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Abstract. Microarray data represents valuable information resources,
nevertheless the knowledge is hidden inside the data and it is not easy
to mine. Background knowledge is also stored in various formats and it
is challenging to automatically infer the biological meaning from exist-
ing repositories. This paper deals with a new gene-expression knowledge-
fusion system that combines molecular biology data from various sources
— the experiment in hand, gene expression data from similar experiments
stored in array expression databases, additional knowledge on the most
significant genes and their products from specialised services (e.g., path-
way databases), and automatically derived results provided by relevant
scientific literature. The design of the proposed system is rather complex.
We take advantage of recent semantic web technologies to integrate the
various modules of the system. Some of the components described in the
paper have already taken part in the end-user applications, others still
wait for their implementation in the form of software tools.

1 Introduction

Gene chips or microarrays enable monitoring the expression of tens of thousands
genes (virtually the entire genome) simultaneously. They play a significant role
in today’s biomedicine as they improve diagnosis and prognosis, plan treatment
or drug design.

The term “gene expression” means turning on and off the production of
proteins by which a given organism responds to enviromental and biological
situations. Genes are contained in DNA. Proteins are produced from the corre-
sponding genes in a two-step process. The first step consists in the transcription
of the gene from DNA into RNA. Then, RNA is further translated into a corre-
sponding protein. A crucial property of DNA and RNA is the complementarity.
The advantage of complementarity lies in detecting specific sequences of bases
within strands of DNA and RNA. In theory, it is done by synthesizing a probe,
a piece of DNA or RNA that is the reverse complement in the sample. The
act of binding between probe and sample is called hybridization. DNA probe



technology has been adapted for detection of, not just a sequence, but tens of
thousands sequences simultaneously. This is done by synthesizing a large num-
ber of different probes and their placing at a specific position on a glass slide (a
spotted array) or by attaching the probes to specific positions on some surface.
The crucial steps in the processing of a microarray consist in labeling samples
with fluorescent dyes or radioactive isotopes, hybridization, washing to remove
non-specific binding, scanning and data analysis. The gene expression matrix is
obtained by scanning and several image analysis algorithms including segmen-
tation and registration. The same set of genes can be measured under various
circumstances or at various time points. The measured expression values can
be organized in several ways. Gene expression data is stored in tables where
rows (columns) represent genes and columns (rows) represent experimental con-
ditions. The number associated with array items represents an expression level
of a specific gene under specific conditions.

DNA microarrays come in several different types. The most common are
Affymetrix arrays (GeneChips), spotted oligonucleotide arrays and spotted cDNA
arrays. Each microarray has a unique layout. So-called gene list describes the
configuration of a particular array. It is critical to identify the right layout as
any error could lead to a total misinterpretation of the results.

The amount of data produced by microarray analysis is large and it is not
possible to analyze it manually. Thus, there is a need for automated processing.
The gene expression matrix contains expression numbers covering noise, miss-
ing values, arising nonsystematic variations. The data is further processed with
the aim to normalize the scale and location. Various methods to identify un-
acceptable expressed genes or corrective procedures are also applied (see, e.g.,
[1], [2], [3] for the approaches to data normalization and [4] for missing value
estimation). There is also a need for the managing the huge amounts of diverse
data. Heterogenous data are produced by different labs using widely different ex-
perimental techniques. Data could contain wrong values or be incomplete. The
correct diagnosis is vital as each patient is unique. Consequently, there are dif-
ficulties in mircoarray data interpretation and comparing. Additional available
knowledge in data analysis has to be used to obtain more accurate results or
to make it easier to find similar cases. Extracted knowledge should be in an
understable form. Microarray data represents valuable resources for therapeutic
process, however, the knowledge and information is not usually easy to mine
because it is hidden inside the data. Background knowledge is stored in various
formats and it is challenging to automatically infer the biological meaning from
existing repositories.

After preprocessing steps, such as mentioned data filtering and normalization,
the task is to choose the groups of genes that are significant for the current case.
The principal target consists in improving the gene groups interpretability.

This paper deals with a new architecture of a gene-expression knowledge
fusion system that combines molecular biology data from various sources — a
particular experiment in question, gene expression data from similar experiments
stored in array expression databases, additional knowledge on the most signifi-



cant genes and their products from specialised services (e.g., pathway databases)
and automatically derived results provided by relevant scientific literature (using
text mining techniques on PubMed abstracts and fulltext papers). To easy such
a combination of heterogenous data, we employ semantic-web technologies and
standards that provide the infrastructural level for the system.

The reader of this paper can find methods that can be used for gene groups
selection in Section 2. Mining transcriptomic data is described in Section 3.
Section 4 introduces major building blocks of our system from a conceptual
point of view. The overall architecture of the integrated system as well as the
fuctionality of particular components is discussed next. Section 6 concludes the
paper and provides directions of our future research.

2 Gene Groups Selection

There can be as much as 20,000 spots on a microarray chip. The goal of the gene
selection phase can be seen as eliminating redundancy in the resulting data. It
can be done by means of clustering or unsupervised machine learning. The goal
of clustering is to determine the groups in a set of unlabeled data. It is possi-
ble to find groups of experiments with similar gene expression profiles. Various
clustering algorithms have been proven to be useful for identifying biologically
relevant groups of genes and samples. A survey of clustering methods used for
gene expression data can be found in [5]. Some of the usual clustering problems
are that gene clusters are previously unknown, it is needed to choose distance
function, the results of the clustering algorithm can be interpreted in different
ways, cluster gene expression patterns are based on their similarities. Another
known drawback which is highly relevant for the gene expression data is the
sensitivity of the algorithms to noise. The data can be analysed from many dif-
ferent viewpoints. A connection data with some background knowledge can have
influence on a selection of more significant clusters.

Supervised machine learning is employed to class prediction and gene selec-
ton, based on gene expression profiles, generally. The information about classes
is known (e.g. cases vs. controls) and the objective is to select genes differentially
expressed or to try to predict class membership based on the corresponding gene
expression profiles. Support vector machines (SVM) are widely used in this area.
According to [6], SVM can provide near-prefect classification accuracy on a par-
ticular data set. Gene selection can also take advantage of information-theoretic
methods [22].

The basic two-class hypothesis can be evaluated by the standard t-test:

t =
Y 1 − Y 2√

s21
N1

+
s22
N2

, (1)



where Y 1 and Y 2 represent sample means of data in each of the two classes,
s1 and s2 are standard deviations for each class that are divided by the numbers
of genes in each class N1 and N2.

Anova [23] can be used for multi-class cases.

3 Mining Transcriptomic Data

Gene-expression data analysis represents a difficult task as the data usually
shows an inconvenient rate of samples (biological situations) and variables (genes).
Datasets are often noisy and they contain a great part of variables irrelevant in
the context under consideration. Independent of the platform and the analy-
sis methods used, the result of a gene-expression experiment should be driven,
annotated or at least verified against genomic background knowledge.

As an example, let us consider a list of genes found to be differentially ex-
pressed in different types of tissues. A common challenge faced by the researchers
is to translate such gene lists into a better understanding of the underlying bio-
logical phenomena. Manual or semi-automated analysis of large-scale biological
data sets typically requires biological experts with vast knowledge of many genes,
to decipher the known biology accounting for genes with correlated experimen-
tal patterns. The goal is to identify the relevant functions, or the global cellular
activities, at work in the experiment. Experts routinely scan gene expression
clusters to see if any of the clusters are explained by a known biological func-
tion. Efficient interpretation of this data is challenging because the number and
diversity of genes exceed the ability of any single researcher to track the com-
plex relationships hidden in the data sets. However, much of the information
relevant to the data is contained in the publicly available gene ontologies and
annotations. Including this additional data as a direct knowledge source for any
algorithmic strategy may greatly facilitate the analysis.

We emphasize the potential of genomic background knowledge stored in var-
ious formats such as free texts, ontologies, pathways, links among biological en-
tities, etc. We deal with various ways in which heterogeneous background knowl-
edge can be preprocessed and subsequently applied to improve various learning
and data mining techniques. In particular, we focus on background knowledge
in the following tasks:

– feature selection and construction (and its impact on classification accuracy);
– constraint-based knowledge discovery;
– quantitative association rule mining;
– relational descriptive analysis.

Improving Classification Accuracy with Background Knowledge The traditional
attribute-valued classification searches for a mapping from unlabelled instances
to discrete classes. When dealing with a large number of attributes and a small
number of instances, the resulting classifier is likely to overfit the training data,
a wide range of classifiers may show comparable testing performance and the



classifiers may be hardly explainable. In order to increase the predictive power of
the classifier and its understandability, it is advisable to incorporate background
knowledge into the learning process. In our previous work [15,16,17], we studied
and tested several simple ways to improve a genomic classifier that results from
gene expression data as well as textual and gene ontology annotations available
both for the genes and the biological situations.

Constraint-Based Knowledge Discovery Current analyses of co-expressed genes
are often based on global approaches such as clustering or bi-clustering. An al-
ternative way is to employ local methods and search for patterns – sets of genes
displaying specific expression properties in a set of situations. The main bottle-
neck of this type of analysis is the computational cost and the overwhelming
number of candidate patterns which can hardly be further exploited. A timely
application of background knowledge available in literature databases, biological
ontologies and other sources can help to focus on the most plausible patterns
only. In [14], we discussed a flexible constraint-based framework that enables
the effective mining and representation of meaningful over-expression patterns
representing intrinsic associations among genes and biological situations. The
framework can be simultaneously applied to a wide spectrum of genomic data.
It has been demonstrated that it allows generating new biological hypotheses
with clinical implications.

Quantitative association rule mining in genomics using apriori knowledge Re-
garding association rules, transcriptomic data represent a difficult mining con-
text. First, the data are high-dimensional which asks for an algorithm scalable
in the number of variables. Second, expression values are typically quantitative
variables. This variable type further increases computational demands and may
result in the output with a prohibitive number of redundant rules. Third, the
data are often noisy which may also cause a large number of rules of little signif-
icance. We tackle the above-mentioned bottlenecks with an alternative approach
to the quantitative association rule mining [18,19]. The approach is based on sim-
ple arithmetic operations with variables and it outputs rules that do not syntac-
tically differentiate from classical association rules. Apriori genomic knowledge
can be used to prune the search space and reduce the amount of derived rules.

Learning Relational Descriptions of Differentially Expressed Gene Groups A
method that uses gene ontologies, together with the paradigm of relational sub-
group discovery, to find compactly described groups of genes differentially ex-
pressed in specific cancers was described in [20,21]. The groups are described by
means of relational logic features, extracted from publicly available gene ontol-
ogy information, and are straightforwardly interpretable by medical experts. We
applied the proposed method to three gene expression data sets with the fol-
lowing respective sets of sample classes: (i) acute lymphoblastic leukemia (ALL)
vs. acute myeloid leukemia (AML), (ii) seven subtypes of ALL, and (iii) four-
teen different types of cancers. Significant number of discovered groups of genes



had a description which highlighted the underlying biological process that is re-
sponsible for distinguishing one class from the other classes. The quality of the
discovered descriptions was also verified by crossvalidation. The presented ap-
proach significantly contributes to the application of relational machine learning
to gene expression analysis, given the expected increase in both the quality and
quantity of gene/protein annotations.

4 System Architecture

As mentioned above, microarray technology brough completely new possibilities
to the field of molecular biology. However, it also became evident that it is not
a panacea that would help to understand gene-related mechanisms on its own.
Today, it is impossible to interpret data from microarray experiments without
deep biological knowledge on the particular data in question, relevant pathways,
significant coverage of scientific literature for the particular disease and a manual
search for relevant additional information.

The aim of our research is to reduce the tedious work as much as possible and
let biologists focus on the interpretation of the particular pieces of knowledge
the system can automatically infer from available data. Figure 1 demonstrates
the proposed architecture of such a knowledge fusion system.

The process starts with experimental data prepared with the help of methods
discussed in the previous section. The user also provides a normalized description
of the experimental setup that can be used to retrieve additional data from
various databases (the means to avoid ambiguities are discussed later in this
section). The comprehensive metadata is crucial for the success of subsequent
processing steps.

Array express databases containing the results of other groups around the
world are searched next. As it is extremely difficult (if not impossible) to com-
pare the primary expression data across various experimental settings, arrays
used etc., the system currently counts upon metainformation, provided by the
original experimenters and stored together with the primary data in the array
expression databases. We are currently trying to provide wrapper components
that should enable combining data from two most populated databases Array-
Express (http://www.arrayexpress.com) and STNK (http://www.stanford.edu).
The fusion on this level is rather problematic as the two databases differ signif-
icantly in their content as well as the functions supported.

The experimental data are then combined with relevant information from
biomedical knowledge bases. They include various ontologies such as GO – the
Gene Ontology (www.geneontology.org) or OBI the Ontology for Biomedical In-
vestigations (obi.sourceforge.net), pathway maps (representing the knowledge on
the molecular interaction and reaction networks) such as KEGG the Kyoto En-
cyclopedia of Genes and Genomes Pathway collection (http://www.genome.jp/
kegg/pathway.html) or the BioCyc collection (biocyc.org), protein knowledge
bases such as UniProt the Universal Protein Resource (uniprot.org) and many
other resources.



Fig. 1. Schema of the gene-expression knowledge fusion system

Even though the biomedical knowledge bases try to scan journals and con-
ference proceedings regularly to embrace as much information as possible, one
still cannot rely on their full coverage. This is partially due to the shallow text
analysis techniques employed and also due to the limited scope of the primary
resources (just the Pubmed database in many cases). Moreover, those knowl-
edge bases that are curated by an individual or a small group of people have to
tackle the issues of subjectivity and availability of the curators. On the other
hand, the approach followed in our work reduces the work of personal judges to
the definition of a declarative set of extraction patterns for particular pieces of
knowledge, and, if necessary, to semi-automatic evaluation of the source relia-
bility (see below). The text mining is applied not only to the content of the

Pubmed database, but also to the additional sources of scientific publications
that can be stored locally (recent conference proceedings, various reports with re-



Fig. 2. An example of a pathway relevant to the experimental data
(from http://www.genome.jp/kegg/)

stricted access rights ). An important point of the direct analysis of the scientific
articles and papers (instead of taking benefit just from the pre-processed biomed-
ical databases) is our ability to consider different weights (influence, reliability)
of various pieces of information from various sources. The reasoning within the
knowledge fusion system deals with explicitly represented uncertainty (see [7]
for the details of our approach) and the source reliability is one of the important
factors participating in the process.

As mentioned above, we employ rather deep text processing to extract as
much relevant information as possible. After the standard preprocessing steps
transformation of the input formats, tokenization and sentence boundary de-
tection, we employ POS tagging, syntactic analysis and pronominal anaphora
resolution. We benefit from the available domain-specific terminological thesauri
and ontologies to define particular categories of interest. The results form an
input for our pattern-based semantic-relation extractor. It takes advantage of
general-purpose language resources, namely WordNet [8], to expand pre-defined
knowledge patterns (and transfer terms to concepts in general). The set of ex-
tracted relations (such as protein-A inhibits protein-B) is then merged with the
related information from biomedical knowledge bases and the output is used to
filter and interpret the experimental data in hand.



A significant attention has been recently paid to the aggregation and inte-
gration of data drawn from diverse sources in the field of life sciences. A unify-
ing view on these activities can be provided by the vision of the semantic web
an extension of the current web that enables automatic processing of the vari-
ous resources. It is based on common formats (RDF, OWL, RIF, ) and related
technologies. For example, the above-mentioned knowledge bases have been re-
cently transformed from many proprietary formats (often focusing on the visual
representation suitable for humans) into RDF/OWL appropriate for machine
processing. Figure 2 shows such an example of a pathway that is represented
visually for biologists but, at the same time, can be downloaded or even directly
accessed by automatic methods.

There are many limitations of the current semantic web technologies due to
their immaturity. The major issue connected to the huge knowledge bases and
complex ontologies typical for the biomedical field is the low performance and
limited scalability of the available automatic reasoners. That is why we currently
employ ad-hoc mechanisms for the interpretation of experimental data based on
a simple fuzzy-rule chaining. However, as the overall architecture is modular
enough to allow easy replacement of the inferencing engine, we plan to evaluate
various recently proposed solutions (e.g., [9]) in terms of their performance and
scalability and to integrate the module that will best meet our needs.

5 Related work

There are very many scientific papers dealing with the interdisciplinary field
discussed in this paper. In this section, we reference just the sources that directly
inspired our presented solutions.

The advantages as well as shortcomings of the current semantic web tech-
nologies for the field of biomedical domain in general are tackled by the Semantic
Web Health Care and Life Sciences Interest Group operating within the frame-
work of W3C. Even though the outcomes of the group as a whole are rather
general and infrastructural in the sense of providing common formats such RDF
representation of the biomedical data or core vocabularies and ontologies, var-
ious activities of particular members are highly relevant for our research (see,
e.g., [10] for a report on joint activities).

Another valuable source of ideas for our research comes from large European
projects, either on the national level (e.g., the UK e-Science project myGrid [11])
or an international one (e.g., REWERSE http://rewerse.net). Let us particularly
mention the recent work of L. Badea [12] within the last mentioned project which
proposes very similar architecture to that discussed in this paper. In contrast to
his work, we focus much less on the dynamicity issues and stress rather the aspect
of processing efficiency. Especially due to the relatively deep analysis employed
in the preprocessing phase, we prefer local replica of the available resources
(plus the mechanisms for their regular updates). This schema also simplifies the
quality checking and reliability estimation procedures.



Many researchers actually develop sophisticated methods for an automatic
processing of biomedical data. The presented architecture allows easy integration
of various techniques, especially those that can be characterized as machine
learning procedures. For example, the next step of our research will explore the
possibility to plug in a recent ILP (inductive logic programming) method to
relation mining described in [13].

6 Conclusions and Future Directions

Despite recent efforts to overcome the fragmented nature of biomedical knowl-
edge on the current web, the problem of an information fusion of various re-
sources has not been solved to a sufficient extent till now. The presented work
can be seen as our contribution to this direction of the research. The modular
architecture enables easy integration of various components and methods and
the semantic web context simplifies the data integration procedures.
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