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1 Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

2 Department of Genomics, Institute of Hematology and Blood Transfusion,
Prague, Czech Republic

Abstract. Circular RNA, a molecule with partially understood func-
tions, has been implicated in various diseases. Therefore, there is a vast
effort to predict associations between circular RNAs and diseases. In
our recent study, we introduced circGPA, an algorithm that enables the
annotation of circular RNAs with gene ontology terms through interac-
tions with miRNAs and mRNAs. Recognizing the analytical similarity
in predicting disease associations, we developed GPACDA, an extension
of circGPA tailored for disease associations. The benefits of our methods
include explainability, as the outputs are based on known interactions
and associations, as well as the rigorous calculation of the p-value, which
the circGPA algorithm can compute. We compared our method with two
other tools, NCPCDA and DWNCPCDA, using a subset of the CDA-
SOR dataset and showed that GPACDA overcomes its competitors in
terms of true association ranks. Our method’s code and predictions are
publicly accessible.

1 Introduction

Circular ribonucleic acids (circRNAs) are single-stranded RNAs that, unlike lin-
ear RNAs, form a covalently closed continuous loop [43]. CircRNAs are widely
expressed in eukaryotes in a tissue- and species-specific manner [7]. They already
demonstrated their capacity to regulate gene expression and potentially link to
diseases [50]. Owing to their remarkable stability, circRNAs can also serve as
diagnostic biomarkers [50]. CircRNAs play a role in regulating gene expression
by impacting transcription, mRNA turnover, and translation through interac-
tions with RNA-binding proteins and microRNAs [40]. Annotation databases
for circRNAs may encompass essential information regarding their tissue speci-
ficity, associations with diseases, and interactions with microRNAs [52]. Addi-
tionally, more advanced circRNA annotations can be derived from understanding
their interactions with microRNAs and all other interactions involving these mi-
croRNAs [4]. Simultaneously, circRNA annotations may also originate from the
known annotations of their host genes [28]. Nevertheless, the functions of most
circRNAs remain unknown.
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In this paper, we focus on the task of automated circRNA-disease association
prediction. We define the problem as the classification of whether circRNA c of
interest should be annotated by disease g. To do so, we exploit our recent tool
circGPA [45], which uses statistic s(c, g) calculated from the interaction graph
between the circRNA, miRNAs, and mRNAs. Formally, statistic s(c, g) is an
outcome of the statistical test, whose null hypothesis is that the given (c, g)
pair is unrelated. In other words, the null hypothesis is that circRNA c has no
preference in interactions with miRNAs (or mediated interactions with mRNAs)
associated with disease g. A circRNA c is annotated with a disease g if this
null hypothesis is rejected. This principle assumes that miRNAs and mRNAs
have already been partially explored and associated with most or at least some
related diseases. As circGPA is based on generating polynomials, we name our
novel method GPACDA (generating-polynomial annotator for circRNA-disease
association prediction).

We have already demonstrated that circGPA is an efficient and exact method
of circRNA annotation [45]. The main contribution of this paper lies in the
application of circGPA to the new annotation task. Previously, we worked with
ontology terms; now, we predict circRNA associations with diseases. This shift is
by no means trivial, as it brings challenges in the construction of the interaction
network and its annotation with known disease links. The disease vocabulary is
much less established than the gene ontology (GO). Simultaneously, we have to
consider the often missing disease associations; therefore, we have to look at them
as incomplete and adjust the evaluation of the result accordingly. On the other
hand, circRNA-disease annotation represents a more frequent task than previous
circRNA-GO annotation. This allows us to benchmark our method better.

2 Relevant Work

Many tools focus on circRNA-disease association prediction. Most were produced
in past years and are usually based on capturing similarities between circRNAs
and diseases. In our experiments, we will compare against methods with publicly
available circRNA-disease predictions. The first is NCPCDA [26], where the
space of functional similarity of circRNAs is projected onto the circRNA-disease
graph. Similarly, the semantic similarity of diseases is projected on the disease
vertices. In the process, the similarities are combined with information about
the known circRNA-disease associations. The network consistency projection is
then used to build the final matrix of prediction scores.

The second reference algorithm is DWNCPDA [27], a tool based on Deep-
Walk and network consistency projection. The method calculates circRNA-circRNA
similarities based on the known circRNA-disease associations using DeepWalk.
Therefore, the method does not need any external biological input. A simi-
lar approach is used to calculate disease-disease similarities. Then, the network
consistency projection is used to predict new associations similar to NCPCDA.

The schema employed in NCPCDA and DWNCPDA has been adopted by
many other tools, each applying different methods to construct circRNA sim-
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ilarities, disease similarities, and circRNA-disease associations. PWCDA [24]
uses gene ontology terms that annotate circRNA-related genes, Jaccard index,
and Gaussian interaction profiles. IBNPKATZ [60] combines bipartite network
connections and KATZ measure. The CDASOR tool [32], which comes with a
database that we will use for testing, employs the embedding of circRNA se-
quences into k-mer vectors and utilizes convolutional and recurrent neural net-
works to predict the associations. In contrast, the iGRLCDA tool [59] uses graph
representation learning.

A popular path to tackle the circRNA-disease association prediction problem
is to use a variety of machine learning methods. One of the first tools, ICFCDA
[23], aimed at overcoming the sparsity of validated interactions by using recom-
mender systems. AE-DNN [6] leverages autoencoders and deep neural networks.
MLCDA [54] uses multi-source feature fusion. MDGF-MCEC [55] applies multi-
view dual attention graph convolution network and cooperative ensemble learn-
ing. In a recent tool, THGNCDA [15], a triple heterogeneous graph network is
utilized. Heterogeneous graph neural networks were also used in HGNCDA [29].

As the previous list suggests, the number of methods and techniques used is
vast, and the review is far from complete. Other publications include [53,61,41].
Some of the papers [15,29,41] are from 2023, suggesting that the field is still un-
dergoing active development. For readers with a deeper interest in the circRNA-
disease association prediction field, we recommend review papers [22,5].

3 Previous Work – circGPA

We base our method on the recent circGPA algorithm [45]. The circGPA ad-
dresses a similar problem: the annotation of circRNAs with terms from the gene
ontology. It is important to note a significant difference between the two prob-
lems: the frequency of known miRNA and mRNA associations with ontology
terms is higher than disease associations.

The tool uses an interaction graph between the circRNA, miRNAs, and mR-
NAs. Let us denote the number of miRNAs (mRNAs, respectively) by |µ| (|m|).
The circRNA of interest sponges miRNAs. This relation can be encoded in adja-
cency vector aµ,c ∈ [0, 1]|µ| where each field equals 1 if the circRNA interacts with
the corresponding miRNA, 0 otherwise. Similarly, matrix Am,µ ∈ [0, 1]|m|×|µ|

contains 1 on the position corresponding to a pair of miRNA and mRNA when-
ever the miRNA silences the mRNA. The annotation of the miRNAs and mRNAs
is stored in binary vectors gµ ∈ [0, 1]|µ| and gm ∈ [0, 1]|m|. Denote g = (gm,gµ).

The test statistic is then the number of paths of length one (two, respec-
tively) from the circRNA to annotated miRNAs (mRNAs, respectively). Thus,
the statistic is mathematically formulated as

s(c, g) = (aµ,c)Tgµ + (Am,µaµ,c)Tgm. (1)

The field in aµ,c (Am,µaµ,c) corresponding to a miRNA (mRNA) will be
called the weight of the miRNA (mRNA). Our tool circGPA [45] provides an
efficient algorithm based on generating polynomials [11] to calculate the p-value
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of s(c, g). Define variables x and y. The power of x will count the weight, and
the power of y will count the number of selected mRNAs. Focus now on a
single mRNA with weight w. For this mRNA, we have two options: either it is
not annotated with the term, resulting in polynomial x0y0, or it is annotated,
resulting in xwy1. The sum of those is the contribution of the said mRNA to the
statistic in Eq. (1). Also, we can notice that the coefficients by the polynomial
terms show the number of ways to reach the value of the statistic with a term of
a given size. For example, if we have two mRNAs with weights w1 and w2, the
generating polynomial under the independence in the null hypothesis is

(1 + xw1y)(1 + xw2y) = 1 + (xw1 + xw2)y + xw1+w2y2. (2)

From the polynomial, we see that there is one way to reach the statistic of 0
with an empty term, the statistic of w1 or w2 with a single element term, and
the statistic of w1 + w2 with a two-element term.

Hence, we can define the generating polynomial for the statistic in Eq. (1) as

p(x, y, z) =
∏

w∈Am,µaµ,c

(1 + xwy)
∏

w∈aµ,c

(1 + xwz). (3)

The z variable is used in the same meaning as y, but for the case of miRNAs.
The null distribution of statistic s(c, g) is then found by the coefficients of

polynomial p(x, y, z), where the power of y is equal to ∥gm∥1 and the power
of z is equal to ∥gµ∥1. circGPA [45] then provides an efficient way to calculate
the polynomial coefficients using dynamic programming. The algorithm exploits
repeated integer weights by using the binomial expansion of repeated terms.

The technical details are beyond the scope of this paper. For now, it is im-
portant to mention the ,,guilt by association” principle [38], which posits that a
circRNA associated with a disease tends to interact with miRNAs (and indirectly
with mRNAs) that have already been associated with the disease. According to
this principle, known associations from better-researched molecules are propa-
gated to less-researched molecules, such as circRNAs.

4 GPACDA Methodology

GPACDA exploits the circGPA tool [45] designed originally to predict circRNA
annotations with ontology terms. Now, we use the circGPA tool to predict
the circRNA-disease associations. We reuse and update the circGPA interac-
tion graph formally defined in Sec. 3. To obtain the annotation data, we exploit
several databases with known mRNA/miRNA-disease associations and use them
to annotate the interaction graph. The novelty lies in unifying data from several
databases that provide disease associations for miRNAs and mRNAs and the
proposal of a new formal method of circRNA-disease association prediction.

Interaction Graph The interaction graph we use in GPACDA is adopted from
the circGPA tool [45]. The main difference is that we extended the database of
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circRNAs (now, there are currently 4,555 circRNAs) and merged some of the
miRNA IDs that represented the same sequence. As a result, the new, extended
database that underlies the interaction graph contains 168,841 circRNA-miRNA
interactions and 465,741 miRNA-mRNA associations.

The circRNA-miRNA interactions were downloaded from the CircInterac-
tome [8] database that uses the TargetScan [25] interaction prediction algo-
rithm. The miRNA-mRNA interactions were downloaded from the TarBase [20],
miRecords [57], and miRTarBase [16] databases via the multiMiR package [44].

Known Disease Associations In this step, we collected the known miRNA- and
mRNA-disease associations. The miRNA-disease associations were taken from
the miR2disease database [19]. (available at http://www.mir2disease.org/)
and the HMDD3 database [17]. Overall, a total of 38,499 miRNA-disease asso-
ciations were available. The mRNA-disease associations were downloaded from
the DisGeNET [42] database. The database is accessible through disgenet2r R
package. This database provides 1,134,942 gene-disease associations and can be
accessed programmatically by querying with selected diseases.

To construct the labeled interaction graph for the actual circRNA-disease
pair, we picked a particular disease from a curated disease repository (for further
details, see Sec. 5) and queried the above-described databases with it. As there
is no widely adopted disease ontology, we had to rely on matching the names
of the diseases in the databases. We used substring matching as a heuristic to
retrieve the associated RNAs. For example, an mRNA known to be associated
with non-small cell lung cancer will be included withing lung cancer disease.

Interaction Graph Examples To illustrate the behavior of GPACDA, we include
Fig. 1 with three situations that can arise when GPACDA calculates the p-value
of a circRNA-disease association. Neither the left nor the right image indicates
an association between circRNA and disease, whereas the middle one does.

In Fig. 1a, the circRNA is densely connected to the rest of the graph. There
are 12 paths from the circRNA to other molecules, and 8 of them terminate
in a molecule associated with the disease. The circRNA-disease connection is,
therefore, frequent but not statistically significant. The p-value is equal to 0.5,
as in half the trials, the same or higher statistic would be reached if a random
subset of mi/mRNAs of the same cardinality of 5 was selected.

The middle case in Fig. 1b indicates the association. Out of 8 paths, 7 ter-
minate in an annotated molecule. Only two random sets of 5 mi/mRNAs reach
s(c, g) = 7. In this case, the p-value is 0.067; on a larger graph, the p-value
would be even smaller. The third case (Fig. 1c) occurs when the circRNA has
a good connection to the disease. Nevertheless, the connection is supported by
too few links. Three out of four paths terminate in a mi/mRNA associated with
the disease. Still, there are many ways to reach the same number after randomly
selecting mi/mRNAs – the circRNA is connected only to some of the mi/mRNAs
with the known association, resulting in the p-value of 0.5.

http://www.mir2disease.org/
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Fig. 1: An illustration of the influence of the interaction graph structure on the
resulting p-value. The gray nodes represent mi/mRNAs associated with the dis-
ease. The bold lines depict the paths from the circRNA to the disease nodes.

5 Experimental Evaluation

In this section, we define the ground-truth dataset, illustrate GPACDA outputs,
and compare the predicted disease associations with reference algorithms. Since
the problem is in the positive-unlabeled setting [2], the comparison is quite chal-
lenging. For evaluation, databases of known circRNA-disease associations are
available, but there is no database of circRNAs that should not be associated
with a disease. Therefore, only true-positive and false-negative predictions are
known. The boundary between false-positive and true-negative is hard to eval-
uate, as a prediction not found in the database of known associations is not
necessarily a false-positive but may be a valid circRNA-disease prediction miss-
ing in the database. This highlights the need for ongoing research efforts in
circRNA-disease prediction algorithms.

Testing Disease List Overall, we work with a manually curated list of 60 diseases.
The list was taken from the circ2disease [58]. It contains common diseases, in-
cluding several types of cancer, atherosclerosis, multiple sclerosis, or rheumatoid
arthritis. As there is no unified disease naming between the databases described
in Sec. 4, we use the curated list just for their unification. We consider a disease
equivalent to one of the 60 diseases if the substring relation holds (see Sec. 4).
The circ2disease list also has significant overlap with our competitors. NCPCDA
provides a list of 88 diseases, out of which 25 are in circ2disease. DWNCPCDA
provides a list of 40 diseases, of which 18 are in circ2disease.

The Circ2disease is more consistent and more accessible to use than its coun-
terparts. To illustrate the issue, the CDASOR [32] dataset contains terms with a
broader range of granularity, often with possible overlaps. For example, there are
diseases cancer, lung cancer, lung carcinoma, small cell lung cancer, lung squa-
mous cell carcinoma, non small cell lung carcinoma, non small cell lung cancer,
lung adenocarcinoma in CDASOR. The Circ2disease dataset, on the contrary,
contains only half of the former list of diseases.

Projection of the Input Data on Testing Disease List After selecting this subset
of diseases for testing, we end up with a cache of DisGeNET database [42] that
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contains 5,895 mRNA-disease associations. After union with genes in the inter-
action graph, 3,921 associations remain. In the case of miRNAs, after selecting
the 60 testing diseases and known miRNA IDs, only 90 associations are used.
This rapid decrease in known miRNA associations is caused by poor overlap of
miRNA IDs between HMDD3 and CircInteractome.

Projection of the Test Data on Testing Disease List For testing, we used the
CDASOR dataset [32]. This dataset contains 3,221 ground-truth circRNA-disease
annotations. Out of those, only 2,825 circRNAs are labeled with hsa circ xxx

identifier used in CircInteractome. Next, for comparison, we select a subset of
501 associations used for testing. We required at least one miRNA (or mRNA,
respectively) associated with the disease to interact (indirectly) with the cir-
cRNA of interest. Thus, the selected 501 associations represent the subset of the
CDASOR dataset where the interaction graph for the circRNA and the disease
associations for miRNAs and mRNAs, are known.

GPACDA Outputs In this section, we provide a brief illustration of the out-
puts generated by our algorithm. First, for a circRNA of interest, we present a
sorted list of diseases. Each disease in the list is accompanied by a score statis-
tic representing its association with the circRNA (as defined in Eq. (1)), the
expected score under the assumption of independence, the number of mRNAs
associated with the disease, and, most importantly, the corresponding p-value of
the score statistic. Given that we are conducting multiple hypothesis testing, we
also display the adjusted p-value using Bonferroni correction [9] and Holm FDR
correction [3] for greater accuracy.

s(c, g) p-value E s(c, g) ∥gm∥1 Bonferroni FDR

acute myeloid leukemia 52 1.6 · 10−5 24 139 8.7 · 10−4 8.7 · 10−4

Alzheimer’s disease 32 2.0 · 10−3 17 93 0.11 0.054
diabetic retinopathy 8 4.5 · 10−3 2 11 0.24 0.067
rheumatoid arthritis 50 5.1 · 10−3 32 175 0.27 0.067
glioma 36 6.3 · 10−3 21 118 0.34 0.067

Table 1: An example output of GPACDA on hsa circ 0000228.

We illustrate the top predictions for circRNA hsa circ 0000228 in Tab. 1.
The acute myeloid leukemia (AML) disease reaches a significantly low p-value.
Based on the graph, we expect 24 paths to mRNAs and miRNAs associated
with the disease on average, but hsa circ 0000228 has 52 connections to such
mRNAs and miRNAs. There are 139 AML-associated mRNAs in total. Other
diseases did not reach a significant p-value despite being close. For example,
rheumatoid arthritis reached score 50, but it is a disease with more associa-
tions, resulting in a higher expected score and p-value. It is worth noting that
hsa circ 0000228 is known to be connected with Myelodysplastic Syndromes
[49], which in later stages can develop into AML. See Sec. 5 for more details.
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Our method also provides output that helps with the explainability. With
GPACDA, measuring the influence of individual miRNAs and mRNAs to final
statistic s(c, g) is possible. The derivation of the influence is in [45]. Such an out-
put is in Fig. 2. The figure shows that the highest influence has hsa-miR-194-5p.
This miRNA interacts with 13 mRNAs that are associated with AML. The genes
that show the strongest influence are CCND2, CDK6, KMT2C, and RUNX1T1,
all connected by three miRNAs to hsa circ 0000228.
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Fig. 2: A crop of graphical output of GPACDA showing the influence of individual
miRNAs and mRNAs on the association prediction between hsa circ 0000228

and acute myeloid leukemia. The size of the nodes (delta) shows how much
statistic s(c, g) decreases if the mi/mRNA is removed from the interaction graph.

Reference Algorithms For reference, we compared our results with two bench-
mark algorithms, NCPCDA [26] and DWNCPCDA [27]. Those two tools pub-
lished lists of ranked circRNA-disease association predictions, thus allowing easy
comparison with other tools. Notably, the quantitative statistics available for
GPACDA (see Section 5) are unavailable for NCPCDA and DWNCPCDA. As
the results contain only the sorted lists of predictions, the direct comparison
through true positive rate cannot be done in Section 5.

True Positive Rate In the first experiment, we compare the true positive rate
on the testing dataset (see Sec. 5). As the problem is in the positive-unlabeled
setting [2], providing a reliable ROC curve is challenging as only true positive
and false negative data are available. Nevertheless, we show the dependence
of the number of true-positive samples from the dataset based on the p-value
threshold. The p-value threshold is, in this case, based on false discovery rate
multiple hypothesis testing adjustment - the Benjamini-Hochberg method [3].

The results are in Fig. 3. The figure shows that at the level of significance
0.05, 195 associations are properly identified. However, with a significance of 0.1,
half of the dataset (247 associations) is identified. On the contrary, the method
did not provide adjusted p-value lower than one for 85 associations.

Rank of Ground Truth Predictions To compare the methods, we modify the
outputs of GPACDA to provide a ranked list of circRNAs associated with a
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Fig. 3: Dependence of the number of ground-truth circRNA-disease associations
labeled by GPACDA as positive based on the adjusted p-value threshold.

disease. For each test circRNA-disease pair (see Sec. 5), we calculate its rank. In
the case of GPACDA, the rank of a circRNA-disease association is the number of
circRNAs that have a lower p-value of the association with the same disease. In
the case of NCPCDA and DWNCPCDA, we used the ranked list of associations
provided as supplementary materials to the papers. Whenever an association
from the test dataset was not present in the predictions, the rank was circRNAs.
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Fig. 4: The histograms of the ranks of ground-truth associations. For each asso-
ciation, the rank counts stronger predictions that share the same disease, i.e.,
a smaller rank means better predictions. The red line shows the average rank.
For NCPCDA and DWNCPCDA, we include only diseases in the test dataset
for which predictions are available. Hence, the histograms sum to less than 501.

The results are in Fig. 4. For NCPCDA and DWNCPCDA, only a few ground-
truth circRNA-disease associations appeared in the predictions. In the case of
GPACDA, 129 (∼ 25%) of the ground-truth dataset, are among the top 200
predictions. Since the problem is in the positive-unlabeled setting, ranking in
the order of tens does not necessarily imply tens of false negatives above. Fig. 3
shows that half of the predictions reach a significant p-value, and thus, the rank
is expected to be high.
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Venn Diagram To illustrate the overlap between the methods, we include a
Venn diagram of GPACDA, NCPCDA, and DWNCPCDA predictions. We set
the FDR threshold to be equal to 0.05 in GPACDA. In the case of NCPCDA and
DWNCPCDA, we include all predictions in the ranked lists. The Venn diagram
is in Fig. 5. Results show a small overlap between methods, attributed partly to
inconsistency in disease names and a lack of unified notation for circRNA IDs.

Fig. 5: Venn diagram of the predictions. The left plot shows all predictions by
NCPCDA, DWNCPCDA, and GPACDA (restricted to the 60 diseases test list).
The right plot shows the results on the diseases common for all three methods.

Case Study - the Myelodysplastic Syndromes (MDS) In this case study, we se-
lected MDS, a group of cancerous diseases when blood cells in the blood marrow
do not mature properly. In late stages, MDS can develop into acute myeloid
leukemia (AML). We searched for circRNAs that can be related to MDS, pre-
sented the most reliable annotations, and verified the likelihood of our annotation
against the literature. The method was initialized with 68 associations between
MDS and genes. These are all the mRNA-MDS annotations in disgenet2R.
There were also 76 miRNA-MDS associations in HMDD3. GPACDA predicted
more than 1,000 circRNA-MDS pairs with FDR adjusted p-value smaller than
0.05. 20 top predictions with the lowest p-values are in Tab. 2.

The direct literature search for circRNA IDs in MDS context did not bring
any hits; circRNA annotation is a relatively new task. Therefore, we included the
host gene names and searched for evidence of their association with MDS. This
search brought many overlaps between our predictions and the literature. For
example, the second top prediction, circRNA hsa circ 0079009, originates from
the beta-tubulin gene (TUBB), a structural component of microtubules. It has
been previously shown that TUBB gene expression was significantly higher in
MDS patients who transformed to leukemia, and this gene may play a role in the
leukemic transformation by affecting the proliferation of malignant clones [34,33].

Several circRNAs from the solute carrier (SLC) family group follow in the
list. SLCs are membrane-bound proteins which play essential roles in a multi-
tude of physiological and pharmacological processes. Perturbation of SLC trans-
porter function underlies numerous human diseases and common genetic poly-
morphisms in SLC genes have been associated with inter-individual differences
in drug efficacy and toxicity. Previous evidence suggested that some of the genes
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from SLC protein family might be connected with drug resistance in MDS [63].
Also, the expression level of SLC25A1, one of the proteins of the family, has
been associated with poor prognosis in AML [30].

Further, hsa circ 0007494 is produced from ROCK2 gene coding for a
serin/threonine kinase. Paper [31] connects protein ROCK2 with NFKB pathway
that contributes to many hematopoietic cell diseases. Similarly, GABPβ1 (host
gene for hsa circ 0003501), a GA-binding transcription factor, is necessary for
myeloid differentiation and has a connection to chronic myeloid leukemia [35].
Additional evidence describing the relations of the remaining top twenty hit cir-
cRNAs with MDS and AML are referenced in Tab. 2. Only for three genes, no
mentions with a connection to MDS nor AML have been described so far.

hsa circ FDR Gene Reference

0048019 0,0011 ATP9B
0079009 0,0068 TUBB [34,33]
0030045 0,0068 SLC25A15 [63], [30]
0084727 0,0068 SLCO5A1 [63], [30]
0001809 0,0075 SLCO5A1 [63], [30]
0007494 0,0099 ROCK2 [31]
0003501 0,0099 GABPB1 [35]
0003715 0,0108 UBQLN1 [47]
0081028 0,0108 PEX1 [36]
0041252 0,0108 PITPNA [12]

hsa circ FDR Gene Reference

0009140 0,0108 SCFD1
0031423 0,0108 SCFD1
0006636 0,0113 PUM1 [37]
0001865 0,0131 UBQLN1 [47]
0002359 0,0132 UHRF2 [51]
0072437 0,0132 PARP8
0067808 0,0132 RSRC1 [13]
0081083 0,0132 COL1A2 [1]
0006396 0,0142 BRAP [14]
0081084 0,0142 COL1A2 [1]

Table 2: Case study - 20 highest ranking predictions on MDS. References in
italics show indirect connections to related genes or mentions of the genes.

In Tab. 3, we collected all circRNA-MDS pairs with a significant FDR and
examined the frequency of circRNA-hosting genes. ITPR2, a key regulator for
calcium ion transmembrane transportation activity, plays a critical role in cell
cycle and proliferation. It has been proposed as a biomarker for worse prognosis
and poor outcome in AML [46,56]. THBS1 might serve as a prognostic factor of
AML; low expression levels of THBS1 indicate shorter overall survival [62]. Inter-
estingly, MDS patients with bone marrow fibrosis showed increased expression of
THBS1 [18]. Further, ABCC1 is a member of ATP-binding cassette transporters
known to mediate chemotherapy resistance in AML and MDS [48]. High ABCC1
expression was also associated with poor disease-free survival [10].

Gene ITPR2 THBS1 COL1A1 MGAT5 ABCC1
Frequency 23 21 10 7 7
References [46,56] [62,18] [21] [48,10]

Table 3: Case study - the genes hosting the most MDS-related circRNAs.
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6 Discussion

GPACDA offers several advantages over its competitors. Firstly, it utilizes an
exact algorithm for calculating p-value, allowing users to perform independent
statistical assessments. When deciding whether to test a circRNA-disease con-
nection experimentally, explainability is as crucial as the p-value. GPACDA, re-
lying on the statistic s(c, g), can generate informative visualizations, such as in
Fig. 2 and provide insights into which interactions contribute to the low p-value.

GPACDA combines many inputs, being its strengths and weaknesses at once.
Many sources allow GPACDA to eliminate possible data biases. Meanwhile, the
databases from which disease annotations are taken contain many inconsisten-
cies, as there is no widely adopted database of diseases similar to the gene ontol-
ogy. When matching diseases, GPACDA has to rely on disease names, which are
often at different levels of granularity. A unified database of known associations
or a wider application of the disease ontology [39] could help future research.

The comparison of GPACDA and other tools shows that other tools often
provide lists of relatively few predictions without comparability among different
diseases. On the contrary, GPACDA can provide the p-value for any circRNA-
disease pair. The list of predictions can be, therefore, arbitrarily long. Compari-
son with other diseases for a circRNA shows whether the disease is high in the list
with a low p-value, high with a high p-value (a sparse interaction graph case), or
low with a high p-value (an unlikely association). The tool choice should be based
on available data for the circRNA of interest - GPACDA requires interactions,
when they are not known, sequence based approaches might be better.

7 Conclusion

The annotation of circRNAs is an important task, given their emerging signif-
icance in molecular biology and their diagnostic potential. The detection and
quantification of specific circRNAs can aid in early disease detection, monitor-
ing treatment response, and predicting disease progression. Here, we introduced
GPACDA, the efficient method for circRNA-disease association prediction. We
would like to point out its two bold advantages: 1) it is capable of fast bulk evalu-
ation of a large number of circRNA-disease pairs, and 2) it provides interpretable
outcomes (each circRNA-disease pair can be explained with its interaction neigh-
borhood, the molecules that most contributed to a positive association can be
identified; the p-value assesses the strength of the evidence).

Our method effectively re-identifies known circRNA-disease associations, in-
dicating potential for discovering new ones. This potential has further been re-
inforced with the MDS case study. GPACDA mostly detected circRNAs hosted
by genes clearly related to the syndrome. The comparison with benchmark tools
indicated that true circRNA-disease associations score higher in the GPACDA
result lists than in the benchmark lists. GPACDA may fail, especially when the
interaction graph or the existing m/miRNA-disease annotations is sparse. The
results show that this setting does not occur frequently. The size of interaction



GPACDA 13

and annotation databases will continue to grow, which will only help to increase
the precision and recall of the association prediction. Also, with growing number
of validated interactions, GPACDA will be able to replace TargetScan predic-
tions with validated circRNA-miRNA interactions.

GPACDA is available at github.com/petrrysavy/GPACDA with scripts to
generate figures and input data downloaded from publicly available databases.
Next, it might be worth to enrich the reasoning with gene expression data. Such
integrative analysis would be beneficial in eliminating false positive associations
by assigning low weights to interactions not supported by correlations in the
expression data, thus, making expression-relevant associations to stand out.
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45. Ryšavý, P., Kléma, J., Merkerová, M.D.: circgpa: circrna functional annotation
based on probability-generating functions. BMC Bioinformatics 23(1) (Sep 2022)

46. Shi, J.l., et al.: High expression of inositol 1, 4, 5-trisphosphate receptor, type 2
(itpr2) as a novel biomarker for worse prognosis in cytogenetically normal acute
myeloid leukemia. Oncotarget 6(7) (2015)

47. Sweetser, D.A., et al.: Delineation of the minimal commonly deleted segment
and identification of candidate tumor-suppressor genes in del(9q) acute myeloid
leukemia. Genes, Chromosomes and Cancer 44(3) (2005)
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