Prediction of Antimicrobial Activity of Peptides using Relational Machine Learning
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Abstract—We apply relational machine learning techniques
to predict antimicrobial activity of peptides. We follow our
successful strategy (Szabéova et al., MLSB 2010) to prediction
of DNA-binding propensity of proteins from structural features.
We exploit structure prediction methods to obtain peptides’
spatial structures, then we construct the structural relational
features. We use these relational features as attributes in a
regression model. We apply this methodology to antimicrobial
activity prediction of peptides achieving better predictive ac-
curacies than a state-of-the-art approach.
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I. INTRODUCTION

Antimicrobial peptides are molecules responsible for de-
fence against microbial infections in the first stages of the
immunological response. Recently antimicrobial peptides
have been recognized as a potential replacement of con-
ventional antibiotics for which some microorganisms had
already acquired resistance. Although, there are theories
about the mechanisms by which antimicrobial peptides kill
pathogenic microorganisms, the process has not been fully
uncovered yet. Several computational approaches have been
developed in past years to predict antimicrobial activity of
peptides [1], [2].

In this paper we are concerned with prediction of antimi-
crobial activity from modelled spatial structure information.
We utilize our relational learning method [3] which has
already been used for DNA-binding propensity prediction of
proteins [4] following earlier work of Nassif et al. [5] in a
similar context. Whereas our method has been only used for
classification problems so far, here we use it for regression
(prediction of antimicrobial activity, which is a continuous
variable). We show that this relational learning method for
regression improves on a state-of-the-art approach to antimi-
crobial activity prediction in terms of predictive accuracy.
Another positive aspect of our method is that it provides us
with interpretable features. Finally, our method is not bound
to prediction of antimicrobial activity, but it can be used to
predict also other properties of peptides like their hemolytic
activity - also examined in this paper.

Data, source codes and executables can be downloaded
from http://ida.felk.cvut.cz/peptides/BIBM2012.zip.

II. ANTIMICROBIAL PEPTIDES

Antimicrobial peptides (AMPs) have been actively re-
searched for their potential therapeutic application against
infectious diseases. AMPs are amino acid sequences of
length typically from 6 to 100. They are produced by living
organisms of various types as part of their innate immune
system [6]. They express potent antimicrobial activity and
are able to kill a wide range of microbes. In contrast to
conventional antibiotics, AMPs are bacteriocidal (i.e. bacte-
ria killer) instead of bacteriostatic (i.e. bacteria growth in-
hibitor). Most AMPs work directly against microbes through
a mechanism which starts with membrane disruption and
subsequent pore formation, allowing efflux of essential ions
and nutrients. According to current view this mechanism
works as follows: AMPs bind to the cytoplasmic membrane
and create micelle-like aggregates, which leads to disruption
of the membrane. In addition, there may be complementary
mechanisms such as intracellular targeting of cytoplasmic
components crucial to proper cellular physiology. Thus, the
initial interaction between the peptides and the microbial
cell membrane allows the peptides to penetrate into the cell
to disrupt vital processes, such as cell wall biosynthesis and
DNA, RNA, and protein synthesis. A convenient property of
AMPs is their selective toxicity to microbial targets, which
makes them non-toxic to mammalian cells. This specificity
is based on the significant distinctions between mammalian
and microbial cells, such as composition, transmembrane
potential, polarization and structural features.

Antimicrobial peptides are small, positively charged, am-
phipathic molecules. They include two or more positively
charged residues and a large proportion of hydrophobic
residues. Many AMPs exist in relatively unstructured confor-
mations prior to interaction with target cells. Upon binding
to pathogen membranes, peptides may undergo significant
conformational changes to helical or other structures. These
conformations of antimicrobial peptides may impact their
selective toxicity [7]. The three-dimensional folding of the
peptides results in the hydrophilic or charged amino acids
segregating in space from the hydrophobic residues, leading
to either an amphipathic structure, or a structure with two
charged regions spatially separated by a hydrophobic seg-
ment. Such a structure can interact with the membrane [8].



The amphipathicity of the AMPs enables insertion into the
membrane lipid bilayer.

III. EXISTING APPROACHES TO ACTIVITY PREDICTION

Several methods have been developed to predict antimi-
crobial activity of AMPs with potential therapeutic applica-
tion. Some algorithms take advantage of data mining and
high-throughput screening techniques and apply attribute-
value approach to scan protein and peptide sequences [9],
[10]. Similar strategies were proposed based on supervised
learning techniques, such as artificial neural networks or
support vector machines, in order to evaluate amounts of
complex data [11]. Most attempts have been focused to the
prediction of peptide’s activity using quantitative structure-
activity relationships (QSAR) descriptors together with arti-
ficial neural networks [12], [13], [1], linear discriminant [14]
or principal component analysis [15]. A QSAR-based artifi-
cial neural network system was experimentally validated us-
ing SPOT high-throughput peptide synthesis, demonstrating
that this methodology can accomplish a reliable prediction
[16]. Recently, an artificial neural network approach based
on the peptide’s physicochemical properties has been intro-
duced [2]. These properties were derived from the peptide
sequence and were suggested to comprise a complete set of
parameters accurately describing antimicrobial peptides.

The approach that we propose in this paper differs from
the above mentioned approaches mainly in the follow-
ing. Rather than using an ad-hoc set of physicochemical
properties of the peptides, we use an automatic feature
construction method based on relational machine learning
to discover structural patterns capturing spatial configuration
of amino acids in peptides. A positive aspect of our method
(besides improving predictive accuracy) is that it provides us
with interpretable features involving spatial configurations
of selected amino acids. Moreover, it is not limited to the
prediction of antimicrobial activities as it can easily be used
also for prediction of other numeric properties of peptides.

IV. ANTIMICROBIAL ACTIVITY PREDICTION

Our approach exploits structure prediction methods and
techniques of relational machine learning in conjunction
with state-of-the-art attribute-value learning algorithms. Very
briefly, our method can be imagined as proceeding in four
steps. It starts with AMP sequences, for which we obtain
spatial models using LOMETS structure prediction software
[17] (step I). This gives us 3D information in PDB files.
Then we create a relational representation of the peptides
(step 2). After that we use our relational learning algorithm
RelF [3] to extract meaningful relational patterns from the
relational structures describing peptides and convert them to
an approximate attribute-value representation of the peptides
(step 3). The output of RelF - .arff file readable by WEKA
[18] is then used for learning regression models (step 4).

In the first step, 3D structures of peptides are computed
using LOMETS software. LOMETS combines results of
several threading-based structure prediction algorithms and
returns several models with predicted coordinates of alpha
carbon atoms. We use only the best full-length model
according to ordering given by LOMETS for each sequence.

In the second step, we create a representation of peptides’
spatial structures suitable for relational learning. A literal is
an expression of the form literal Name(Ay, ..., Ay) where
Aq,..., Ay are variables or constants. We use the convention
that variables start with an upper-case letter. For example
residue(A, his) or dist(A, B, 10) are literals and A, B are
variables whereas his and 10 are constants. An example is
simply a set of literals none of which contains a variable.
For instance

residue(a, glu), residue(b, cys),
dist(a,b,4),dist(b,a,4)

e =

is an example describing a peptide.

Besides examples, we also need patterns. A pattern is a
set of literals which, unlike examples, may contain variables.
An example of a pattern is

p1 = residue(A, X), dist(A, B,10), residue(B, glu)

A pattern p is said to cover an example e when we are
able to find a substitution # to variables of p such that
pf C e. For example the pattern p; covers the example
e1 because p10 C e for substitution § = {A/b, B/a}. We
are not interested only whether a pattern p covers a given
example e but also how many covering substitutions there
are, i.e. how many substitutions 6 such that pf C e there are.
We call the number of covering substitutions of a pattern p
its value.

We use a representation of peptides that consists of literals
representing types of the residues and literals representing
pair-wise distances between the residues up to 10 A. These
distances are computed from alpha carbon atom coordinates
obtained from PDB files generated by LOMETS. The data
transformation process is shown in Figure 1.

In the third step, we use RelF to construct a set of
meaningful structural patterns. RelF restricts the shape of
possible patterns to be tree-like, because the complexity
of pattern-set construction is generally lower for tree-like
patterns than for general patterns and it has been shown
that tree-like patterns are sufficiently rich for proteomics
problems [4]. We customized the pattern search algorithm
RelF. The original pattern search algorithm prunes pattern
space using two measures: redundancy (described in [3])
and minimum frequency which is a minimum number of
examples that must be covered by a pattern. Since RelF had
been designed for classification problems, we had to find a
way to use it for regression problems. We decided to follow



1. Sequence Information:

AKKVFKRLE

3. Relational representation
input for RelF:

eg = res(a, ala), res(b, lys), dist(a, b, 4.0),
res(c, lys), dist(a, ¢, 6.0),
res(d, val), dist(a, d, 8.0), ...

RelF

The main steps of the method.

Figure 1.

a straightforward approach. We enriched RelF with prepro-
cessing in which the training data are split into two sets'
according to antimicrobial activity - the first set containing
peptides with lower-than-median activities, the second set
containing peptides with higher-than-median activities. As
soon as we have a data set with at least two classes, RelF
can be used for construction of discriminative features. The
output of RelF is an attribute-value representation in WEKA
format. We also added to these files additional information
about dipole moment, proportions of amino acid types and
their spatial asymmetries [19] which proved to be useful
when added to relational patterns [4]. Once we had these
WEKA files, we could easily exploit implementations of
machine learning algorithms present in WEKA.

In the last step, we use implementation of SVM with
RBF kernel present in the WEKA open-source machine
learning software to train a regression model using the files
generated in step 3. Parameters of the regression model
are tuned using internal cross-validation. When performing
cross-validation, the set of patterns is created separately for
each train-test split corresponding to iterations of the cross-

"When performing cross-validation, we always split the data taking
into account only the training set to avoid information leakage into the
independent test set.

: Perl script

LOMETS 2. Spatial Information:

—% b y z
A 11.487 9.219 -6."757
K 9.714 -10.340 -3.583
K 9.713 -6.829 -2.113
v 6.256 -5.867 -3.279
F 5.887 -5.314 0.455
K 6.392 -1.654 -0.350
R 3.218 -1.602 -2.424
L 1.454 -2.809 0.717
E 2.348 0.429 2.489

Regression model

validation procedure.

V. DATA

We used three data sets to evaluate our novel method. The
first data set named CAMEL was described by Cherkasov
et al. [1]. It is composed of 101 antimicrobial peptides with
experimentally tested antimicrobial potency. These peptides
are rich in leucine and it has been demonstrated that they
exhibit high activity against various strains of bacteria. The
minimal inhibitory concentrations for these peptides have
been averaged over 13 microorganisms. The average mini-
mal inhibitory concentrations (MIC) were used to calculate
average potencies according to formula from [20]

1066
=log> 3776

The second data set named RANDOM was presented
by Fjell et al. [16]. It contains 200 peptides with fixed
length which are composed of a few amino acids (TRP,
ARG and LYS and, more limitedly, LEU, VAL and ILE).
Although antimicrobial peptides are actually enriched in
these residues, a wide diversity in the amino acid content can
be found in natural antimicrobial peptides [21]. The peptides
were assayed for antimicrobial activity using a strain of

Potency



Pseudomonas aeruginosa. Fjell et al. did not report absolute
MIC values, but only MIC values divided by MIC of Bac2A
peptide (to simplify the measurements). Using relative MIC
values poses no problem, because it manifests itself only
through addition of a constant to the potency values (due to
the logarithm).

We named the last data set BEE. We compiled it from
three different sources: peptides from the venom of the
eusocial bee Halictus sexcinctus and their analogs [22],
peptides from the venom of the eusocial bee Lasioglos-
sum laticeps [23] and peptides from the venom of the
cleptoparasitic bee Melecta albifrons [24]. They contain
peptides of length ca. 5 - 15 amino acids. The minimal in-
hibitory concentrations for these peptides were obtained for
Bacillus subtilis, Escherichia coli, Staphylococcus aureus,
Pseudomonas aeruginosa. We used the average of these
values following the methodology of previous works [1],
[16]. In some cases, when only lower bounds on MIC were
available, we used these values.

VI. RESULTS

In this section we present experiments performed on real-
life data described in Section V. We used a representation
of peptides that consisted of literals representing types of
the amino acids and literals representing pair-wise distances
between the amino acids up to 10 A. These distances were
computed from alpha-carbon coordinates obtained from
PDB files computed by LOMETS. We used discretisation
of distances with discretisation step 2 A. We trained support
vector machine [25] regression models with RBF kernel
selecting optimal C' (complexity constant) and gamma
(determines the kernel width parameter) for each fold by
internal cross-validation. The estimated results are shown in
Table I.

We performed experiments on three data sets (CAMEL,
RANDOM and BEE). We compared the results of our
relational learning method for regression with the results
reported by Torrent et al. which is a state-of-the-art method.
In [2] by Torrent et al., only cross-validated coefficients
of determination (¢® - see Appendix for definition) were
given. Coefficient of determination can be regarded as the
proportion of variability in a data set that is accounted for by
the statistical model. In addition, we also report correlation
coefficient (¢) and root-mean-square error (RMSFE) for
our regression method. On data set CAMEL we achieved
the same results as Torrent et al. On data set RANDOM
we improved upon the results of Torrent et al. in terms
of coefficients of determination. Since data set BEE is a
newly compiled data set, there are no results to compare
our approach with. It is also a harder data set, than the
other two, because it is composed of three different sources.
Each of these sources is homogeneous on their own, but
heterogeneous when joined into one big data set. Also the
variance of antimicrobial activity is lower in this data set

than in the other two. This explains why the coefficient of
determination is so small as compared to the coefficients of
determination obtained for the other data sets.

A problem of antimicrobial peptides as antibiotics is that
they often have the ability to lyse eukaryotic cells, which is
commonly expressed as hemolytic activity or toxicity to red
blood cells. Unlike the other methods which use a pre-fixed
set of physicochemical features our method is not limited
to one particular task. Since the sources from which we
compiled the data set BEE contained also information about
the hemolytic activity, we decided to assess the potential of
our method also for prediction of hemolytic activity. Because
more than half of the reported hemolytic activities were
given only by an lower-bound (200 M) (i.e. they were
not capable to measure the exact value), we decided to
transform the problem to a two-class classification problem -
the first class corresponding to peptides with activities below
the lower-bound, the second class corresponding to peptides
with activities higher than the lower-bound. We performed
experiments following the same steps as in the prediction
of antimicrobial activity, but with a random forest classifier
instead of support vector machine classifier for regression.
We obtained accuracy 60.83% and AUC (area under ROC
curve) 0.725.

In addition, we can analyse the structural patterns used in
the regression model which can give us insights about the
process by which the antimicrobial peptides kill bacteria.
We used the following methodology. First, we discretized
the antimicrobial activity attribute, so that we could apply
x? criterion for ranking of patterns. Then, for each split of
the datasets (CAMEL, RANDOM and BEE) induced by 10-
fold cross-validation we selected the three most informative
structural patterns according to the x? criterion. We chose
one pattern which was selected most often among the folds
for each data set. These patterns are shown in Figure 2.

The selected pattern for the data set CAMEL assumes
presence of five amino acids: ILE, LEU, 2xLYS, VAL
with distances between them as depicted in Figure 2. The
positively charged Lysines are known to correlate with
antimicrobial activity and the presence of Leucine can be
explained by the fact that the data set CAMEL contains
mostly Leucine-rich peptides. Interestingly, the remaining
two amino acids - Isoleucine and Valine - and Leucine are
the only proteinogenic branched-chain amino acids - they
each have a carbon chain that branches off from the amino
acid’s main chain, or backbone.

The selected pattern for the data set RANDOM is very
simple. It assumes presence of Tryptophan. Since the pat-
terns count the number of occurrences, it corresponds to
proportion of TRP in peptides. This is not surprising, given
that the peptides of the data set RANDOM are composed
mostly of TRP and some other amino acids.

Finally, the selected pattern for the data set BEE assumes
presence of two amino acids: LEU and LYS in the distance



Torrent et al. [2] Our Regression Model
q? q? q RMSE
CAMEL 0.65 0.65 0.81 1.23
RANDOM 0.72 0.74 0.87 1.23
BEE - 0.3 0.61 1.04
Table I

EXPERIMENTAL RESULTS OBTAINED BY CROSS-VALIDATION, WHERE g2 IS COEFFICIENT OF DETERMINATION, ¢ IS CORRELATION COEFFICIENT AND
RM SE 1S ROOT-MEAN-SQUARE ERROR.

Figure 2.
scale).

4A from each other. Again, the positively charged amino
acid - Lysine is known to correlate well with antimicrobial
activity. Both Leucine and Lysine appeared also in the
selected pattern for the data set CAMEL.

VII. CONCLUSIONS

We applied relational machine learning techniques to
predict antimicrobial activity of peptides. To our best knowl-
edge this study is the first attempt to automatically discover
common structural patterns present in antimicrobial peptides
and to use them for prediction of antimicrobial activity.
We utilized our relational learning method [3] which has
already been used for DNA-binding propensity prediction
of proteins [4]. There are two main differences between the
work presented in this paper and our earlier work. First,
the problem that we tackled in [4] dealt with classification,
whereas here we built a regression model. Second, here
only primary structures of peptides are available (therefore
we had to rely on structure prediction), whereas we could
use spatial structures obtained by X-ray crystallography in
our previous study with DNA-binding proteins. We have
shown that our relational learning approach for regression
improves on a state-of-the-art approach to antimicrobial
activity prediction in terms of predictive accuracy. Moreover,
we have illustrated that our method is capable to also provide
interpretable patterns describing spatial configurations of
amino acids in peptide structures.

B C

Most informative structural patterns according to the x? criterion for the data set of CAMEL (A), RANDOM (B) and BEE (C)(edges not to
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APPENDIX

Coefficient of determination

i SSerr
SStot

Here, SS,,. is the sum of squares of residuals and S'S;,;
is the total sum of squares.

R?=1

Sserr = Z (yz - fi)Qa

i

where y; is the true value and f; is the predicted value.

SSiot = Z (i —5)27

K2

Y= %Zyz
i

The coefficient of determination ¢ is an estimate of R>
obtained by cross-validation.

where



Correlation coefficient

ol K(vi—u\(fi—f
=5 (00 ()

i

Here, s, is standard deviation of true values and sy
is standard deviation of predicted values. The correlation
coefficient ¢ is an estimate of IR obtained by cross-validation.
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