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1 Introduction

In this paper, we study the question whether small sets of correlated genes can
be better characterized by direct conventional methods or by indirect methods
using first-order-logic descriptions. We introduce so-called lifted gene sets and
show that they are able to predict correlations of genes better than conventional
methods. The motivation for this study is not directly the estimation of correla-
tions of genes but rather the possibility to find relational descriptions of sets of
highly correlated genes because such sets are important in machine learning ap-
plications such as set-level predictive classification methods or group-lasso-based
regression and classification methods [3].

2 Lifted Gene Sets

In order to be able to predict correlations of gene sets based on their rela-
tional descriptions we need to work with training examples which have both
structure and real parameters. One example may e.g. describe a measurement
of the expression of several genes; here the structure would describe functional
relations between the genes and the parameters would describe their measured
expressions. Note that we allow different structures in different examples. For
example, a training set thus may consist of measurements pertaining to different
gene sets, each giving rise to a different structure of mutual relations between
the genes.

To describe the training examples as well as the lifted gene sets, we use a con-
ventional first-order logic language £ whose alphabet contains two distinguished
sets of constants {ry,rq, ...7,} and {g1, 92, ... gn} and two distinguished sets of
variables {R1, Ra,... Ry} and {G1, Gs, ... Gy, }. Any substitution in our frame-
work must map variables (other than) R; only to terms (other than) r; and
variables (other than) G; only to terms (other than) g;. The structure of an
example is described by a (Herbrand) interpretation H, in which the constants
r; represent uninstantiated real parameters and g; represent the genes. The pa-
rameter values are then determined by a real vector 6. Thus each example is
a pair (H,0). A lifted gene set is simply a logic formula which has some free
distinguished variables. Intuitively, a lifted gene set extracts some of the genes
g; and their respective expression levels r; from the examples. For example, the
intentionally simplistic lifted gene set

3G1, Gy expr(Gy, Ry) A expr(Ga, Ra) A regulates(Gy, G2) (1)
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contains just two distinguished gene variables G1, G2 and two distinguished
variables Rj, R corresponding to gene-expression levels of G; and Gs.

Let us now first introduce some more notation so that we could clarify what
we mean by extracting genes and their expressions from examples. If v is a real
vector (an ordered list of genes, respectively) then v; denotes the i-th element
of v. If I C [I;n] then vy = (vi,,vi,,...v;, ) where i; € I. For the largest
k such that {Ry/r;,, R2/Tiys- .., Ri/ri,} C ¥ we denote Igr(¥) = (i1,42, ... 1k)
and analogically for the largest k such that {G1/gi,, G2/9iss - -, G/ 9i, } C ¥ we
denote Ig(¥) = (i1, 12, . ..9x). Given an example e = (H, 0) and a lifted gene set
@, the sample set of p and e is the multi-set S(¢, e) = {01, 9)|H = @I} where 9
are r-substitutions grounding all free variables! in ¢, and H = ¢9 denotes that
@V is true under H. Similarly, we define the ground gene sets of a lifted gene
set @ and example e as S(p,e) = {01, 9)|H |= @V}. For example, the the set of
ground gene sets corresponding to the example lifted gene set 1 is the set of all
pairs of genes which are in the relation of requlation.

Our aim in this paper will be to discover lifted gene sets which correspond
to highly correlated ground gene sets. Therefore we need to be able to compute
correlations of genes within the lifted gene sets. For this we employ methods
from our recently introduced framework called Gaussian logic [5]. Here we only
briefly mention the way a covariance matrix is computed for a lifted gene set
from which correlations may be easily obtained. The theoretical justification of
the procedure can be found in [5].

Given a non-empty sample set S(p, €), we define the X-matriz as

1

(2.9 = 5o

Y (0 p(p.0) (0 - plpe)” (2)

0€S(p,e)

Using the above, we define the estimate ZALP over the entire training set {ej, e,
ceCm}
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We can extract the lifted-gene-set correlations from this matrix fly,.

! Note that an interpretation H does not assign domain elements to variables in L.
The truth value of a closed formula (i.e., one where all variables are quantified) under
H does not depend on variable assignment. For a general formula though, it does
depend on the assignment to its free (unquantified) variables.
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3 Experiments

In this section we will experimentally assess the next three questions which
should give us clues about the usefulness of lifted gene sets.

— Q1: Are lifted gene sets better predictors of correlation than ground gene
sets?

— Q2: Are complex lifted gene sets constructed by relational machine learning
techniques better predictors of correlation than gene sets corresponding to
biological pathways?

— Q3: Are lifted-gene-set correlations stable across gene-expression datasets?

We will answer each of these questions experimentally in the following three
subsections. In all the experiments we used algorithms from [5] for construc-
tion of lifted gene sets. In each lifted gene set ¢ we added # constraints for
all pairs of variables except the R; variables but for brevity we will not dis-
play them. So when we will write ¢ = g(G1, R1),9(G2, R2) we will mean ¢ =
9(G1, R1),9(G2, R2),G1 # G4 ete. In all the experiments we used a set of seven
gene-expression datasets obtained from the Gene-Ezpression Omnibus database
[1] and relational descriptions of biological pathways from the KEGG database
[4]. We worked with a subset of genes contained in a set of 50 KEGG pathways.
Several examples of constructed logical formulas describing lifted gene sets and
their average correlations are shown in Table 1.

Lifted gene set

Dataset

Fig. 1. Difference between the error of ground gene sets and lifted gene sets across 7
gene-expression datasets (the more positive the number the better for lifted gene sets).
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Table 1. Logical formulas defining lifted gene sets and their average correlations across
the seven gene-expression datasets.

Formula Avg. corr.
3X : g(G1, Ry) N expresses(G1, X) A expresses(X, G2) A g(Gz, R2) 0.29
3X : g(G1, R1) A activates(G1, X) Aindirect(X, G2) A g(G2, Rz2) 0.24

3X,Y : binds/associates(X, G1) N inhibits(G1,G2) A g(G1, R1)A

Ng(G2, R2) A activates(G1,Y) 0-15
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Fig. 2. Differences between the error of pathway-based gene sets and lifted gene sets
across 7 gene-expression datasets (left panel) and average difference between the error
of pathway-based gene sets and combined gene sets - the more positive the number the
better for the combined gene sets.

3.1 Comparison of Lifted Gene Sets and Ground Gene Sets

Let us start with the first question: Are lifted gene sets better predictors of corre-
lation among genes than ground gene sets? In order to answer this we performed
the following experiment. We constructed a set of lifted gene sets with just 2
gene-variables (to make the interpretation of the results as simple as possible)
and estimated the lifted correlations, i.e. the correlations computed according
to Formula 3, for each gene-expression dataset separately. We also estimated
the correlations using a conventional shrinkage-based method [6]. After that we
used these values for prediction of correlations in datasets not used for training.
We compared the errors incurred when using lifted gene sets and when using
the conventional estimates (ground gene sets). The results are shown in Fig.
1. On average, the error incurred when estimating the correlations using lifted
gene sets was smaller by 0.03 than the error of the estimates obtained using the
ground gene sets.

3.2 Comparison of Lifted Gene Sets and Pathway-based Gene Sets

The results from the previous subsection indicate that lifted gene sets perform
better than ground gene sets. A simple type of a lifted gene set is a lifted gene
set which assumes all pairs of genes which are contained in some pathway P.
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Fig. 3. Average correlations of lifted gene sets across 7 gene-expression datasets.

This type of gene sets is, in fact, quite popular in machine learning applica-
tions (pathway-based gene sets are often used in set-level predictive classifica-
tion methods, e.g. [2]). It is therefore an interesting question whether our more
complex lifted gene sets based on relations from KEGG are able to estimate cor-
relations between genes more reliably than the traditional pathway-based gene
sets. In order to answer this question we performed the same procedure as de-
scribed in the previous subsection but instead of ground gene sets we used the
pathway-based gene sets. The results are shown in Fig. 2. On average the er-
ror incurred when estimating the correlations using lifted gene sets was smaller
by 0.01 than the error of the estimates obtained using the pathway-based gene
sets. However, this is rather small difference and, as can be seen from Fig. 2,
for many combinations lifted gene set - dataset, lifted gene sets performed worse
than pathway-based gene sets. Therefore we performed an additional experiment
in which we tested the estimates obtained by averaging the predictions of lifted
gene sets and pathway-based gene sets (combined gene sets). In this case the av-
erage improvement over the plain pathway-based gene sets was more significant:
0.02.

3.3 Stability of Lifted-Gene-Set Correlations across Datasets

Finally, we also performed a set of experiments in order to determine stability
of lifted-gene-set correlations across various gene-expression datasets. In order
to do so we again estimated the correlations of the individual lifted gene sets
separately for each dataset and plotted them in Fig. 3. We can notice that on
average the correlation of the lifted gene sets does not change very much across
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datasets with some notable exceptions which may or may not be interesting from
the biological point of view.

4 Discussion and Conclusions

The experiments that we have performed in this paper give some clues as for the
potential of lifted gene sets. However, they also show that simple gene sets like
pathway-based gene sets can perform similarly well as the more complex lifted
gene sets. They also show that combinations of the simple and the more complex
gene sets can sometimes improve ability to predict correlation between genes.
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