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Abstract. We use logic-based machine learning to distinguish DNA-
binding proteins from non-binding proteins. We combine previously sug-
gested coarse-grained features (such as the dipole moment) with auto-
matically constructed structural (spatial) features. Prediction based only
on structural features already improves on the state-of-the-art predic-
tive accuracies achieved in previous work with coarse-grained features.
Accuracies are further improved when the combination of both feature
categories is used. An important factor contributing to accurate predic-
tion is that structural features are not Boolean but rather interpreted by
counting the number of their occurences in a learning example.

1 Introduction

The process of protein-DNA interaction has been an important subject of recent
bioinformatics research, however, it has not been completely understood yet.
DNA-binding proteins have a vital role in the biological processing of genetic
information like DNA transcription, replication, maintenance and the regula-
tion of gene expression. Several computational approaches have recently been
proposed for the prediction of DNA-binding function from protein structure.
Stawiski et al. investigated positively charged patches on the surface of DNA-
binding proteins. They used a neural network with 12 features like patch size,
hydrogen-bonding potential, the fraction of evolutionarily conserved positively
charged residues and other properties of the protein [1]. Ahmad and Sarai trained
a neural network based on the net charge and the electric dipole and quadrupole
moments of the protein [2]. Bhardwaj et al. examined the sizes of positively
charged patches on the surface of DNA-binding proteins. They trained a sup-
port vector machine classifier using the protein’s overall charge and its overall
and surface amino acid composition [3]. Szildgyi and Skolnick created a logistic
regression classifier based on the amino acid composition, the asymmetry of the
spatial distribution of specific residues and the dipole moment of the protein [4].
In the present work, we combine two categories of features to predict the
DNA-binding function of proteins. The first category contains the above men-
tioned coarse-grained features which enabled [4] to achieve state-of-the-art pre-
dictive accuracies. The second category contains structural features represent-
ing characteristic spatial patterns in the unbound conformations of the protein



residues. These features are formally described in first-order logic [5] and auto-
matically discovered by our algorithm [7].

Nassif et al. [6] have previously used a first-order logic based approach in a
similar context, in particular to classify hexose-binding proteins. The main differ-
ences of our approach from [6] are as follows. First, our fast feature-construction
algorithm [7] enables us to produce features by inspecting much larger structures
(up to tens of thousands of entries in a learning example) than those considered
in [6] using the standard learning system Aleph. Second, our structural fea-
tures acquire values equal to the number of occurrences of the corresponding
spatial patterns, whereas [6] only distinguished the presence of a pattern in a
learning example from its absence. Our results indicate that occurrence-counting
indeed substantially lifts predictive accuracy. Third, rather than proposing an
alternative classification method to state-of-the-art approaches, we elaborate its
augmentation by the use of the structural features. Lastly, the approach of [6]
resulted in classifiers that are more easily interpretable than state-of-the-art clas-
sifiers and comparable in predictive accuracy. Here we maintain the interpretabil-
ity advantage but actually improve on the state-of-the-art predictive accuracies
both by a purely structural approach (without the coarse-grained features) and
even more so through the combination of structural and coarse-grained features.

2 Materials and Methods

Data. Both the protein and the DNA can alter their conformation during the
process of binding. This conformational change can involve small changes in
side-chain location, and also local refolding, in case of the proteins. Predicting
DNA-binding propensity from a structural model of a protein makes sense if the
available structure is not a protein-DNA complex, i.e. it does not contain a bound
nucleic acid molecule. We decided to work with a positive data set (UD54) of
54 protein sequences in unbound conformation obtained from [4]. As a negative
data set (NB110) we used a set of 110 non-DNA-binding proteins created by
[2]. From the structural description of each protein we extracted the list of all
contained residues with information on their type and the list of pairwise spatial
distances among all residues. As for the coarse-grained features, we followed [4]
and extracted features indicating the respective proportions of the Arg, Lys,
Asp, Ala and Gly residues, the spatial asymmetry of Arg, Gly, Asn and Ser, and
the dipole moment of the protein.

Method. We experimented with 7 state-of-the-art attribute-value classifier types
listed in Table 1. The attributes correspond to the coarse-grained features as
listed above and to the structural features constructed as follows. The feature
construction method assumes that proteins are described by means of formal-
logic assertions. For example, the assertion res('1AJY’, rl1, 'CYS’) denotes that
the protein 1AJY contains a residue rl, which is a cysteine. Similarly, the as-
sertion dist(r1,r2,10) denotes that the distance between residues rl and r2 is
(approzimately) 10 angstroms. A complete description of a protein is a logical



conjunction of such statements, pertaining to all involved residues, and their
all pairwise spatial distances that do not exceed 40 Angstroms (computed from
coordinates of alpha carbons). The full description of a real protein corresponds
to a conjunction containing up to tens of thousands of literals.

A feature F' is a conjunction of first order literals. For a protein p and a
feature F' we define the wvalue of feature F' to be the number of groundings
0 such that p = F6. In other words, the wvalue of a feature is the number of
possible ways to match the feature against a given protein. For example, a feature
F =res(P, R, 'CYS’) counts the number of cysteines in a protein P. An example
of a more complicated feature is the following feature

F = res(P,R1,'CYS'), res(P,R2,'HIS"), dist(R1,R2,8)

which counts the number of pairs cystein-histidine, which are 8 angstroms apart
from each other. Once we have a sufficiently rich set of features, we may feed
the features into any attribute-value learning algorithm.A detailed description of
the computational procedures used to accomplish the feature construction task
is beyond the scope of this paper. In brief, we rely on the framework of inductive
logic programming [5]. In particular, we employ our recently published algo-
rithm [7] since it can scale to rather large structures corresponding to proteins,
which would be prohibitively large for mainstream inductive logic programming
algorithms. This feature construction algorithm exhaustively constructs a set of
features which are not redundant, comply with a user-defined language bias and
have frequency higher than a given threshold.

3 Results

As a result of structural pattern searching we obtained about 1500 patterns
present in 54 unbounded DNA-binding proteins. We made two sets of trainings
(accuracies are shown in Tab. 1): i) considering just the occurrence of the struc-
tural patterns - columns marked with (NC), ii) considering also the number of
the occurrence of each pattern - columns marked with (C). We compare classi-
fiers based on our structural patterns (F2) with classifiers based on 10 features
(F1) from Szildgyi et al. [4]. We also trained classifiers based on both our features
and features from Szildgyi et al. (F142). As we can see, we get better results
for classifiers considering the number of the occurrence of each pattern. For the
most classifiers the accuracy is higher when they are based on our features than
on features of Szilagyi et al. However, we get the best results with combination of
the two feature-sets. We show here three examples of unbounded DNA-binding
proteins with the residues of the pattern which is the most informative according
to the x? criterion (Fig. 1).

4 Conclusion and Future Work

We have improved on the state-of-the-art accuracies in predicting DNA-binding
proteins by combining previously used coarse-grained features with logic-based



Classifier F1 |F2(NC)|F1+2(NC)| F2(C) |F1+2(C)
Linear SVM 840 (2)] 775 (5) | 78.1 (4) |83.0 (3)|84.2 (1)
SVM with RBK 81.6 (3)|67.1 (4-5)| 67.1 (4-5) |83.0 (2) | 85.4 (1)
Simple log. regr. 81.6 (3)| 73.9(5) | 78.8 (4) |87.6 (1)| 82.3 (2)

Lo-regularized log. regr.|84.0 (2)| 78.7 (5) | 80.5 (4) |82.4 (3)|84.2 (1)
Ada-boost 774 (4)] 73.2 (5) | 83.0(2) |[79.3(3)|84.7 (1)
Random forest 78.6 (4)| 76.8 (5) | 83.6 (1) [80.5(2)| 79.9 (3)

J48 decision tree 75.0 (3)| 70.7 (4) | 75.6 (2) |68.1(5)|76.2 (1)
Average ranking: 3 4.79 3.07 2.71 1.43

Table 1. Accuracies obtained by stratified 10-fold crossvalidation using features of
Szildgyi et al. (F1), our structural pattern features (F2) and combination of both of
them (F142). The numbers in parentheses correspond to ranking w.r.t. the obtained
accuracies.
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Fig. 1. Example proteins containing one discovered pattern shown using the protein
viewer software [8]. Residues assumed by the pattern are indicated.

spatial protein features. It turns out that an important factor contributing to
the high predictive accuracies is that the latter features are not Boolean but
rather are assigned values counting the occurrences of the corresponding spatial
pattern in the example protein. We are currently trying to further improve the
predictions by incorporating further background knowledge.
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