time.

Proof. Given the bottom set ⊥(τ, n), the feature existence problem is equivalent
to deciding if there is a subset f of the bottom set such that |f | ≤ n and f is
a τ -feature. ⊥(τ, n) ¹θ tτ implies3 f ¹θ tτ for arbitrary f ⊆ ⊥(τ, n). Also, as
⊥(τ, n) is finite, so is every subset thereof. Considering Def. 3, it thus remains to
decide whether there exists a non-empty f ⊆ ⊥(τ, n), |f | ≤ n where every vari-
able is τ -proper, that is, it appears both at some input argument (ie. v = va+ ,
a+ ∈ Arg+

τ (f)) and some output argument (ie. v = va− , a− ∈ Arg−τ (f)). For
brevity denote e = ⊥(τ, n). As Lemma 2 shows, finding a non-empty subset f ⊆ e
where each v ∈ V ar(e) (and thus each v ∈ V ar(f)) is τ -proper in f , is equiv-
alent to finding a satisfying assignment to a set of propositional Horn clauses
C =

⋃
v∈V ar(e) C(v) ∪ C∅ with propositional variables P1, P2, . . . , P|e|. As e is

computable in time polynomial in n, |Arg(e)| is at most polynomial in n and so
are the numbers r, s in Eq.’s 1 and 2 (r = Arg+

τ (e) ≤ |Arg(e)| ≥ Arg−τ (e) = s).
Confronting this with the clause set 3-10, each C(v) has a polynomial (in n)
number of clauses and atoms. As |V ar(e)| ≤ |Arg(e)| (due to the existence of
the function v : Arg(e) → V ar(e) defined as v((x, i)) = vx,i), also C has a

3 Clearly, if e′ ⊆ e′ ¹θ e′′ then e′ ¹θ e′′ for any expressions e, e′, e′′.

polynomial number of clauses and atoms. Due to Lemma 3, if there is a satis-
fying assignment to C, one can find in polynomial time a maximal one, which
corresponds to the smallest expression fmin ⊆ e where each v ∈ V ar(fmin) is
τ -proper in fmin. If fmin exists and |fmin| ≤ n, the feature existence problem is
answered with fmin. Otherwise it is answered with “NO”. ut
Example 2. The bottom set for τ specified in Example 1 and n = 3 is

⊥(τ, n) = hasCar(C),hasLoad(C,L),triangle(L),box(L).

Clearly, all τ -features (up to variable renaming) of length up to 3 atoms are
subsets of this bottom set (incidently equivalent to tτ). Let the propositional
variables assigned to the bottom atoms (in the order of their appearance) be
P1, P2, P3, P4. The corresponding HORNSAT instance is the union of the follow-
ing Horn clause sets

Cin(C) = {P2 ∨ ¬P1},
Cout(C) = {P1 ∨ ¬P2},
Cin(L) = {P3 ∨ ¬P2, P4 ∨ ¬P2},
Cout(L) = {P2 ∨ ¬P3 ∨ ¬P4}
C∅ = {¬P1 ∨ ¬P2 ∨ ¬P2 ∨ ¬P4}.
One of the maximal solutions assigns the false value to P1, P2 and P3 (the
reader will check that all mentioned clauses are satisfied), which corresponds to
the set hasCar(C),hasLoad(C,L),triangle(L), which therefore forms a correct
feature.

3 Bottom Set Existence and Feature Enumeration

The bottom set theorem leaves two crucial questions open:

– When can a polynomial bottom set be constructed?
– When does tractability of the feature existence problem entail tractability

of the enumeration of all τ -features in E(τ)?

The following results are given without proofs, which will appear in an extended
version of the paper.

3.1 Bottom Set Existence

Let me first formalize a few structural notions about templates and features.

Definition 5. Let T ⊆ T, E : T → 2E, τ ∈ T and e ∈ E(τ). x, y ∈ e are
said to be connected in e iff they share a variable or some z ∈ e is connected
with both x and y. e is is said to be connected (or undecomposable) iff any
atom in e is connected to all other atoms in e. There is a path in a τ -feature
f from x ∈ f to y ∈ f of length 1, iff for some a, b ∈ Arg(f) it holds va = vb,
a /∈ Mτ , b ∈ Mτ , or a path of length l + 1, iff for some z ∈ f there is a

path from x to z of length l and a path from z to y of length 1. The distance
δτ (x, y) is the length of the shortest path from x to y, if one exists. The depth
of f is defined as ∆τ (f) = maxu,v∈f δτ (u, v). f is said to be loop-free if for
no x there is a path in f from x to x. A loop-free τ -feature f is called a semi-
root (semi-tree) iff no variable has two input (output) occurrences in f w.r.t
τ ; f is called a root (tree) iff it is a semi-root (semi-tree) and no atom in
f has two output (input) arguments w.r.t τ . Further, f is called a semi-chain
(chain) iff it is simultaneously a semi-root (root) and a semi-tree (tree). Finally,
τ is said to be hierarchical iff there is a partial irreflexive order ≺ on V ar(tτ)
such that vl,i ≺ vl,j whenever there are l, i, j such that (l, i) ∈ Arg+

τ (tτ) and
(l, j) ∈ Arg−τ (tτ).

The next theorem gives three sufficient conditions, each of which allows
for the construction of a polynomial-size bottom set, and therefore also the
polynomial-time construction of a feature.

Theorem 2. Assumptions of Theorem 1 are satisfied if for each τ ∈ T : every
e ∈ E(τ) is connected and any of the following holds:

1. each τ -feature in E(τ) is either a tree, root or chain,
2. there is a ∆max ∈ N such that every τ -feature f in E(τ) is loop-free and

∆τ (f) ≤ ∆max,
3. τ is hierarchical (this implies Cond. 2).

Let me illustrate the spirit of the proof with an example.

Example 3. Consider again the continued train example. For each template τ ,
let E(τ) be the set of all connected τ -features, ie. expressions such as

hasCar(C),triangle(C),hasCar(D),triangle(D)

are disallowed. Let further T consist of hierarchical templates τ = (tτ ,Mτ), such
as

tτ = hasCar(C), hasRoof(C), hasLoad(C, L), triangle(L), box(L) (13)
Mτ = {(hasLoad(C, L), 1), (triangle(L), 1), (box(L), 1)} (14)

There is of course no τ -feature of size n = 1. For n = 2, a bottom set (coinciding
with the only correct τ -feature) is

⊥(τ, 2) = hasCar(C),hasRoof(C)

For n = 3, a bottom set is

⊥(τ, 3) = hasCar(C),hasRoof(C),hasLoad(C,L),box(L),triangle(L)

In general, for
3 + 3p ≤ n < 3 + 3(p + 1), p = 1, 2, . . . (15)

⊥(τ, n) can be obtained by adding the atoms

hasLoad(C,Lp+1),box(Lp+1),triangle(Lp+1)

to ⊥(τ, n − 1). This is better seen from a directed graph representation of a
bottom set (below), where the nodes correspond to atoms and left-to-right edges
correspond one variable being an output in the left node and an input in the
right node.4

branching factor ≤ n





hasCar(C) −hasRoof(C)
−hasLoad(C, L1) −box(L1)

−triangle(L2)
−hasLoad(C, L2) −box(L2)

−triangle(L2)
.

︸ ︷︷ ︸
∆≤∆max

Here every τ−feature is some connected subgraph of the above graph without
orientation. Under the specific choice of τ (Eq. 13), the graph is a tree, which
is because all atoms in tτ have at most one input variable. Due to the assumed
hierarchical ordering of types≺, the depth of the graph is bounded by a constant5

∆max. Also its branching factor can be upper-bounded by n (eg. no feature of
size at most n can address more loads than n). The number of nodes, ie. the
size of the bottom set is thus of order n∆max , that is, polynomial in n. Due to
Theorem 2, this guarantees a polynomial-time construction of features.

However, a different choice of τ in Eq. 13 may produce a non-tree graph if
atoms with multiple inputs appear in tτ . Without elaborating the detailed proof,
the atoms can still be organized in ‘layers’ (like above) using the assumed type
hierarchy ≺. The branching factor is then of order nInpAr where InpAr is the
maximum number of inputs in an atom, among atoms in tτ . In this case |⊥(τ, n)|
is of order nInpAr×∆max which again preserves polynomial-time constructibility
of features.

3.2 Enumeration of Feature Sets

The feature enumeration problem is the same as the problem of feature existence,
except that a solution to the former problem is the set of all distinct (ie. mutu-
ally non-equivalent) solutions to the latter problem. An auxiliary, yet important
lemma for this problem is as follows.

Lemma 4. Let the feature existence problem for T and E be decidable in poly-
nomial time and let there be a polynomial number of distinct solutions to every
instance thereof. Then the feature enumeration problem for T and E can be
decided in polynomial time.
4 Formally, there is an edge between nodes of atoms x and y in this representation of
⊥(τ, n), if v1 ∈ V ar(x) and v2 ∈ V ar(y) and θ(v1) ≺ θ(v2) where ≺ is the assumed
hierarchy-defining order, and θ is a substitution mapping the bottom set variables
to the variables in tτ (types) such that ⊥(τ, n)θ ⊆ tτ .

5 assuming implicitly a fixed size of tτ

Proof. Direct consequence of the enumeration-tractability result in [1]. ut
A preliminary analysis indicates that satisfying the conditions stipulated by

Theorem 2 implies a polynomial number of solutions to the existence problem
and hence the polynomial decidability of the enumeration problem.

Acknowledgement

I am grateful for the support by the Czech Ministry of Education through the
grant 1K4108.

References

1. R. Dechter and A. Itai. Finding All Solutions if You can Find One AAAI-92
Workshop on Tractable Reasoning, 1992

2. W. F. Dowling and J. H. Gallier. Linear time algorithm for testing the satisfiability
of propositional horn formulae. Journal of Logic Programming, 3:267-284, 1984.

3. N. Lavrač and P. A. Flach. An extended transformation approach to inductive
logic programming ACM Transactions on Computational Logic 2:4, 2001

4. N. Lavrač, F. Železný and P. A. Flach. RSD: Relational Subgroup Discovery
through First-Order Feature Construction 12th Int. Conf. on Inductive Logic Pro-
gramming, Springer 2002

5. Thomas J. Schaefer. The complexity of satisfiability problems. Tenth Annual
Symposium on Theory of Computing, 1978.

