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Abstract

We investigate the problem of optimal wealth allocation over predictive sports mar-
ket’s opportunities. We analyze the problem across diverse settings, utility targets, and
the notion of optimality itself. We review existing literature to identify the most prominent
approaches coming from the diverse sport and economic views on the problem, and provide
some practical perspectives. Namely, we focus on the provably optimal geometric mean
policy, typically referred to as the Kelly criterion, and Modern Portfolio Theory based ap-
proaches leveraging utility theory. From the joint perspective of decision theory, we discuss
their unique properties, assumptions and, importantly, investigate effective heuristics and
practical techniques to tackle their key common challenges, particularly the problem of
uncertainty in the outcome probability estimates. Finally, we verify our findings on a large
dataset of soccer records.

1 Introduction

In this work, we understand the game of betting as an investment decision making over proba-
bilistic outcomes. We generally assume two sides acting in the game setting – a bookmaker (B)
and a player model (M for “model”). Both the bookmaker and the player have their beliefs
about the true probability distribution (PR) over the outcomes. Prior to the outcome realiza-
tion, the bookmaker sets up possible payoffs, representing the returns of investment for each
possible outcome realization.

Example 1. As a simplistic, artficial example of such a setting, imagine a game of fair coin
tossing [7], where the payoffs are set up, for instance, as follows. If the coin ends up heads, our
wealth grows by 50%, and if it is tails, our wealth shrinks by 40%.

Generaly, the goal of the player is to maximize the expected profits while minimizing ex-
pected losses (see Section 2 for specific target utility definitions), assuming repeated investment
over a prolonged period of time.

Player’s betting system typically consists of two major components. A model, estimating
the probability of each outcome, and a betting strategy, combining the probabilities given by
the predictive model with the bookmaker’s payoffs to determine how to split the stakes. In this
work, we focus solely on the second component – the betting strategy.

1.1 Betting Opportunities

The opportunities in the game represent simply the set of probabilistic outcomes currently
available for betting. We can generally cover each betting game setting via definition of a
“payoff matrix” R, the columns of which represent different opportunities available, and rows
represent different outcome realizations. Each element in R then represents a single payoff from
each opportunity realization. Additionally, we include a risk-free “cash” opportunity c, which
allows our strategy to put money “aside”. Also, c allows to model situations where leaving
money aside can cost small fraction of c in every turn (“inflation”), or possibility to increase
with some small interest rate (e.g. in a bank account).
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The betting strategy will thus allocate the current wealth among n opportunities, n − 1
of which are the risky, probabilistic assets, with 1 opportunity being the added risk-free cash
asset. Let us further assume that there are K possible worlds, i.e. K possible joint outcome
realizations, in our probabilistic game. Each opportunity can then be fully specified using an
asset vector ai with returns ri,k for each of the K probabilistic outcomes p1, p2, ..., pK [1].

R =
[
a1 a2 ... an−1 c

]
, where ai =




ri,1
ri,2
...
ri,K


 , c =




1
1
...
1


 (1)

1.2 Betting strategy

Betting strategy takes bookmaker’s odds together with model’s estimates, and outputs portions
of wealth, i.e. the bets, to be waged on each of the betting opportunities. We can formally
define the betting strategy f for n betting opportunities as follows:

f : PnM ×On → Bn (2)

where PM is the probability distribution over the outcome realizations given by model, O are
the bookmaker’s odds, and B are the portions of wealth staked. We will further refer to the
vector of wagers b as “portfolio”:

b =
[
b1, b2, ..., bn

]T
(3)

where bi stands for wealth portion allocated to i-th opportunity.

1.3 Betting dynamic

A betting dynamic is part of the game setting for the presented opportunities. The dynamic
specifies the investment behavior as the opportunities are being repeated in time, determining
the progression of wealth. For that goal, we will use the following definitions [7]:

• W (t) is wealth in time t.

• δt is a regular time interval, e.g. 1 week.

• r(t) is a return/payoff function in time t.

For example, the return function for the coin toss game from Example 1 can be defined as
follows [7]:

r(t) =

{
1.5 with probability 1/2
0.6 with probability 1/2

(4)

We further assume that if we accept, we are obliged to play this game for a longer period of
time (e.g. every week for 2 years). Generally, the investment behavior in this game can be
either additive or multiplicative, determining the dynamic of our wealth progression.

2
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1.3.1 Additive dynamic

Additive dynamic is simply a unit based investment, meaning that we invest a single unit (e.g.
1 dollar) at every single time step δt. Our wealth progression in time t is hence defined as:

W (t) = r(t) +W (t− δt) (5)

Taking the above mentioned coin toss example, the “growth rate” of player’s wealth will ap-
proximately be the expected value ev = 1

2 · 1.5 + 1
2 · 0.6 = 1.05, in other words wealth growth

rate under additive dynamic is ergodic [7].

1.3.2 Multiplicative dynamic

In this case, we are continuously reinvesting our current wealth over the set of the presented
opportunities. Hence our wealth progression in time t is defined as follows:

W (t) = r(t) ·W (t− δt) (6)

Figure 1: Multiplicative dynamic: Coin toss game. The magenta line represents median wealth
trajectory in 1000 time steps of a coin toss game. The dashed line is the expected value [7].

In the Figure 1 we can see that, under multiplicative dynamic, the expected value does not
indicate what happens to a single player in the “long run” [7]. Instead, the relevant quantity

to look for in this case is the geometric mean r̄ = (1.5 · 0.6)
1
2 ≈ 0.95. In other words, wealth

growth rate under multiplicative dynamic is non-ergodic [7].

1.3.3 Ergodic property

Ergodic property of a dynamic process is often dubbed as the “equality of averages”, which
stands for the time average [7] being equal to the ensemble average, i.e. the expected value.
The growth rate of wealth is thus ergodic if its expected value is constant in time and its time
average converges to this value with probability one [7].

3
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2 Betting Strategies

In existing literature, the betting strategies range from informal “ad-hoc” approaches, such
as betting according to the probability estimates, to the formal ones, represented mainly by
Modern portfolio theory [6] and Kelly criterion [4].

2.1 Informal approaches

Here we list some of the informal betting strategies encountered in the literature for complete-
ness of the review.

• Bet fixed amount on favorable odds (unif).

• Bet amount equal to the absolute discrepancy between probabilities predicted by the
model and the bookmaker (abs disc bet).

• Bet amount equal to the relative discrepancy between probabilities predicted by the model
and the bookmaker (rel disc bet).

• Bet amount equal to the estimated probability of winning (conf bet).

• Bet everything only on the maximum expected value opportunity (max ev).

While these informal betting methods are generally inferior to the formal approaches [2] and
lack the necessary theoretical background, we do not investigate them experimentally much
further in this work.

2.2 Modern Portfolio Theory

The idea behind Modern Portfolio Theory (MPT) is that portfolio b1 is superior to b2 if the
expected gain E[g(b)] is at least as great.

E[g(b1)] ≥ E[g(b2)] (7)

and the risk, here generaly denoted through a risk measure r, is no greater [6].

r(b1) ≤ r(b2) (8)

This creates a partial ordering on the set of all available portfolios. Taking the portfolios
that no other portfolio is superior to gives us the set of efficient portfolios Θ. In simple terms
we maximize the following:

E[gain]− γ · risk (9)

In the most common setup, the risk of a portfolio is measured by its variance defined through
a covariance matrix Σ. MPT can then be expressed as the following maximization problem:

maximize
b

µT b− γbTΣb

subject to
K∑

i=1

bi = 1.0, bi ≥ 0

where b is portfolio, γ is risk aversion parameter and µ is the expected gains vector of the
offered opportunities.

4
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2.2.1 Maximum Sharpe strategy

Sharpe ratio can be used as a criterion to choose from the set of efficient portfolios Θ. Sharpe
ratio of a portfolio is defined as [2]:

rp − rf
σp

Where σp is standard deviation of portfolio return, rp is expected return of the portfolio
and rf is a risk-free rate (we can neglect the risk free rate if there is no risk-free method how
to appreciate the money). We can hence define a separate “MaxSharpe” strategy as follows:

maximize
b

µb√
bTΣb

subject to
K∑

i=1

bi = 1.0

bi ≥ 0

2.2.2 Criticism

The MPT approach is often criticised for two main reasons, [7].

1. The growth rate of wealth under multiplicative dynamic is non-ergodic. In other words,
the expected return does not tell us what will really happen in the long run, hence
maximizing it does not produce a truly long term-optimal reinvestment strategy, which
we showcased in the coin toss example 1.

2. The definition of risk as variance is often disputed. In many domains, risk is not easy to
define.

2.3 Growth optimal strategy

A different approach to betting is to first make the growth rate of wealth ergodic, under specified
dynamic using appropriate transformation, and then take the expected value. This approach
is famously known as the “Kelly Criterion”, “Geometric Mean Policy” and under many other
names.

For the multiplicative dynamic, the correct ergodicity transformation is the logarithm:
v(x) = log(x) [7]. The growth optimal portfolio for a general case can hence be found by
solving the following optimization problem:

maximize
b

E[log(R · b)]

subject to
K∑

i=1

bi = 1.0, bi ≥ 0

The calculated portfolio is then growth-optimal under the following assumptions [4, 8, 7]:

1. True probability is known to the player.

2. There is a “long run” of “approximately similar” games.

5
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3 Experiments

We showcase the above mentioned strategies on a dataset of 30000 soccer games from differ-
ent leagues all over the world. The dataset consists of opening odds, closing odds, estimated
outcome probabilities and results indicating the outcome realization in each game. The proba-
bilities are modelled separately using a neural network model. Naturally, the true probabilities
of the outcomes are unknown to both to the player and the bookmaker, which has a significant
impact on how the strategies are applied, especially in the multiplicative dynamic scenario.

We have three outcomes per game and we always assume multiple simultaneous games
happening simultaneously in each time step, which we will refer to as “round”. We investigate
results from both the additive and multiplicative perspective.

In [6] the author proposes multiple measures of dispersion (risk measures) that can possibly
be used to evaluate the investment strategy such as variance, standard deviation and coefficient
of variation. In our evaluation framework we choose the standard deviation of portfolio return
as the risk measure.

3.1 Additive dynamic

If our goal would be solely to maximize the expected profit, then the solution would be a trivial
Bayesian strategy – bet the whole wealth on the opportunity with highest expected value of
profit from presented opportunities. However, even under additive dynamic, we want some
level of guarantee of not loosing too much money, hence our criteria for selecting the betting
strategy are the expected profit and also the risk.

To demonstrate the differences between the betting strategies we randomly sampled data
representing six illustrative betting opportunities with positive expected value [3]. Then we
applied the betting strategies and analyzed the differences in the wealth allocations by the
different strategies. Results are summarized in Table 1 (we note that the growth optimal
approach only makes sense under the multiplicative dynamic, hence we do not analyse it in
this sub-section). The strategies based on the absolute and relative discrepancies between the
probability estimates always prefer higher expected profit of the opportunity regardless of the
variance of the profit. On the other hand, the strategy based on the confidence of the probability
estimate always prefers lower risk, regardless of the return. The MaxSharpe strategy is looking
for a compromise between these two approaches.

# pM pB σ ev MaxEV Unif Abs disc Rel disc Conf MaxSharpe

1 0.30 0.26 1.80 1.19 1.0 0.17 0.20 0.35 0.08 0.09
2 0.59 0.52 0.94 1.12 0 0.17 0.27 0.24 0.16 0.23
3 0.75 0.70 0.62 1.07 0 0.17 0.21 0.15 0.21 0.30
4 0.60 0.57 0.86 1.06 0 0.17 0.13 0.12 0.17 0.12
5 0.74 0.71 0.62 1.04 0 0.17 0.11 0.08 0.20 0.17
6 0.64 0.62 0.77 1.03 0 0.17 0.07 0.06 0.18 0.08

Table 1: Comparison of betting strategies on simulated betting opportunities. The columns
pM and pB represent the probability estimates of the model and the bookmaker, respectively,
σ and ev refer to standard deviation and expected value of the opportunity [3].

The paper [3] provides a simulation of of all the above mentioned informal strategies on a
dataset of 5000 basketball games. The author comes to the conclusion that the only relevant

6
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strategies are MaxEV and MaxSharpe. While MaxEV directly maximizes the expected profit,
it completely ignores the risk and the possibility of ruin. Hence, we do not consider MaxEV to
be a “reasonable” betting strategy, and we will further focus solely on the MaxSharpe strategy
in our analysis of additive dynamic.

3.1.1 Simultaneous games

In the real world, there is almost always multiple soccer games occuring in any given moment.
Hence it is reasonable to assume and conduct our simulation in such a way so as to test our
strategies under this assumption. The number of simultaneous games i.e.“round size” clearly
affects the number of presented opportunities. The more soccer games we can bet on, the
more opportunities are presented to us. In this subsection we investigate whether round size
significantly affects the overall cumulative profit.
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20
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Figure 2: Simultaneous games: Effect of round size on profit under additive dynamic.

3.2 Multiplicative dynamic

In this section we focus on the reinvestment scenario. Our goal is hence to not only evaluate
the presented oppoprtunities, but to evaluate them in context of the resources available to us,
i.e. our “bank”. We present two strategies that produced the best results in our experiments
namely MaxSharpe strategy and the growth optimal Kelly criterion. We omit the informal
approaches from the subsection 3.1 as they are insufficient for reinvestment scenario.
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3.2.1 Fractional MaxSharpe

The main idea behind any “fractional” approach is to bet only a fraction ω of the calculated
portfolio and leave the rest 1 − ω in the cash asset for security. Here we investigate results of
the previously mentioned MaxSharpe strategy. We define a trade-off index ω for a portfolio as:

bω = ωbs + (1− ω)bc (10)

where the bs stands for portfolio suggested by MaxSharpe strategy and bc is a portfolio where
the only investment is a risk-free, “cash“ investment.

Fraction, or a trade-off index, ω is now a lever between “growth“ and “security“ [5]. We
hence fit the parameter ω on a training set and verify it on the testing set. We are looking for a
reinvestment strategy that satisfies the following maximization problem across all the training
dataset wealth trajectories.

maximize median(WF )

subject to Q5 > 0.95

We are hence looking for a strategy that reaches the maximum median final wealth across
all wealth trajectories, with the 5th percentile being the value below which 5% of all the wealth
positions may be found. For the fractional MaxSharpe strategy this criterion yields a fraction
ω = 0.11
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Figure 3: Results of the risk constrained growth optimal strategy on football dataset.
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3.2.2 Risk constrained Kelly

In this case we adjust the growth optimal portfolio b using the following maximum drawdown
constraint.

P (WMIN < α) ≤ β (11)

representing the probability of our wealth falling below α being at most β. This constraint is
approximately satisfied if the following is satisfied [1]:

E[(R · b)−λ] ≤ 1 where λ = log(β)/ log(α) (12)

We hence fit the parameter λ on a training set and verify it on the test set using the same
criterion as in the previous section. For the risk constrained Kelly the parameter is λ = 9.4.
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Figure 4: Results of the risk constrained growth optimal strategy on football dataset.

4 Results

We conducted experiments on a dataset of football games and our findings are as follows.

• The round size indeed does matter. Suppose that there are too few games taking place
in a given day (e.g. 5). In such a case, the round is not representative enough and the
strategy has too few opportunities to compare against each other, which leads to a lower

9

MathSport International 2019 Conference Proceedings

345



Sports betting strategies Uhrin, Hubacek, Sourek, Zelezny

diversificaiton of risk. On the other hand, the more games we are able to aggregate, the
smaller the differences between the rounds, which as a result leads to a higher stability of
the betting strategy.

• Both fractional MaxSharpe and risk constrained Kelly reach very similar results over the
football dataset.

5 Conclusion

In this paper we review the most widely used betting strategies both theoretically and practi-
cally. From theoretical point of view we discuss the unique properties of the additive dynamic
and the multiplicative dynamic, in other words the unit based and reinvestment scenario. Gen-
erally, we argue for the formal approaches as opposed to the informal ones often encountered
in literature.

From the practical point of view, we showcase application of the approaches in a relevant
sports domain, with several ideas on how to tackle one of its most difficult challenges – the
uncertainty of probability estimates.
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