
Relational Learning with Polynomials
Ondřej Kuželka, Andrea Szabóová, Filip Železný

Department of Cybernetics
Czech Technical University in Prague

Prague, Czech Republic
Email: {kuzelon2, szaboand, zelezny}@fel.cvut.cz

Abstract—We describe a conceptually simple framework for
transformation-based learning in hybrid relational domains. The
proposed approach is related to hybrid Markov logic and to
Gaussian logic framework. We evaluate the approach in three
domains and show that it can achieve state-of-the-art perfor-
mance while using only limited amount of information.

I. INTRODUCTION

Modelling relational domains which contain substantial part
of information in the form of real-valued variables is an
important problem with applications in areas as different
as bioinformatics or finance. So far there have not been
many relational learning systems introduced in the literature
that would be able to model multi-relational domains with
numerical data efficiently. Examples of frameworks able to
work in such domains are hybrid Markov logic networks
[1] and Gaussian logic [2]. Another type of systems that do
not directly model the probabilities but are able to learn in
domains rich in numerical data are systems based on relational
aggregation [3], [4]. In this paper we describe a relatively
simple transformation-based framework for learning in rich
relational domains containing numerical data.

The new framework exploits multi-variate polynomial ag-
gregation functions, which is something that, surprisingly,
has not been studied in the relational-learning literature yet.
One of the reasons why multivariate polynomial aggregation
features are interesting for predictive applications is that they
can capture interactions among numerical variables. Let us
suppose that we would like to predict solubility of chemicals
in water from their chemical structure and from the partial
charges of atoms. Solubility in water is typically correlated
with polarity of molecules and polarity is a property of pairs
of atoms. It would be hard to capture polarity using relational
features with single-variable aggregation but it is relatively
easy to capture it when the relational features are allowed to
compute aggregated values of functions of multiple variables,
for example, when they are able to compute averages of
products of charges of pairs of atoms which are connected
by a bond. The framework presented in this paper is able to
discover and exploit dependencies among numerical variables
in relational data.

This paper is organized as follows. We first extend the
theoretical framework of Gaussian logic [2] and define
so-called polynomial features. We then study their prop-
erties and derive efficient algorithms for tree-like polyno-
mial features and polynomial features with bounded tree-

width, in general. We also present generalization of the
feature-construction algorithm RelF [5] which is able to
construct large numbers of polynomial relational features
very quickly while retaining a completeness guarantee. Fi-
nally, we evaluate the approach in predictive-classification
experiments with three relational learning datasets. The al-
gorithms presented in this paper have been implemented
into the open-source software package TreeLiker available at
http://ida.felk.cvut.cz/treeliker/.

II. PRELIMINARIES AND NOTATION

Let n ∈ N. If v⃗ ∈ Rn then vi (1 ≤ i ≤ n) denotes the i-th
component of v⃗. If I ⊆ [1;n] then v⃗I = (vi1 , vi2 , . . . vi|I|)
where ij ∈ I (1 ≤ j ≤ |I|). To describe training examples
as well as learned models, we use a conventional first-order
logic language L whose alphabet contains a distinguished set
of constants {r1, r2, . . . rn} and variables {R1, R2, . . . Rm}
(n,m ∈ N). An r-substitution ϑ is any substitution as long as
it maps variables Ri only to terms rj . For the largest k such
that {R1/ri1 , R2/ri2 , . . . , Rk/rik} ⊆ ϑ we denote I(ϑ) =
(i1, i2, . . . ik). A (Herbrand) interpretation is a set of ground
atoms of L. I(H) (I(φ)) denotes the naturally ordered set of
indexes of all constants ri found in an interpretation H (L-
formula φ).

The training examples have both structure and real param-
eters. A training example may e.g. describe a measurement
of the expression of several genes; here the structure would
describe functional relations between the genes and the param-
eters would describe their measured expressions. The structure
will be described by an interpretation, in which the constants ri
represent uninstantiated real parameters. The parameter values
will be determined by a real vector. Formally, an example
is a pair (H, θ) where H is an interpretation, θ ∈ ΩH , and
ΩH ⊆ R|I(H)| (here, R denotes the set of real numbers).

III. POLYNOMIAL RELATIONAL FEATURES

Features are first-order logic expressions. For a given ex-
ample (H, θ), a feature φ extracts some components of θ
into a set of vectors. Given an example e = (H, θ) and
a feature φ, the sample set of φ and e is the multi-set
S(φ, e) = {θI(ϑ)|H |= φϑ} where ϑ are r-substitutions
grounding all free variables in φ, and H |= φϑ denotes that
φϑ is true under H .



Example 1. Let us have a feature

φ = g(X,R1) ∧ activates(X,Y ) ∧ g(Y,R2)

and a training example

e ≈ g(a, 1), activates(a, b), g(b, 2),
activates(b, c), g(c, 3), activates(a, c)

(formally: e = ({g(a, r1), activates(a, b), g(b, r2),
activates(b, c), g(c, r3), activates(a, c)}, (1, 2, 3)T )). The
sample-set of feature φ w.r.t. example e is:

S(φ, e) = {(1, 2)T , (2, 3)T , (1, 3)T }.

Informally, when each example is viewed as an isolated
relational database and when features are treated as database
queries then the sample sets can be viewed as result-sets of
these database queries.

A monomial relational feature M is a pair (φ, (d1, . . . , dk))
where φ is a feature with k distinguished variables and
d1, . . . , dk ∈ N. Degree of M is deg(M) =

∑k
i=1 di. Given

a non-empty sample set S(φ, e), we define the value of a
monomial feature M = (φ, (d1, . . . , dk)) w.r.t. example e as

M(e) =
1

|S(φ, e)|
∑

θ∈S(φ,e)

θd11 · θ
d2
2 · · · · · θ

dk
k

where θi is the i-th component of vector θ.
A polynomial relational feature is an expression of the form

P = α1M1 + α2M2 + · · ·+ αkMk where M1, . . . ,Mk are
monomial features and α1, . . . , αk ∈ R (formally expressed
as a pair of two ordered sets - one of monomials and one
of the respective coefficients). Value of a polynomial feature
P = α1M1 + · · · + αkMk w.r.t to an example e is defined
as P (e) = α1M1(e)+ α2M2(e) + · · ·+ αkMk(e). Degree
of a polynomial relational feature P is maximum among the
degrees of its monomials. Polynomial relational features can
be used to capture higher-order moments of distributions –
generalizing the Gaussian logic framework [2].

IV. PROPERTIES OF POLYNOMIAL RELATIONAL FEATURES

A convenient property of polynomial relational features is
their decomposability. We describe two types of decompos-
ability. The first one is described in the next proposition.

Proposition 1. Every polynomial relational feature of degree
d can be expressed using monomial features containing at most
d distinguished variables.

Proof: Clearly, in order to compute a value of any mono-
mial M of order d we need at most d distinguished variables
because at most d of them can have non-zero exponent in
the monomial. If we replace the distinguished variables with
zero di in M by ordinary variables (i.e. those that do not
extract any numerical values) then the new sample-set which
we obtain for an example e and the new feature with fewer
distinguished variables will differ from the original sample-set
only in that every vector in it will miss the entries associated
to the removed distinguished variables. These variables are not
used in the computation of values of M anyway.

The decomposability of polynomial features is practical for
feature generation because once we set a maximum degree
of the polynomial features that we are interested in, we also
know that we can use this limit for the number of distinguished
variables in the generated features.

There is also a second form of decomposability for poly-
nomial features and that is decomposability of disconnected
features. We say that a formula F is disconnected if it can be
rewritten as F = (G) ∧ (H) such that G and H do not have
any variable in common (note that the parentheses ensure that
also the logical quantifiers are applied to the formulas G and
H separately).

Proposition 2. Let φ = (ψ) ∧ (γ) be a disconnected
feature such that ψ and γ do not share any variable. Let
M = (φ, (d1, . . . , dk)) be a monomial. Then it is possible
to find monomial features Mψ and Mγ such that M(e) =
Mψ(e) ·Mγ(e) for all examples e.

Proof: It holds S(φ, e) = S(ψ, e) × S(γ, e) where ×
denotes Cartesian product. We can therefore construct the
monomial features as follows. First, we split the set of dis-
tinguished variable of F to two (necessarily disjoint) sets Rψ ,
Rγ according to the formula in which they appear. We split
also the respective exponents to ordered sets (v1, . . . , vkψ ) and
(w1, . . . , wkγ ).

Mψ = (ψ, (dψ1 , . . . , d
ψ
kψ

))

Mγ = (γ, (dγ1 , . . . , d
γ
kγ
)).

The product of these monomial features gives rise to the
original feature because

Mψ(e) ·Mγ(e) =
(

1
|S(ψ,e)|

∑
θ∈S(ψ,e) θ

v1
1 . . . θ

vkψ
k

)
·

·
(

1
|S(γ,e)|

∑
θ∈S(γ,e) θ

w1
1 . . . θ

wkγ
kγ

)
= 1

|S(ψ,e)|·|S(γ,e)| ·

·
(∑

θ∈S(ψ,e) θ
v1
1 . . . θ

vkψ
kψ

)
·
(∑

θ∈S(γ,e) θ
w1
1 . . . θ

wkγ
kγ

)
= 1

|S(ψ,e)×S(γ,e)|
∑
θ∈S(γ,e)×S(γ,e) θ

d1
1 . . . θdkk =M(e)

As a consequence of Proposition 2, we can focus only on
constructing connected monomial features which also means
that we have to search a much smaller space of features.

V. COMPLEXITY OF POLYNOMIAL RELATIONAL FEATURE
EVALUATION

When features are general conjunctive queries, the problem
of evaluating them is NP-hard (e.g. by reduction from θ-
subsumption hardness). Features in the form of conjunctive
queries with bounded tree-width can be evaluated in time
polynomial in their size, in the number of their distinguished
variables and in the size of the training examples, as we show
in this section.

We start by describing an algorithm for evaluation of so-
called tree-like monomial features. At the end of this section,
we outline how it can be extended to deal with general
bounded-tree-width monomial features. First, we define tree-
like features. A first-order conjunction without quantifications



ex
pr
es
se
s

G1 G3

G2 expresses

R1

R2

R3

ex
pr
es
se
s

G1 G3

G2 expresses

R1

R2

R3

expresses

a) b)

Fig. 1. Left: a hypergraph corresponding to a tree-like feature g(G1, R1),
g(G2, R2), g(G3, R3), expresses(G1, G2), expresses(G2, G3).
Right: a hypergraph corresponding to a non-tree-like feature g(G1, R1),
g(G2, R2), g(G3, R3), expresses(G1, G2), expresses(G2, G3),
expresses(G3, G1).

C is tree-like if the iteration of the following rules on C
produces the empty conjunction: (i) Remove an atom which
contains fewer than 2 variables. (ii) Remove a variable which
is contained in at most one atom. Intuitively, a tree-like
conjunction can be imagined as a tree with the exception that
whereas trees are graphs, conjunctions correspond in general
to hypergraphs. Monomial features based on tree-like formulas
are called tree-like. See Fig. 1 for an example of a tree-like
and non-tree-like feature.

The basic ideas of the algorithm for computing values of
monomial features can be summarized as follows: Let us
have a tree-like feature φ with k distinguished variables, a
monomial feature M = (φ, (d1, . . . , dk)) and an example
e. For simplicity, we assume that any literal l ∈ φ can
contain at most one distinguished variable1. Our task is
to compute the value M(e). We start by picking a literal
l ∈ φ containing distinguished variable R1 and ground all
its variables using a substitution ϑ : vars(l)→ constants(c)
so that e |= φϑ. We then create a new auxiliary monomial
Mϑ = (φϑ, (d1, . . . , dk)). The problem of computing Mϑ(e)
can be decomposed as:

Mϑ(e) = (R1ϑ)
d1 ·
∏
i

Mi(e) (1)

where M1, . . . ,Mm are connected sub-features of φϑ which
arise when we remove literal lϑ from φϑ. This follows from
Proposition 2.

The value M(e) can be then computed as

M(e) =
1∑

ϑ∈Θ αϑ

∑
ϑ∈Θ

αϑMϑ(e)

where Θ = {ϑ : vars(l)→ constants(c)|e |= φϑ} is the set
of all true groundings of literal l and αϑ are the numbers of
true groundings of φϑ.

It might not yet be clear why the outlined method should
run in time polynomial in the size of φ, in the size of e

1This is without loss of generality because any representation with de-
manding more than one distinguished variable per literal can be rewritten
into a representation where there is always only one distinguished variable
per literal.

and in the number of distinguished variables. First, it is well-
known that the sets Θ and the coefficients αi, which are the
numbers of true groundings of the tree-like feature φ, can be
computed in polynomial time. Next, it is not hard to show that
the values Mϑ(e) can be computed using these pre-computed
parameters by a dynamic-programming method. We note that
the algorithm is essentially a generalization of the algorithm
for computing covariance-like matrices and mean-like vectors
in Gaussian features presented in [2].

The algorithm for computing values M(e) of tree-like
features can be used to efficiently compute values of monomial
features which are not tree-like but have bounded tree-width.
This can be done by computing a tree-decomposition [6] of
width k of the feature and then by applying the algorithm for
tree-like features on the tree-decomposition where only one
occurrence of each distinguished variable is retained.

VI. CONSTRUCTION OF POLYNOMIAL-FEATURES

In this paper, we follow a straightforward transformation-
based approach to hybrid relational learning with polynomial
relational features. The approach is a generalization of ex-
isting aggregation-based systems that have been introduced
in relational learning [3], [4] which surprisingly did not
incorporate any multi-variate aggregate functions. First, a set
F of monomial relational features is constructed. In the second
step, all monomial features are evaluated w.r.t. all examples
in the dataset and the values are stored in a table. This gives
us an attribute-value table which can be processed by any
attribute-value learning algorithm such as SVM or random
forest. This is an instance of a general strategy known as
propositionalization [7].

We integrated monomial-feature construction into RelF [5]
which is a state-of-the-art feature-construction algorithm spe-
cialized for tree-like features. Based on the properties of
polynomial relational features, we extended efficient filtering
of reducible and redundant features during feature construction
process while retaining completeness in the following sense: If
there is a tree-like feature φ complying with the user-specified
language-bias then the algorithm either constructs this feature
or another feature ψ such that the value of any monomial
based on φ is equal to the value of a monomial based on ψ.

We do not describe the language bias used by the feature
construction algorithm in full detail here due to space con-
straints (the details can be found in [5]). We just present an
informal description of it. In the feature construction system
RelF and also in similar relational learning systems, language
bias is usually specified using so-called templates or mode
declarations.

For instance, let us have language bias expressed through
the following template τ :

τ ≈ hasCar(−c), hasLoad(+c,−l), box(+l),
tri(+l), weight(+l, ∗real)

Templates specify which predicates can be used for con-
struction of features. In our case, the features can be com-
posed of predicates hasCar/1, hasLoad/2, box/1, tri/1 and



Algorithm 1 FEATURECONSTRUCTOR (Sketch): Given a
RelF’s language bias L, the algorithm constructs a set of non-
redundant polynomial features.

1: Input: Language bias L, Examples E;

2: Features← {}
3: LanguageBiasAtoms← ordered atoms from L
4: for ∀Atom ∈ LanguageBiasAtoms do
5: NewFeatures← Combine(Atom,Features, E)
6: Features← Features ∪NewFeatures
7: Filter (weakly) redundant features from Features
8: end for
9: Features← Features ∪ Combine2(Features, E)

10: return Features

weight/2. Templates also specify how literals in features can
be interconnected using variables and constants. We use signs
+, − and # for this. The sign − denotes so-called output
arguments, the sign + denotes input arguments. Every variable
(except the distinguished variables Ri) that appears in a feature
must appear exactly once in an output argument and at least
once in an input argument. An argument marked by # must
always contain a constant symbol and an argument marked by
∗ must always contain a distinguished variable Ri. Arguments
are typed. Any variable can appear only in arguments labelled
by the same type. Therefore, the following is a correct feature:

φ = has(Car) ∧ hasLoad(Car, Load) ∧ weight(Load,R1)

as well as

φ = has(Car) ∧ hasLoad(Car, Load) ∧ box(Load)
hasLoad(Car, Load2) ∧ tri(Load2) .

These simple rules defining valid features provide the users
with means to navigate the feature construction algorithm
to the desired regions of the feature space. When the form
of templates is further restricted, the language bias satisfies
the following properties: (i) it constrains features to be tree-
like conjunctions, (ii) any tree-like feature can be represented
using it and (iii) given a specification of the language bias, a
complete set of non-redundant features can be constructed by
Algorithm 1. These three properties of the language bias were
proved in [5].

A sketch of the feature construction algorithm based on
RelF [5] is shown in Algorithm 1. The algorithm can be
viewed as constructing features from small building blocks
- called sub-features. It starts with literals from the given
language bias which will correspond to leafs of the constructed
tree-like features. Then it combines these leafs with literals
which can be their parents (in the resulting tree-like features).
After that it continues by combining sub-features constructed
in this way with other literals and other already generated sub-
features. This process is repeated iteratively until all features
are constructed. The process of combining sub-features into
bigger sub-features is done by the procedure Combine (used in
Algorithm 1) which gets an atom A specified in the language

bias, a set of already generated sub-features and an example
on its input. The procedure then finds all already generated
sub-features φ which can be combined with the atom A while
satisfying the given language bias and combines them with the
atom A - producing a set of new sub-features.

The feature construction algorithm can produce an over-
whelmingly large number of features therefore it is sometimes
necessary to filter the set of constructed features. To this
end we define redundancy of features. Let E be a set of
examples and let F be a set of features. We say that φ
is redundant w.r.t. E if there is another feature ψ such that
S(φ, e) = c · S(ψ, e) for all e ∈ E where c · S(ψ, e) denotes a
multi-set obtained from the multi-set S(ψ, e) by multiplying
multiplicity of each element from S(ψ, e) by c ∈ R. The
rationale for this definition is that if S(φ, e) = c ·S(ψ, e) then
M(e) = N(e) for all e ∈ E and all monomials of the form
M = (φ, (d1, . . . , dk)) and N = (ψ, (d1, . . . , dk)). Given
a set of features, some of which are redundant, filtering of
redundant features means finding a maximal subset of non-
redundant features, which is trivial (we just keep one feature
for each set of features with sample sets equivalent up to
multiplication).

Thus far, we have explained how to recognize that a feature
is redundant but we have not explained how we can recognize
that a sub-feature (i.e. a building block) will remain redundant
no matter with what Algorithm 1 would combine it. First,
we may notice that the generated sub-features can only be
combined with other sub-features through their roots (which
literal is a root of a given sub-feature can be determined using
the language bias, informally, roots of sub-features correspond
to roots of trees when features are viewed as graphs). In
fact, in the feature construction process of RelF, any sub-
feature can be connected to other sub-features only through a
single variable in its root. This motivates Proposition 3. Before
stating it, we define two auxiliary terms: graft and domain.

Given two sub-features ϕ and ψ, their graft w.r.t. variables
V1 ∈ vars(ϕ) and V2 ∈ vars(ψ) (denoted by ϕ ⊕V1,V2 ψ) is
a sub-feature ϕθ1 ∧ ψθ2 where θ1 = {V1/X}, θ2 = {V2/X}
and X is a variable which is contained neither in ϕ nor in
ψ. Informally, grafting two sub-features means merely joining
them together through some of their variables. For example,
when ϕ = atom(X, c) and ψ = bond(Y,Z) ∧ atom(Z, h)
then ϕ⊕X,Y ψ = atom(A, c) ∧ bond(A,Z) ∧ atom(Z, h).

Now, we define domain. Let φ be a sub-feature and V ∈
vars(φ). Then domain domV (φ, e) denotes the set of all terms
t ∈ terms(e) such that e |= φθ where θ = {V/t}. Intuitively,
domain is the set of terms from an example which can be
substituted (by a substitution θ) for a given variable V in sub-
feature φ so that it would still be true w.r.t. that example,
e |= φθ in other words.

Proposition 3. Let ψ1 and ψ2 be sub-features such that
vars(ψ1)∩vars(ψ2) = ∅. Let V1 and V2 be variables through
which ψ1 and ψ2, respectively, can be connected to other
sub-features according to a given language bias. Finally, let
φ1 = ϕ ⊕V3,V1 ψ1 and φ2 = ϕ ⊕V3,V 2 ψ2 be features. If, for



all examples e in a given dataset E , it holds domV1(ψ1, e)
= domV2(ψ2, e) and if there is a real number c such that
S(ψ1θ1,t, e) = c · S(ψ2θ2,t, e) for all examples e ∈ E and
all substitutions θ1,t = {V1/t} and θ2,t = {V2/t} where
t ∈ dom(ψ1, e) = dom(ψ2, e) then φ1 and φ2 are redundant
(relatively to each other).

Proof: First, we can apply Proposition 2, which gives us:

S(φ1θ1,t, e) = S(ϕϑt, e)× S(ψ1θ1,t, e)

where ϑt = {V3/t}. The reason why we can do this
is that φ1θ1,t is disconnected and can be decomposed as
(ϕϑt) ∧ (ψ1θ1,t). Next, we can get completely analogically
the following:

S(φ2θ2,t, e) = S(ϕϑt, e)× S(ψ2θ2,t, e) =
= S(ϕϑt, e)× ( 1c · S(ψ1θ1,t, e)) =
= 1

c · S(φ1θ1,t, e)

This, together with the fact that we can get the sample sets
S(φ1, e) and S(φ2, e) by computing the unions of the above
sample sets over all t ∈ terms(e), shows that φ1 and φ2 are
indeed redundant (relatively to each other) according to how
we defined redundancy.

The above proposition is used in the feature-construction
algorithm to detect which sub-features will always give rise
to redundant features no matter with what the algorithm
combines them. As a consequence of this, the search space
of features can be drastically reduced but all non-redundant
features are still guaranteed to be constructed. Stated in an
alternative way: the property of sub-features being redundant
is monotone in our feature construction algorithm. This is a
generalization of results from [5] to settings with polynomial
relational aggregation.

VII. POLYNOMIAL RELATIONAL FEATURES AND HYBRID
MARKOV LOGIC

In this section, we highlight relations between hybrid
Markov logic [1] and polynomial relational features used
in the transformation-based approach. Hybrid Markov logic
(HMLN) is an extension of Markov logic to hybrid domains,
i.e. to domains which contain both discrete relational data and
numerical data. A hybrid Markov logic network is a set of
pairs (Fi, wi) where Fi is a first-order formula or a numeric
term and wi ∈ R. When one fixes a set of constants C then
hybrid Markov logic defines a probability distribution over
possible worlds as follows:

P (X = x) =
1

Z
exp

(∑
i

wisi(x)

)
where si(x) is either number of true groundings of feature Fi
w.r.t x if Fi is not a numeric-feature, or the sum of values
w.r.t. x when Fi is a numeric feature. If one has conditional
distributions represented as HMLNs for two classes and the
task is to learn a classifier distinguishing examples from the
two classes then the resulting decision boundary has equation

(where + and − superscripts distinguish the weights and
features of the models for the two classes)∑

i

w+
i s

+
i (x)−

∑
i

w−
i s

−
i (x) = t

which defines a linear hyperplane. This form has already
been exploited in the work on max-margin Markov logic
[8]. If one used polynomial numeric features in the HMLN,
the resulting classifier would become very similar to what
we obtain with polynomial relational features and a linear
classifier, e.g. support vector machine, the main difference
being that si(x) would be an average of values of polynomials
applied on the ground instances of feature Fi whereas it is a
sum in the case of HMLN. A convenient property of averages
used in polynomial-feature framework is that they are not so
sensitive to the size of the examples (possible worlds).

Seen from this perspective, the framework of polynomial
relational features presented in this paper can be seen as being
very close to a lifted hybrid Markov logic. Note, however,
that there have been no lifted algorithms for HMLN to date.
Furthermore, the polynomial relational features can be used
in conjunction with almost any attribute-value classifier, not
just the linear ones, thus possibly offering greater flexibility
in discriminative classification. On the other hand, it is true
that HMLNs are able to solve other problems than just
discriminative classification.

VIII. EXPERIMENTS

We evaluated performance of the polynomial-feature-based
method in three relational learning domains. We compared it
with Tilde [9] and with results from literature. We performed
experiments with tree-like polynomial relational features with
degree one, two and three in order to evaluate impact of
degree of monomials on predictive accuracy. For each dataset,
we used two types of relational descriptions with different
complexity. We used random forest classifiers with 100, 500
and 1000 trees (see Table I).

Our first set of experiments was done on the well-known
Mutagenesis dataset [10], which consists of 188 organic
molecules marked according to their mutagenicity. We per-
formed two experiments in this domain. In the first experiment,
we used only information about bonds and their types (single,
double, triple, resonant) and information about charge of
atoms, but not about their types. In the second experiment,
we also added information about atom types. The accuracies
obtained by our method (Table’I) are consistently higher than
the best accuracy 86% achieved by Tilde in [9]. The best
results are obtained for monomial features of degree 3.

Our second set of experiments was performed on the NCI
786 dataset which contains 3506 molecules labelled according
to their ability to inhibit growth of renal tumors. Again
we performed two experiments in this domain. In the first
experiment, we used only information about bonds and their
types and information about charge of atoms and in the
second experiment we also added information about atom
types. Monomials of degree 3 turned out to be best for the



Degree 1 Degree 2 Degree 3

100/500/1000 100/500/1000 100/500/1000

Mutagenesis - Charge 88.8/88.3/88.3 88.8/88.8/88.3 89.9/89.9/89.4

Mutagenesis - Atoms + Charge 87.8/88.3/88.3 88.3/88.8/88.8 89.9/89.9/89.9

NCI 786 - Charge 61.0/61.0/61.0 66.5/66.5/66.8 67.2/68.0/68.0

NCI 786 - Atoms + Charge 70.3/70.1/69.9 70.5 /70.8/70.8 70.6/70.2/70.4

PD138/NB110 - Charge 84.7/82.3/82.3 81.0/79.5/81.0 81.0/79.8/79.8

PD138/NB110 - Propensities 82.7/84.7/84.3 83.9/84.7/84.3 85.1/85.5/85.5

TABLE I
ACCURACIES ESTIMATED BY 10-FOLD CROSS-VALIDATION USING TRANSFORMATION-BASED LEARNING WITH MONOMIAL FEATURES AND RANDOM

FORESTS FOR DEGREES OF MONOMIAL FEATURES: 1, 2 AND 3.

first representation whereas monomials of degree 2 performed
best for the second representation. Tilde did not perform well
on this dataset, so at least, we compared our results with
results reported in [5] for kFOIL (63.1), nFOIL (63.7) and
RelF (69.6). The accuracies obtained with monomial features
for the atoms + charge representation were consistently higher
than these results.

Our third set of experiments dealt with prediction of
DNA-binding propensity of proteins. Several computational
approaches have been proposed for the prediction of DNA-
binding function from protein structure. It has been shown
that electrostatic properties of proteins are good features for
predictive classification. A recent approach in this direction
is the method of Szilágyi and Skolnick [11] who created
a logistic regression classifier based on 10 features also in-
cluding electrostatic properties. Our first model for predicting
whether a protein binds to DNA used only distributions of
charged amino acids in fixed-size windows and the secondary
structure of the proteins. In our second model, we added
also information about average propensity of amino acids
in the fixed-size windows to bind to DNA which had been
measured by Sathyapriya et al. [12]. The accuracies obtained
by our method on the second model were consistently higher
than 81.4% accuracy obtained by Szilágyi and Skolnick with
logistic regression or 82.2% that we obtained using random
forest on Szilágyi’s and Skolnick’s features. The best results
were obtained for monomials of degree 3. Surprisingly, for the
experiments using only electric charge, the highest accuracies
were obtained by monomials of degree 1. Nevertheless, results
obtained for all degrees of monomials were higher than 75.8%
accuracy obtained by Tilde.

IX. CONCLUSIONS

We have presented a conceptually simple framework for
relational learning with multivariate polynomial functions. We
have shown how the polynomial relational features can be used
for estimation of higher-order moments of distributions in the
relational context, generalizing results on Gaussian logic as
a by-product. We have also demonstrated how they can be
used in predictive setting where we were able to obtain state-
of-the-art accuracies using only limited amounts of numerical

information.

ACKNOWLEDGMENT

This work was supported by the Czech Grant Agency
through project 103/11/2170 Transferring ILP techniques
to SRL and by the Czech Technical University in
Prague through the student grant competition project
SGS11/155/OHK3/3T/13.

REFERENCES

[1] J. Wang and P. Domingos, “Hybrid markov logic networks,” in Proceed-
ings of the 23rd national conference on Artificial intelligence - Volume
2. AAAI Press, 2008.

[2] O. Kuželka, A. Szabóová, M. Holec, and F. Železný, “Gaussian logic
for predictive classification,” in ECML/PKDD: European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2011.

[3] M.-A. Krogel and S. Wrobel, “Transformation-based learning using
multirelational aggregation,” in ILP ’01: Inductive Logic Programming,
2001.

[4] C. Vens, A. V. Assche, H. Blockeel, and S. Dzeroski, “First order random
forests with complex aggregates,” in ILP: Inductive Logic Programming,
2004, pp. 323–340.

[5] O. Kuželka and F. Železný, “Block-wise construction of tree-like re-
lational features with monotone reducibility and redundancy,” Machine
Learning, vol. 83, no. 2, pp. 163–192, 2011.

[6] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[7] N. Lavrač and P. A. Flach, “An extended transformation approach to
inductive logic programming,” ACM Trans. on Comput. Logic, vol. 2,
no. 4, pp. 458–494, 2001.

[8] T. N. Huynh and R. J. Mooney, “Max-margin weight learning for
markov logic networks,” in ECML/PKDD: European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2009, pp. 564–579.

[9] H. Blockeel, L. D. Raedt, and J. Ramon, “Top-down induction of
clustering trees,” in ICML ’98: International Conference on Machine
Learning, 1998, pp. 55–63.

[10] A. Srinivasan and S. H. Muggleton, “Mutagenesis: ILP experiments
in a non-determinate biological domain,” in ILP ’94: Inductive Logic
Programming, 1994, pp. 217–232.

[11] A. Szilágyi and J. Skolnick, “Efficient prediction of nucleic acid binding
function from low-resolution protein structures,” Journal of Molecular
Biology, vol. 358, no. 3, pp. 922 – 933, 2006.

[12] R. Sathyapriya, M. S. Vijayabaskar, and S. Vishveshwara, “Insights
into proteindna interactions through structure network analysis,” PLoS
Comput Biol, vol. 4, no. 9, p. e1000170, 09 2008.


