
A Restart Strategy for Fast Subsumption Check
and Coverage Estimation

Ondřej Kuželka and Filip Železný

Intelligent Data Analysis Research Group
Dept. of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

{kuzelo1,zelezny}@fel.cvut.cz

Abstract. We study the runtime distributions of a simple subsumption
check algorithm and show that in some conditions they exhibit heavy
tails, indicating a possible runtime advantage achievable by randomizing
and restarting the algorithm. Therefore we design ReSumEr, a restarted
subsumption tester, incorporating randomization while preserving com-
pleteness. On generated graph data, ReSumEr outperforms the state-of-
the-art subsumption algorithm Django (i) significantly in the YES region
of the phase transition domain and (ii) in the entire phase transition do-
main given a sufficient size difference between the tested subsumer and
subsumee. Importantly, we further show how, under a distributional as-
sumption, a restarted strategy can be used to quickly obtain a maximum
likelihood estimate of the coverage of a pattern (proportion of examples
subsumed thereby) without requiring to verify subsumption for all exam-
ples. We implement this technique in the program ReCovEr and show
that it provides accurate coverage estimates in favorable runtimes.

1 Introduction

Recent statistical performance studies of search algorithms in difficult com-
binatorial problems [1, 2] have demonstrated the benefits of randomizing and
restarting the search procedure. Specifically, it has been found that if the search
cost distribution of the non-restarted randomized search exhibits a slower-than-
exponential decay (that is, a “heavy tail”), restarts can reduce the search cost
expectation. In [6] we have demonstrated the benefits of randomized restarted
strategies in the lattice search conducted by an inductive logic programming sys-
tem. While the size of pattern spaces represents one source of the complexity of
relational data mining, another such source follows from the problem of verifying
the subsumption relation between a relational pattern and an example.

This paper first focuses on this latter problem by investigating the possible
benefits of a randomized restarted strategy in subsumption testing. Previous re-
search has demonstrated that vast gains in efficiency can be achieved by using
unorthodox subsumption algorithms as opposed to standard procedures pro-
vided e.g. by a Prolog engine. The pioneering work [4] introduced a tractable



approximation to the subsumption test called stochastic matching. This ran-
domized algorithm is incomplete in that its failure to prove subsumption in a
finite number of steps does not refute the subsumption. On the contrary, we
aim at preserving completeness in our randomized restarted procedure called
ReSumEr. A complete deterministic approach, called Django, was presented in
[3]. Django converts subsumption into a constraint satisfaction problem (CSP)
then solved by state-of-the-art heuristic techniques. Django was shown to out-
perform by orders of magnitude the subsumption testing mechanism used in ILP.
Therefore we use Django as the baseline algorithm for comparative experiments
with ReSumEr.

Secondly, this paper focuses on the development of an algorithm for fast es-
timation of pattern coverage, i.e. the proportion of a given set E of examples
subsumed thereby. The paper [5] is relevant to this part of our work, in that it
estimates total coverage by checking subsumption with respect to a small sample
of E. We take a different approach in our algorithm, called ReCovEr, enabled
by the fact that ReSumEr’s runtimes neccessarily follow an exponential distri-
bution. ReCovEr computes pattern coverage through a maximum-likelihood
estimation of parameters of this exponential distribution, on the basis of infor-
mation collected during a (possibly small) sequence of restarts of ReSumEr.

Informally, the main intended contribution of this work is to support effi-
cient mining in large relational structures by enabling fast pattern evaluation.
In real-life applications, e.g. in bioinformatics, such structures can typically be
represented by oriented graphs. For this reason, we will assume the oriented
graph structure of examples and hypotheses, and the subsumption test will co-
incide with subgraph isomorphism checking.

The rest of the paper is organized as follows. Section 2 defines the syntax
of patterns and examples considered and explains how examples are generated
for sakes of empirical measurements throughout the paper. In Section 3 we de-
vise a simple subsumption test algorithm, investigate the runtime distributions
of both its non-restarted and restarted version (ReSumEr), and empirically
evaluate ReSumEr in comparison to Django. Section 4 explains the maximum-
likelihood technique for estimating hypothesis coverage implemented in the al-
gorithm ReCovEr, and tests its efficiency and estimation accuracy. Section 5
concludes the paper.

2 Preliminaries

In the rest of the paper we assume that patterns and examples are oriented
graphs where each vertex may be assigned one of two possible colors. In the
dual, relational-logic representation, examples e and patterns P are viewed as
conjunctions of positive atoms, each being one of edge(t1, t2), black(t), red(t)
where t, t1, t2 are placeholders for terms. All terms in an example e are assumed
to be constants and all terms in a pattern P are assumed to be variables. The
correspondence between the graph and logic representation is such that vertices
correspond to terms and the orientation of and edge is given by the order of



term appearance in the corresponding atom. We will refer to the described dual
notions interchangeably. When needed, conjunctions will be treated as atom sets,
e.g. for two conjunctions a and b, a ⊆ b will denote that b contains all atoms
contained by a.

Algorithm 1 SubsumptionCheck(P, e): A simple subsumption test algorithm

Input: Pattern P , example e;

if P ⊆ e then
return YES

else
Choose variable V from P using a heuristic function (see main text)
for ∀S ∈ PossibleSubstitutions(V, P, e) (see main text) do

SearchedNodes ← SearchedNodes + 1
Substitute V with S
if ∀W ∈ Adjacency(V ) : PossibleSubstitutions(W, P, e) 6= ∅ then

if SubsumptionCheck(P, e) = YES then
return YES

end if
end if

end for
return NO

end if

Algorithm 2 SubstitutionPossible(V,C, P, e): Returns NO if P cannot sub-
sume e when V is substituted by C.

Input: Variable V , constant C, Pattern P , example e;

for ∀A ∈ P such that atom A contains variable V do
A′ ← replace all occurrences of variable V in atom A by C.
if A′θ * E (easy to check for a single atom A) then

return NO
end if

end for

return YES

We consider a simple heuristic algorithm (Algorithm 1) for verifying whether
a pattern P subsumes an example e. Similarly to Django [3] this algorithm
is inspired by the CSP framework and in its terminology it can be described
as a backtracking search algorithm with forward checking, a variable selection
heuristic and randomization. The heuristic function aims at choosing variables
whose substitution makes it likely that an inconsistency, if exists, is detected
soon. For a variable V , the function returns the sum of occurrences of variables
in pattern P that have already been grounded and that share at least one literal
with V . The variable which maximizes this function is selected; in case of a tie,
a random choice is made with uniform probability among the highest scoring



variables. The function PossibleSubstitutions(V, P, e) returns all constants C
for which SubstitutionPossible(V, C, P, e) (Algorithm 2) returns YES.

Algorithm 3 RandomGraph(n, p): A generator of uniform random graphs

Input: Integer n, Real p;

Let V be a set of n vertices and G an empty edge set.
for ∀ {vi ∈ V, vj ∈ V |vi 6= vj} do

With probability p, G ← G ∪ {vi, vj}
end for
For all edges in G choose a random orientation, and for all vertices in V choose a random color
with uniform probability from {red, black}.
return graph with vertex set V and edge set G

Algorithm 4 ScaleFreeGraph(n, k): A generator of scale-free random graphs

Input: Integers n, k;

Let V be a set containing one vertex v1, G be an empty edge set.
for i ← 2 to n do

k′ ← min (i− 1, k)
Create vertex vi

Connect vi to k′ distinct vertices v1, ..., vk chosen from the set V with probability proportional
to their degrees
G ← G ∪ {(vi, vj)|j = 1...k}

end for
For all vertices in V choose a random color with uniform probability from {red, black}.
return graph with with vertex set V and edge set G

To obtain a domain-independent runtime distribution of the algorithm, we
test it on randomly generated patterns and examples. For generality, we devised
two different graph generators for this purpose. The first (Algorithm 3) gener-
ates graphs where any two vertices are connected with a pre-set probability p (by
an edge of a random orientation). The second (Algorithm 4) produces scale-free
(“small world”) graphs; here, an edge is attached to a vertex with probabibility
increasing with the number of edges already connected to the vertex. In both
algorithms, all vertices are colored as black with probability 0.5 and red oth-
erwise. We will refer to the parameter p (k, respectively) of a random uniform
(scale-free, respectively) graph as the connectivity of the graph.

3 ReSumEr: a restarted subsumption tester

We subjected Algorithm 1 to experiments with random sets of patterns and
examples generated by Algorithm 3 (Algorithm 4, respectively), under various
settings of n and p (n and k, respectively). Our objective was to verify the



10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

Fig. 1. The subsumption test runtime distribution for patterns with n = 12 (left) and
n = 14 (right) vertices and connectivity p = 0.2. In both cases, examples had n = 50
vertices and connectivity p = 0.5. Both patterns and examples were randomly generated
by Algorithm 3. A heavy tail is observed in the left panel for the non-restarted version
(blue) and significant speed-up is achieved by the restarted version (red). Although
no heavy tail is observed in the right panel for the non-restarted version (blue), small
speed-up is still observed for the restarted version (red).

presence of heavy tails in the runtime distributions F (t). For a t > 0, F (t) is the
probability that the tested algorithm resolves a random subsumption instance
in no more than t units of time, corresponding to the number of explored search
nodes. A heavy tail is exhibited if 1−F (t) decays at a power-law rate, i.e. slower
than exponentially. Informally, a heavy-tailed distribution indicates the non-
negligible probability of subsumption instances on which the checking algorithm
gets stuck for an extremly long runtime. The presence of a heavy tail in an
empirical runtime distribution F (t) can be checked graphically, by plotting 1−
F (t) against t on a log-log scale. For a growing t, a heavy-tailed distribution
here acquires a linear shape [2].

Our findings were not conclusive in that for various configurations mentioned
above, some runtime distributions were heavy-tailed while others were not. Two
examples are shown in Fig. 1 in blue; while differing very slightly in a single
parameter (n) value, the respective distributions posses largely different shapes
of the tails. We have not yet been able to establish a principled correspondence
between the respective parameter values and the occurrence of heavy tails.

While the presence of heavy tails for some classes of subsumption instances
indicates possible large runtime benefits achievable by a restarting strategy [2],
its effect on the non-heavy-tailed classes may not be necessarily detrimental. We
thus decided to assess the overall impact of restarting empirically. For this sake
we designed a complete restarted randomized subsumption algorithm ReSumEr
(Algorithm 5). Its completeness is guaranteed by the assumption that for the
cutoff sequence R(n), R(n) → ∞ as n → ∞. Note that the randomization
is facilitated by tie-breaking in the heuristic function used in the embedded
Algorithm 1.



Algorithm 5 ReSumEr(P, e, R): A restarted subsumption algorithm

Input: Pattern P , example e, cutoff sequence R;
n ← 1
repeat

Answer ← Run SubsumptionCheck(P, e) with number of searched nodes limited to R(n)
n ← n + 1

until Answer YES or NO is returned

return Answer

The runtime distributions for ReSumEr, with an ad-hoc chosen restart se-
quence R(n) = 10n2 + 30 are plotted in red in Fig. 1 for the earlier exemplified
cases of both heavy-tailed and non-heavy-tailed behavior. In both cases, restarts
generally reduce runtime, although the difference is much more significant in the
heavy-tailed case. The set of random subsumption instances naturally comprise
of both satisfiable (where P subsumes e) and non-satisfiable instances. Of rel-
evance, the times taken by ReSumEr on the non-satisfiable instances were in
this experiment on average about 103 times higher than on the satisfiable ones.
This is natural due to the ‘iterative’ character of ReSumEr; while satisfiability
can in principle be shown in any single restart, non-satisfiability can only be
shown after n restarts making R(n) sufficiently high.

We next aimed to compare ReSumEr to a baseline algorithm used for sub-
sumption in relational data mining. As explained earlier, the graph structures
we here deal with are easily embedded into conjunctions of first-order positive
atoms. Thus an obvious baseline algorithm candidate would have been the unifi-
cation mechanism in Prolog. However the sizes of patterns and examples (tens of
vertices in patterns, hundreds in examples) we focus on, consistently result in un-
measurably large runtimes of this procedure. A much faster alternative, which
we adopt for comparisons, is represented by the state-of-the-art subsumption
algorithm Django [3].

All experiments were conducted on the same computer. Django is imple-
mented in C and we used its version 11. ReSumEr is implemented in JAVA.
Figures 2 and 3 display the results for patterns and examples generated as uni-
form random graphs (Fig. 2) and scale-free graphs (Fig. 3). The comparative
runtimes (top panels) are accompanied by the corresponding phase transition di-
agrams (bottom panels). The left (right, respectively) panels pertain to a smaller
(larger, respectively) size difference between the patterns and the examples. Size
is understood as the number of contained vertices.

We now note on the principled trends apparent from the results. First, Re-
SumEr consistently and significantly outperformed Django in the YES region
of the phase transition spectrum.1 Second, in the experiments with a larger size-
difference between the patterns and the examples, ReSumEr was faster across
the entire phase transition domain. Third, heavy-tailed behavior of Django was

1 which corresponds to the left parts of all diagrams in Figures 2 and 3. Although the
observed absolute difference is larger in the NO (right-hand side) region, in relative
terms it is much smaller than the difference in the YES region.



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

p

tim
e 

[m
s]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

p

tim
e 

[m
s]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Top: Comparisons of Django (blue) and ReSumEr (red) runtimes of subsump-
tion checks between patterns and examples generated by Algorithm 3 with connectivity
p = 0.3 for examples and varying p (horizontal axis) for patterns. In the left panel,
patterns have 30 vertices and examples have 100 vertices. In the right panel, patterns
have 10 vertices and examples have 200 vertices. All shown points are averages of 50
measurements. Bottom: The phase transition landscapes for the respective settings
above: the probability that a random pattern with connectivity p (horizontal axis)
subsumes a random example with connectivity p = 0.3.

observed: in spite of its typical measured runtimes in the order of milliseconds to
seconds, occasional runs in satisfiable instances took up to tens of minutes and
had to be curtailed. This resulted in Django’s excessive runtimes in the top-left
panel of Fig. 2 (Fig. 3, respectively) for p ≤ 0.1 (k = 3, respectively). Heavy-
tailed behavior is prevented by ReSumEr resulting in its vast superiority in the
p ≤ 0.1 region of Fig. 2, top-left panel. In Fig. 3, however, Resumer’s averaged
runtimes were also excessive for k = 3 and k = 4. Unlike for Django, here the
reason was not in occasional excessive runs, but rather in the systematic in-
crease of runtime required to complete the unsatisfiable subsumption instances.
Fourth, the generally high runtimes of Django in the NO region are surprising.
In particular, for large size-differences between the patterns and the examples
(right panels in Fig. 2 and 3), Django’s runtimes in the NO region were even



1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

k

tim
e 

[m
s]

1 2 3 4 5 6 7
0

5

10

15
x 10

4

k

tim
e 

[m
s]

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

Fig. 3. Top: Comparisons of Django (blue) and ReSumEr (red) runtimes of subsump-
tion checks between patterns and examples generated by Algorithm 4 with connectivity
k = 20 for examples and varying k (horizontal axis) for patterns. In the left panel, pat-
terns have 30 vertices and examples have 100 vertices; for some k, runtimes were not
measurable (see main text). In the right panel, patterns have 20 vertices and exam-
ples have 500 vertices. All shown points are averages of 50 measurements. Bottom:
The phase transition landscapes for the respective settings above: the probability that
a random pattern with connectivity k (horizontal axis) subsumes a random example
with k = 20.

consistently higher than those in the YES/NO (transition) region.2 Although
this phenomenon was also reported in [3] (Table 4 therein) for Django version 1,
in general the runtimes reported by [3] for the NO region are much smaller than
those in the transition region. Further investigation is thus needed to clarify this
discrepancy in light of the differences between our experimental setting and that
in [3].

2 Thus eliminating the usual runtime spikes in the transition area. For ReSumEr, such
spikes are also small in the right panels of Fig. 2 and 3, however, here the reason
clearly lies in ReSumEr’s laborious ‘iterative’ approach for proving unsatisfiable
subsumption instances, as commented earlier.



4 ReCovEr: a restart-based coverage estimator

We will now explain how to exploit a restarted strategy to obtain a maximum
likelihood estimate of the proportion of examples subsumed by a pattern, without
the need to complete a subsumption with a definitive (YES/NO) answer for any
particular example.

We first need to make the assumption that given a pattern P and a set of
examples E, the probability that Algorithm 1 finds a solution (i.e. returns YES
as its answer) before it explores more than cutoff nodes of the search tree, is
same for all e ∈ E such that P subsumes e. Denote this probability by p. We
will not directly assess the empirical accuracy of this assumption, but we will
later verify it indirectly by testing the accuracy of the algorithm built upon it.

We assume a given pattern P and we fix a constant cutoff value R. In the first
step, for each e ∈ E we run SubsumptionCheck(P, e) (Algorithm 1), stopping
it as soon as the number of searched nodes has reached R. Then, after |E|
restarts (each time with a different e ∈ E), we can derive the probability that
the algorithm has produced exactly m1 ‘YES’ responses in this first step. In
particular, this probability P (m1) is

P (m1) =
(

A
m1

)
pm1(1− p)A−m1 (1)

where A = |{e ∈ E|Pθ ⊆ e}|. In the next step, all m1 examples shown to be
subsumed in the first step are removed from E and the procedure is repeated with
the remaining examples. In general, we can derive the probability that exactly
mi YES answers are generated in the i-th step. Thus for i = 2, we obtain

P (m2|m1) =
(

A−m1

m2

)
pm2(1− p)A−m1−m2 (2)

and similarly for an arbitrary i ≥ 1, we have

P (mi|mi−1, . . . ,m1) =
(

A−∑i−1
j=1 mj

mi

)
pmi(1− p)A−∑i

j=1 mj (3)

The probability of a sequence (m1, . . . , mk), where mi is the number of examples
for which YES was produced in the i-th step, is given by

P (m1, . . . , mk) =
k∏

i=1

P (mi|mi−1, . . . , m1) (4)

Substituting for P (mi|mi−1, . . . , m1) from Eq. 3 and taking the logarithm Eq. 4
results in

ln (P (m1, . . . , mk)) =

=
k∑

i=1

ln
(

A−∑i−1
j=1 mj

mi

)
+

k∑

i=1

mi ln p +
k∑

i=1


A−

i∑

j=1

mj


 ln(1− p) (5)



Algorithm 6 ReCovEr(P, E, R,M, ∆): Algorithm for coverage estimation

Input: Pattern P and set of examples E, Integers R (‘cutoff’), M , ∆;

tries ← 0
Unknown ← Examples
CoveredInIthTry ← []
repeat

tries ← tries + 1
CoveredInThisTry ← 0
for ∀E ∈ Unknown do

Answer ← Run SubsumptionTest(P, E) with number of searched nodes limited to R
if Answer = PositiveMatching then

CoveredInThisTry ← CoveredInThisTry + 1
Unknown ← Unknown\E

end if
end for
CoveredInIthTry[tries] ← CoveredInThisTry

until tries ≥ M ∧ ‖LikelihoodEstimate(tries− 1)− LikelihoodEstimate(tries)‖ ≤ ∆

return LikelihoodEstimate(tries)

To find the parameters A and p for which P (m1, . . . , mk) is maximized, we take
the partial derivative of Eq. 5 with respect to p and then find its roots, yielding

p =
∑k

i=1 mi∑k
i=1 mi +

∑k
i=1

(
A−∑i

j=1 mj

) (6)

Finding the global maximum of P (m1, . . . , mk) from Eq. 4 on the set

D = {(A, p)|A ∈ {1, 2, . . . , |E|} ∧ p ∈ [0; 1]} (7)

is now straightforward, since using (6) we can find the maximum on every line

Li = {(i, p)|p ∈ [0; 1]} (8)

The maximum on line Li is located either at the value of p given by (6) or at
one of the borders of Li. It then suffices to evaluate (4) at these three points of
Li for every i (1 ≤ i ≤ |E|). The estimate of A then equals the index i of the Li

on which the maximum is located.
The described estimator is used in ReCovEr (Algorithm 6). The question of

how to choose k, i.e. how long a sequence (m1, . . . , mk) should be generated as the
input to the estimator, is tackled iteratively: the sequence is being extended until
two subsequent estimates differ by less than some ∆, specified as a parameter.
A minimum length M of the sequence is however imposed, to avoid premature
estimates coinciding by chance.

For purposes of initial empirical assessment of ReCovEr, we generated pat-
terns and examples by Algorithm 3 with p = 0.4 for patterns and p = 0.3 for
examples. Figure 4 demonstrates that ReCovEr produces estimates of accept-
able accuracy. Certain imprecision indeed can be accepted: the coverage estimate
should be accurate to the extent allowing to establish a reliable ranking of candi-
date hypotheses. Apart from that, the actual coverage value is seldom of interest.



Fig. 4. Precision of ReCovEr (Algorithm 6) estimates reflected as the joint distribution
of 1000 pairs [estimated, real], for R = 100, M = 6 and ∆ = 1. Patterns and examples
were generated by Algorithm 3 with p = 0.4 for patterns and p = 0.3 for examples.
Patterns have 10 vertices, examples have 100 vertices. The 1000 estimates correspond
to 1000 different hypotheses tested on a pre-fixed set of 100 examples.

Algorithm Avg. Time [s]

ReCovEr 20.2
ReSumEr 41.7

Django 45.9

Table 1. Average coverage test runtimes for the configuration from Fig. 4.

Table 1 shows the average runtime of ReCovEr testing one pattern on 100
examples in the same experimental configuration as in Fig. 4. For comparison,
the table also shows the analogous runtimes needed to compute the coverage
by testing subsumption for each e ∈ E by ReSumEr or Django. While the
runtime benefit provided by ReCovEr does not appear particularly significant
from this table, it must be noted that the experimental parameters (detailed in
the caption of Fig. 4) chosen for this first assessment correspond to areas where
both ReSumEr and Django perform well. It is our expectation that ReCovEr
will outperform much more significantly both Django in the YES domain and
ReSumEr in the NO domain. In the former case, the expectation is based
on the fact that in the YES region, Django exhibits heavy tails which are, by
construction, prevented by ReCovEr. In the latter case, ReSumEr conducts an
expensive iterative approach for showing unsatisfiability of subsumption, which
becomes a crucial factor in the NO region. On the contrary, ReCovEr prevents



this burden because it does not need to complete the subsumption check for any
unsatisfiable subsumption instance.

As a last remark, we did not compare ReCovEr to the sampling method
from [5]. Although [5] alleviates coverage computation by taking only a small
sample of E, subsumption for any single e from that sample is tested in the
standard Prolog framework. Such an approach exceeds measurable runtimes for
the sizes of e considered in this paper.

5 Conclusions and Future Work

We have demonstrated the benefits of using a complete restarted randomized
algorithm ReSumEr for subsumption testing, a procedure at heart of most rela-
tional data mining systems. We have further introduced ReCovEr, an algorithm
exploiting restarts for a maximum-likelihood based estimation of pattern cover-
age, eliminating the needed to prove subsumption for any particular example;
the set of examples for which subsumption is actually proved during the appli-
cation of ReCovEr is a result of a random process. ReCovEr prevents heavy
tails as well as laborious proving of unsatisfiable subsumption instances. All of
our experimental evaluations were constrained to generated data in the form of
oriented colored graphs (uniform and scale-free, respectively). However, the prin-
ciples behind ReSumEr and ReCovEr do not rely on this representation bias.
Our next work will therefore concentrate on tests with a more general structure
representation language and with real-life relational data mining benchmarks.

Acknowledgements

The first author is supported by the Czech Academy of Sciences through the project

1ET101210513 Relational Machine Learning for Biomedical Data Analysis. The second

author is supported by the European Commission through the project FP6-027473

SEVENPRO.

References

1. H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in com-
binatorial search. In Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, pages 408–421. Springer-Verlag, 2001.

2. C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24(1/2):67–100, 2000.

3. J. Maloberti and M. Sebag. Fast theta-subsumption with constraint satisfaction
algorithms. Machine Learning, 55(2):137–174, 2004.

4. M. Sebag and C. Rouveirol. Tractable induction and classification in first-order logic
via stochastic matching. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 888–893. Morgan Kaufmann, 1997.

5. A. Srinivasan. A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3(1):95–123, 1999.

6. F. Zelezny, A. Srinivasan, and D. Page. Randomised restarted search in ILP. Ma-
chine Learning, 64(1–2):183–208, 2006.


