
Learning Functions from Imperfect Positive Data

Filip Železný

Center for Applied Cybernetics, Czech Technical University
Prague, Czech Republic

Abstract. The Bayesian framework of learning from positive noise-free
examples derived by Muggleton [12] is extended to learning functional
hypotheses from positive examples containing normally distributed noise
in the outputs. The method subsumes a type of distance based learn-
ing as a special case. We also present an effective method of outlier-
identification which may significantly improve the predictive accuracy of
the final multi-clause hypothesis if it is constructed by a clause-by-clause
covering algorithm as e.g. in Progol or Aleph. Our method is implemented
in Aleph and tested on two experiments, one of which concerns numeric
functions while the other treats non-numeric discrete data where the nor-
mal distribution is taken as an approximation of the discrete distribution
of noise.

1 Introduction

Most of noise-handling techniques in machine learning are suited for the
type of errors caused by wrong classification of training examples into
classes, e.g. true or false. In a powerful family of ML methods such as ILP,
which uses a Turing-equivalent representation to produce hypotheses and
can therefore hypothesise about complicated input-output relations (e.g.
functions), the role of noise in attributes (arguments) has been recognised
[1, 7] but rarely attempted to handle. Moreover, we are not aware of a
system which would directly exploit the knowledge of a particular noise-
distribution in arguments, despite the fact that Bayesian and distance-
based techniques - which have recently been paid a lot of attention in ILP
[6, 8, 3, 16, 15] - can very well serve for this purpose.

We want to test the hypothesis that by exploiting the knowledge of
a particular noise-distribution in the data (though it may hold only ap-
proximately) we may outperform standard noise-handling techniques. In
the next section we shall see how to optimally (in the Bayes sense) learn
functions with unknown domains and normally-distributed noise in the
output arguments. The outstanding role of the normal noise-distribution
has been extensively justified in many sources (see e.g. [2]) namely on the
basis of the central limit theorem. We implemented the method in the ILP

system Aleph. Section 3 describes an effective outlier-identification tech-
nique applicable in the clause-by-clause theory-construction performed by
this system, modified as to follow the guideline developed in Section 2.

In the experimental part (Section 4), we first test our method on
artificial data. In particular, we learn numeric functions representable
by a one-clause Prolog program. This experiment will comply with the
conditions of U-learning [14] and the noise will be exactly normal. We shall
then also try to slightly relax the conditions of U-learning. The second
experiment will be based on English verb past tense data. These data have
functional, discrete and non-numeric character. The output argument will
be damaged by altering a certain number of characters in the word and the
continuous normal distribution of noise will only be approximated. This
kind of errors simulates the one encountered in literal data digitisation by
e.g. OCR systems or human transcription. The predictive accuracy of the
resulting multi-clause theory will be significantly improved by the outlier-
identification technique described in Section 3. Section 5 concludes.

2 Bayesian Framework

A standard approach to learn functions from positive data in ILP makes
use of the closed-world assumption (CWA). Using CWA, we substitute
negative examples necessary in the normal ILP setting e.g. by an integrity
constraint which falsifies all hypotheses which yield the output outh for
an input in, such that there exists a positive example e(in,oute) and
oute 6= outh. But CWA clearly cannot be used if the output part of
examples contains noise.

Another common drawback of functional learners is that they get
no information from the distribution of values in the input parts of the
presented positive examples. To get a rough idea how such information
could be used, imagine that we are learning scalar functions on the integer
(sampling) interval 〈−10; 10〉. Assume that the current hypothesis space
is {equal(in, out), sqrt(in, out)} and we get two positive examples e(0, 0)
and e(1, 1). Then both hypotheses are consistent with the examples but
sqrt/2 has higher posterior probability (in the Bayes sense) since it is less
general (defined only for non-negative inputs).

Both of these problems will be treated in the following framework
embedded in the Muggleton’s U-learning scheme of learning from positive
data [12]. For ease of insight we shall formalize it for numeric data to later
easily generalize for non-numeric data in the experimental part of the text.

Let I be a finite set, if f and g are (real) functions on a superset of I
then the Euclidean distance between f and g on I is

E(f(I), g(I)) =
∑

i∈I

(f(i)− g(i))2 (1)

The normal distribution Nµ,σ(x) with mean µ and standard deviation σ
is given as

Nµ,σ(x) =
1

σ
√

2π
exp−(x− µ)2

2σ2
(2)

Let bold characters denote vectors, their elements being addressed by the
lower index. The instance space X will be the Cartesian product of the
sets of possible inputs I and outputs O. An instance (example)1 e ∈ X
is then given by the input part in(e) ∈ I and output part out(e) ∈ O.
These parts are in general vectors of |in| and |out| elements, respectively.
A (functional) hypothesis H on the instance set X = I×O is a tuple 〈Hd ⊆
I, h : Hd → O〉. Hd is the domain of H and Hc = {e ∈ E|in(e) ∈ Hd} is
the coverage of H. H is said to be consistent with e ∈ X if in(e) ∈ Hd, H
is consistent (with E) if it is consistent with all e ∈ E. The mapping (such
as h) corresponding to a hypothesis (such as H) will be always denoted
by lowering the case and by hj(.) we shall denote the jth element of h(.).

Given a probability distribution DI on the input space and assum-
ing mutual independence of outputs, we can express the distribution of
the conditional probability on the instance space under the condition of
validity of a hypothesis H as

DX|H(e) = DX|H(in(e), out(e)) = DI|H(in(e))DO|H,in(e)(out(e)) =
= DI|H(in(e))

∏|out|
j=1 DO|H,in(e)(outj(e))

(3)
DX|H(e) is zero if e is not consistent with H since then DI|H(in(e)) = 0.
Otherwise, DI|H(in(e)) can be expressed as

DI|H(in(e)) =
DI(in(e))
DI(Hd)

(4)

and the conditional probability on the outputs will express our assump-
tion of normally distributed error with standard deviation σj in the jth

output argument

DO|H,in(e)(outj(e)) = Nhj(in(e)),σj
(outj(e)) (5)

1 We reserve plain characters for vector examples and mappings to improve readability.

Given a prior probability distribution on hypotheses DH , a target hypoth-
esis H∗, a set of examples E = e1, e2, ..., em selected by m statistically
independent choises from DX|H∗ , the posterior probability of a hypothe-
sis H consistent with E can be found by applying the well-known Bayes
rule and Eqs. 3,4,5 as

P (H|E) = P (H|e1, e2, ..., em) = DH(H)D−1
X (E)DX|H(e1, e2, ..., em) =

= DH(H)D−1
X (E)

∏m
i=1

[
D−1

I (Hd)DI(in(e))
∏|out|

j=1 Nhj(in(e)),σj
(outj(ei))

]

(6)
To choose the most-promising hypothesis, we want to maximise P (H|E)
w.r.t H. We shall take logarithms of both sides of this equation (to max-
imise lnP (H|E)) and for this sake we disassemble the rightmost side into
several terms. First, it is argued in [12] that DH should be expected to
obey

ln DH(H) = −size(H)constN (7)

where size(H) measures the number of bits necessary to encode the hy-
pothesis H and constN is a normalising constant ensuring that

∑
H DH(H)

sums to one; this constant is neglectable when maximising lnP (H|E).
Following the same source,

∏m
i=1 D−1

I (Hd) = D−m
I (Hd) can be identified

as
ln D−m

I (Hd) = −m ln gen(H) (8)

where gen(H) is the generality of H (i.e. the portion of the input space
covered by Hd). The term ln

[
D−1

X (E)
∏m

i=1 DI(in(ei))
]

= const1 is con-
stant for all hypotheses, so it can be neglected when maximising lnP (H|E).
Finally it holds

ln
∏m

i=1

∏|out|
j=1 Nhj(in(ei)),σj

(outj(ei)) =

= ln
∏m

i=1

∏|out|
j=1

1
σj

√
2π

exp− (outj(ei)−hj(in(ei))
2

2σ2
j

=

= −m
∑|out|

j=1 ln(σj

√
2π)−∑|out|

j=1
1

2σ2
j

∑m
i=1(outj(ei)− hj(in(ei))2

(9)

The term −m
∑|out|

j=1 ln(σj

√
2π) = const2 does not depend on the hy-

pothesis and can be neglected when maximising lnP (H|E). Combining
Eqs. 7-9 and considering Eq. 1 we arrive to the fact that to maximise
lnP (H|E) we need to maximise the function fE(H) (w.r.t. consistent
hypotheses H)

fE(H) = −m ln gen(H)−size(H)−
|out|∑

j=1

1
2σ2

j

E(outj(E), hj(in(E))) (10)

which can be simplified if there is only one output argument as

f ′E(H) = −m ln gen(H)− size(H)− 1
2σ2

E(out(E), h(in(E))) (11)

The first two terms in fE(H) or f ′E(H) express a generality - size tradeoff
derived by Muggleton [12] for the case of learning classification hypotheses
from noise-free positive data. In our case of learning functional hypothe-
ses from data with normal output noise, we have instead arrived to a
generality - size - Euclidean distance tradeoff, where generality is mea-
sured on the input space (function domain) and the output-distance term
is weighted by the inverse value of the variance σ2. This is natural: the
more noisy (more deviated) are the outputs in the examples, the more
it makes sense to decide rather by the input domain data (by measur-
ing the generality on the input domain) and prior hypothesis probability
(reflected by the size term) and vice-versa.

In the following we shall concentrate on single-output hypotheses and
therefore maximise f ′E(H). Thus the assumption of statistically indepen-
dent outputs is no longer needed.

3 Outlier Identification

In a hypothesis constructed by an ILP system (ordered set of Prolog
clauses C1, ..., Cn), one example may be consistent with more than one
clause. Although we are learning functional hypothesis, we do not require
consistency with at most one clause, since this would too much constrain
the learning algorithm. Instead, we shall interpret the Prolog program
functionally, i.e. as2 once(target predicate(inputs, OUTPUT)). Ac-
cordingly, we define the reduced domain and reduced coverage of a clause
Cn as Cn

rd = Cn
d \ ∪n−1

k=1 Ck
d and Crc = {e ∈ E|in(e) ∈ Crd}.

To select a hypothesis by maximising f ′E(H) we need to have at hand
a set of candidate hypotheses. But in a typical ILP system, hypothe-
ses are constructed clause-by-clause, therefore [12] proposes estimates of
the value gen(H) and size(H) based on |Cn

d |, gen(Hn), gen(Hn−1) and
size(Cn) where Hn = {C1, ..., Cn} (i.e. Hn−1 is the already-constructed
partial hypothesis and Cn the currently added clause) and H is the final
hypothesis. In an analogical spirit, if |Ci

rc|−1E(out(Ci
rc), c

i(in(Ci
rc))) (the

average distance of the output of Ci from individual examples on its do-
main Ci

rd), is approximately equal for all clauses Ci in the final hypothesis

2 The standard Prolog once/1 predicate returns only the first-found answer whatever
may be the number of solutions.

H, we may make the following estimation3

E(out(E), h(in(E))) ≈ |E|
|Cn

rc|
E(out(Cn

rc), c
n(in(Cn

rc))) (12)

Let the function fe
E(Cn) denote the estimate of f ′E(H) determined by

substituting the size, generality and distance terms by their estimates
described in [12]4 and the estimate in Eq. 12, respectively. The clause
Cn that maximises fe

E(Cn) will then be added to the current hypothesis
Hn−1.

In the clause-by-clause functional hypothesis construction, we are
no longer learning optimally (as by Eq. 11). The algorithm maximising
fe

E(Cn) for each added clause has a greedy character and we can use the
following heuristic to improve the clause ordering: If there exists a clause
with good accuracy on (low output-distance from) a large part of the
example set but poor accuracy on a few exceptions (outliers), then this
general clause should be preceeded with a more special clause ’handling’
these exceptions. Together with the once−interpretation, this strategy
will produce a form of a specific-to-general decision list, whose advantage
to functional representation has been argued in [10].

To attain such clause-ordering, we use the ’degree of freedom’ given
by the seed-example selection in ILP systems like Aleph [5] and Progol
[11]. In these systems, the seed-example is selected randomly or in the
presentation order and used for the construction of a bottom clause which
is then suitably generalised. The idea of our method is that we direct
the seed-example selection as to first choose (and cover) those examples
that are outliers to some potentially good clause. To protect efficiency,
we shall avoid backtracking (deleting previously constructed clauses) .

During the computation of fe
E(Cn) for each candidate clause Cn,

we also evaluate the function HopeE(Cn) = maxO⊂E(fe
E\O(Cn)) which

yields the highest evaluation potentially reached by Cn if some example
subset O (outliers) were avoided, i.e. covered by some previous clause.
Evaluating fe

E\O(Cn) for every O ⊂ E would be intractable, but we can
avoid it by first sorting the examples e ∈ Cn

rc decreasingly by the value
(out(e)−cn(in(e))2, i.e. by their contribution to the distance E(out(Cn

rc), c(in(Cn
rc)))

(see Eq. 1). Then outliers are identified by successively replacing exam-
ples in this order from Cn

rc into the (initially empty) set OL. The set OL
which maximises fe

E\OL(Cn) during this cycle is taken as the outlier set
and it then holds that fe

E\OL(Cn) = maxO⊂E(fe
E\O(Cn)). To roughly see

3 Remind that cn is the mapping corresponding to the hypothesis Cn.
4 Where |Cn

rc| is taken instead of |Cn
c | denoted as p in [12].

why, note that by exchanging any example e1 from OL with any example
e2 from Cn

rc\OL, obtaining OLalt = {e2} ∪ OL\{e1}, the generality and
size estimates in the function fe maintain the same value and the distance
term remains the same or grows as the contribution of e1 to the Euclidean
distance is the same or smaller than that of e2 (due to the precomputed
decreasing order). Therefore fe

E\OLalt
(Cn) ≤ fe

E\OL(Cn). Fig. 1 shows an
example of outlier identification in the English past tense data domain
(Section 4.2).

In the learning algorithm, each example in E is assigned a selection-
preference value, initiated to zero. For every evaluated candidate clause
Cn with outliers OL, the current selection-preference value of each exam-
ple e ∈ OL ⊂ E is updated by adding a value increasing with the Hope
of Cn. When selecting the seed-example, the example with maximum
selection-preference value is chosen5. This way, examples that are outliers
of high-Hope clauses will be covered in the earlier stages of hypothesis
construction. Typical for the described method as implemented in Aleph
is that at one stage a clause with high Hope is evaluated, rejected due
to outliers, which are then forced to be covered. When the same clause
is evaluated newly (as a result of a newly selected seed example), it is
accepted since its outliers are already covered. It is the multiple evalua-
tion of one clause intrinsic to the cover algorithm of Aleph that enables
us to implement the method without backtracking. The only (slightly)
superlinear computational overhead introduced by the technique is the
sorting of examples by their contribution to the Euclidean distance.

4 Experiments

4.1 Learning Numeric Functions

In the first experiment, we want to identify numeric functions composed
of the four elementary functions {ln(x), sin(x), cos(x), x+y} by one Prolog
clause. The hypothesis bias is limited by the maximum composition depth
4. There are 425 functions in this hypothesis space assuming commuta-
tivity of addition [4]. As background knowledge, the learning system uses
the Prolog definitions of the elementary functions (e.g. ln(X,Y):-X>0, Y
is log(X)). To comply with the framework of U-learning, we repeatedly
perform the learning process with a target hypothesis chosen with a prob-
ability exponentially decreasing with the size of its Prolog notatiton. The
following table lists the used set of target functions, their input domains

5 In the first step, before generating any clause, the seed example is chosen randomly.

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350 400 450 500

D
is

ta
nc

e

Example

-4

-3

-2

-1

0

1

0 50 100 150 200 250 300 350 400 450 500

P
ot

en
tia

l E
va

lu
at

io
n

No. of Left-Out Examples

Fig. 1. Outlier Identification in English past tense data with noise variance 0.3. The
left diagram shows the decreasing output distance contribution of each of 500 exam-
ples w.r.t the clause past(A,B):-split(B,A,[e,d]). The right diagram plots for each
example ei the potential evaluation of the clause if {e1, ..., ei} were avoided from the
clause’s domain. This potential evauation reaches its maximum for example no. 165.
Examples 1-165 are thus considered outliers.

within the chosen sampling interval of integers 〈−10; 10〉 for example pre-
sentation, and their prior probabilities6.

Target Function Domain ∈ 〈−10; 10〉 Prior Probability
ln(x) 〈1; 10〉 1/2 * cn

ln(sin(x)) −10, 〈−6;−4〉, 〈1; 3〉, 〈7; 9〉 1/4 * cn

cos(x) + ln(cos(x)) 〈−7;−5〉, 〈−1; 1〉, 〈5; 7〉 1/8 * cn

ln(sin(x) + cos(x)) 〈−7;−4〉, 〈0; 2〉, 〈6; 8〉 1/16 * cn

Examples are presented in the form e(input,output) from equal proba-
bility distribution on the input domain and the output value is distorted
by normal noise. We test three learning methods. BL denotes the Bayesian
technique developed in Section 2. DBL is a simpified BL, where size and
generality of hypotheses are ignored when maximising f ′E(H), i.e. we ig-
nore the information in the input domain data distribution and in the
prior hypothesis probability distribution. We thus reason only on the ba-
sis of the output distance and so DBL corresponds to a simple kind of
distance based learning. The last tested method is based on a simple clas-
sical manner of treating noise in real values in ILP: the standard Aleph
(Progol) algorithm of learning from positive data is used, but we intro-
duce a predicate close/2 as part of the background knowledge, such that
close(A,B) is true if the values in A and B differ by less than 10%. The

6 cn is a normalising constant

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f T

ra
in

in
g

E
xa

m
pl

es
 N

ee
de

d

Variance of Output Noise

DBL
BL

close/2 predicate

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f T

ra
in

in
g

E
xa

m
pl

es
 N

ee
de

d

Variance of Output Noise

DBL
BL

close/2 predicate

Fig. 2. Learning Numeric Functions. The left diagram shows the minimum number of
examples each of the tested methods needed to correctly identify the target function
with growing variance in the output noise. For each method and each value of variance
the experiment was repeated 20 times, the average result is plotted with standard
deviation in the measurement points. The right diagram reflects a similar experiment
where, however, the prior hypothesis probabilities were not respected, i.e. the target
hypotheses were presented with equal probability.

learner may thus identify e.g. ln(x) from noisy-output data by the clause
e(A,B):-log(A,C),close(C,B).

Considering Fig. 2, BL clearly outperforms the other two methods, i.e.
the exploitation of the generality and size measures proves useful (com-
pare with DBL) as well as the exploitation of the Eucledian distance mea-
sure derived from the normal noise distribution (compare with close/2).
Relaxing the U-learning conditions by presenting target hypotheses in
equal probabilities makes the difference btw. BL and the other methods
smaller, but not significantly.

4.2 Learning English Past Tense Rules

The second experiment is based on 1392 tuples of English verbs and their
past tenses. Learning rules of English past tense by a multi-clause Prolog
program has been studied with noise-free data [9, 13]. The background
knowledge contains the predicate split/3 which splits a word into a pre-
fix and suffix (e.g. split([m,a,i,l,e,d],[m,a,i,l],[e,d]); see [9] for
typical hypotheses constructed by ILP in this domain. Unlike the noise-
free experiments, in our case the output argument is distorted by altering
a number of characters in the word such that the probability of n wrong
characters decreases exponentially with n2 to approximate the normal
distribution. Following is an example of 5 data with noise.

past([m,e,e,t],[m,e,t]).

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

P
re

di
ct

iv
e

A
cc

ur
ac

y
[%

]

No. of Training Examples

Variance 0.5 (Std. Deviation ~ 0.7)

IC 0%
RIC 10%
RIC 20%
RIC 30%

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

P
re

di
ct

iv
e

A
cc

ur
ac

y
[%

]

No. of Training Examples

Variance 1.0 (Std. Deviation 1.0)

IC 0%
RIC 10%
RIC 20%
RIC 30%
RIC 40%

Fig. 3. Learning past tense rules with RIC’s for two values of output noise variance.
The training sets are selected randomly from the past-tense database and contain
successively 5, 10, 15, 20, 50, 100, 200 and 500 examples; the testing set for measuring
the predictive accuracy is always composed of 500 examples not including any of the
training example. For each training set volume and each tested tuning of RIC, the
experiment was repeated 20 times and the average value with its standard deviation is
plotted.

past([m,i,n,i,s,t,e,r],[m,i,n,i,s,t,w,r,e,d]).
past([n,e,c,e,s,s,i,t,a,t,e],[n,e,c,q,s,s,i,y,a,t,e,d]).
past([o,b,s,e,r,v,e],[o,b,s,e,r,v,e,d]).
past([o,c,c,u,r],[o,c,c,u,r,r,e,f]).

The normal probability distribution was discretised in such a way that
for σ = 1, the majority of examples contained at least one error, i.e. in
the language of binary classification most of the presented positives were
actually negatives.

We compare our method with the standard algorithm of Progol (Aleph)
whose performance is good on the noise-free past tense data [13].7 The
integrity constraint (see Section 2) used in [13] to substitute negative
examples cannot work in the noisy domain but we may use a relaxed in-
tegrity constraint (RIC) which falsifies hypotheses giving wrong outputs
for a certain minimum percentage of examples. The question which per-
centage (tolerance) should be allowed for which level of noise (variance)
is solved empirically in a preliminary comparative experiment of RIC’s
tuned to 0%, 10%, 20%, 30% and 40% of tolerance, shown in Fig. 3.

We shall use the Progol (Aleph) algorithm with the best performing
RIC for each variance (tolerance 20% for σ2 = 0.5, 30% for σ2 = 1) to
compete with our method, which will first be simplified in the following

7 Progol was only outperformed by the method of analogical prediction whose appli-
cation scope is rather specialised.

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

P
re

di
ct

iv
e

A
cc

ur
ac

y
[%

]

No. of Training Examples

Variance 0.5 (Std. Deviation ~ 0.7)

DBL+OI
RIC 20%

DBL, no OI

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

P
re

di
ct

iv
e

A
cc

ur
ac

y
[%

]

No. of Training Examples

Variance 1.0 (Std. Deviation 1.0)

DBL+OI
RIC 30%

DBL, no OI

Fig. 4. Learning past tense with RIC, DBL and DBL+OI. The experimental setup is
identical to the previous experiment (Fig. 3), from which the best performing RIC was
taken for comparision.

ways. First, we require that any resulting hypothesis must yield some
output for any input word, i.e. the generality of all acceptable hypotheses
is identical. We therefore consider the generality term in f ′E(H) constant.
Next, we limit the hypothesis bias by a maximum variable depth [11]
and within this bias we have no reason to expect that prior hypothesis
probability decreases with the hypothesis size, i.e. the size term is also
considered constant. Since only the output distance term (measured as
squared Hamming distance8) is then maximised, we refer to this simplified
method as distance-based (DBL).

As we are learning a multi-clause hypothesis, the outlier identification
(OI) technique (Section 3) may be used. The performance of the three
methods (Aleph with RIC, DBL and DBL+OI) is shown in Fig. 4 for two
levels of noise.

We observe that the DBL method alone is comparable with the best-
tuned integrity constraint. However, with RIC we need to first determine
(e.g. empirically) a good value of tolerance, otherwise the performance
may be very poor (Fig. 3). This is not necessary with DBL. Note also
that to maximise f ′E(H) the DBL learner does not need to know the
value of the noise variance if the size and generality terms are considered
constant. We also observe that outlier identification greatly improves the
predictive accuracy of the multi-clause hypothesis constructed with DBL
and we think this would be the case with any functional data with a high
percentage of exception-items, as English past tense. Note also that the
integrity constraint method cannot be further improved with OI, since
the OI technique is directly based on the distance measure.

5 Conclusions and Future Work

We have illustrated how the exploitation of the knowledge of a particular
noise distribution in training data arguments can be utilized to outper-
form classical noise-handling techniques. Using a Bayesian framework for
optimal learning of functional hypothesis in the presence of normal noise,
we also exploit the knowledge of the prior hypothesis probability and

8 E.g. the distance of the hypothesis output [a,b,c] from the example outputs {[a,b,x],
[a,x]} would be 12 + 22 = 5 because the first example differs from [a,b,c] in one
corresponding character and to compare two lists of different lengths we add a suffix
to the shorter with characters considered mismatches, i.e. the second example is
taken as [a,x,x]. In the normal noise distribution definition we accordingly measure
the Hamming distance instead of the subtraction (x− µ) (see Eq. 2). Such defined
distance measure is natural in the experimented domain and different definitions
may be suitable in other domains.

its generality on the input domain of the learned function. The advan-
tage of exploiting all these properties was shown in a function-learning
experiment.

We implemented the method in the ILP system Aleph and for the
clause-by-clause construction of hypotheses guided by this method we
proposed a heuristic technique which forces outliers to be covered first
so that general clauses can be accepted in the later stage of the clause-
by-clause hypothesis construction. This ordering of clauses improves the
predictive accuracy of the final hypothesis interpreted functionally, e.g.
by the Prolog once/1 predicate. This was illustrated in an experiment
with a high percentage of exceptional examples. The technique does not
introduce backtracking into the learning algorithm.

Our future work will focus on proving a bound of expected error re-
lated to the deveoped Bayesian learning with noise, similar to the one
shown for the noise-free data case in [12]. Next, we want to extend the
framework to non-functional hypotheses learning from data with normal
noise in arguments.

6 Acknowledgements

The experimental part of this work was conducted during the author’s
stay in LORIA, France - special thanks go to Amedeo Napoli and Hacene
Cherfi. Thanks as well to Ashwin Srinivasan and Steve Moyle for feedback
concerning positive-only learning as implemented in Aleph, and to the
careful ILP’01 reviewers. The author is supported by the Ministry of
Education of the Czech Republic under Project No. LN00B096, and by
the project IST-1999-11.495 Sol-Eu-Net.

References

1. W. Emde and D. Wettschereck. Relational instance-based learning. In L. Saitta,
editor, Proceedings of the 13th International Conference on Machine Learning,
pages 122–130. Morgan Kaufmann, 1996.

2. V. V. Fedorov. Theory of optimal experiments. Academic Press, 1972.
3. Peter A. Flach and Nicolas Lachiche. Decomposing probability distributions on

structured individuals. In Paula Brito, Joaquim Costa, and Donato Malerba, edi-
tors, Proceedings of the ECML2000 workshop on Dealing with Structured Data in
Machine Learning and Statistics, pages 33–43, Barcelona, Spain, May 2000.

4. http://labe.felk.cvut.cz/vzelezny/howmanyfunctions.pl.
5. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html.
6. Kristian Kersting and Luc De Raedt. Bayesian logic programs. In J. Cussens and

A. Frisch, editors, Proceedings of the Work-in-Progress Track at the 10th Interna-
tional Conference on Inductive Logic Programming, pages 138–155, 2000.

7. N. Lavrač, S. Džeroski, and I. Bratko. Handling imperfect data in inductive logic
programming. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 48–64. IOS Press, 1996.

8. Eric McCreath and Arun Sharma. ILP with noise and fixed example size: A
bayesian approach. In IJCAI, pages 1310–1315, 1997.

9. R.J. Mooney and M.E. Califf. Induction of first–order decision lists: Results on
learning the past tense of English verbs. Journal of Artificial Intelligence Research,
3:1–24, 1995.

10. R.J. Mooney and M.E. Califf. Induction of first-order decision lists: Results on
learning the past tense of English verbs. In L. De Raedt, editor, Proceedings of
the 5th International Workshop on Inductive Logic Programming, pages 145–146.
Department of Computer Science, Katholieke Universiteit Leuven, 1995.

11. S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

12. S. Muggleton. Learning from positive data. In S. Muggleton, editor, Proceedings
of the 6th International Workshop on Inductive Logic Programming, volume 1314
of Lecture Notes in Artificial Intelligence, pages 358–376. Springer-Verlag, 1996.

13. S. Muggleton and M. Bain. Analogical prediction. In S. Džeroski and P. Flach,
editors, Proceedings of the 9th International Workshop on Inductive Logic Pro-
gramming, volume 1634 of Lecture Notes in Artificial Intelligence, pages 234–244.
Springer-Verlag, 1999.

14. S. Muggleton and C.D. Page. A learnability model for universal representations.
In S. Wrobel, editor, Proceedings of the 4th International Workshop on Inductive
Logic Programming, volume 237 of GMD-Studien, pages 139–160. Gesellschaft für
Mathematik und Datenverarbeitung MBH, 1994.

15. S-H. Nienhuys-Cheng. Distance between herbrand interpretations: A measure for
approximations to a target concept. In S. Džeroski and N. Lavrač, editors, Proceed-
ings of the 7th International Workshop on Inductive Logic Programming, volume
1297 of Lecture Notes in Artificial Intelligence, pages 213–226. Springer-Verlag,
1997.

16. J. Ramon and L. De Raedt. Instance based function learning. In S. Džeroski
and P. Flach, editors, Proceedings of the 9th International Workshop on Inductive
Logic Programming, volume 1634 of Lecture Notes in Artificial Intelligence, pages
268–278. Springer-Verlag, 1999.

