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Abstract —The availability of a great range of prior biological knowledge about the roles and functions of genes and gene-gene
interactions allows us to simplify the analysis of gene expression data to make it more robust, compact and interpretable. Here,
we objectively analyze the applicability of functional clustering for the identification of groups of functionally related genes. The
analysis is performed in terms of gene expression classification and uses predictive accuracy as an unbiased performance
measure. Features of biological samples that originally corresponded to genes are replaced by features that correspond to
the centroids of the gene clusters and are then used for classifier learning. Using ten benchmark datasets, we demonstrate
that functional clustering significantly outperforms random clustering without biological relevance. We also show that functional
clustering performs comparably to gene expression clustering, which groups genes according to the similarity of their expression
profiles. Finally, the suitability of functional clustering as a feature extraction technique is evaluated and discussed.
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1 INTRODUCTION

CURRENTLY, there is a large range of bioinfor-
matics tools that exploit prior knowledge of gene

function. One important way to make use of this
knowledge is through functional clustering (FC), which
aims to group genes according to their functional sim-
ilarities. The notion of functional similarity is based
on the assumption that genes with related functional
annotation records are functionally related to each
other. Various approaches for FC are available [1],
[2], [3], [4], [5]. The various approaches differ in their
selection, heterogeneity and amount of employed
prior biological knowledge, their notion of similarity
between genes and the type of clustering algorithm
used. The corresponding tools vary in their availabil-
ity and serviceability.
The most frequent application of FC is to simply

break down a large gene list into a manageable
number of functionally related groups for further
efficient interpretation. The origin of the gene list is
commonly high-throughput genomic, proteomic and
bioinformatics scanning approaches (mostly expres-
sion microarrays) that enable the researcher to select
interesting (typically differentially expressed) genes.
Thus, the FC tools contribute to gene-annotation en-
richment analysis. The functional gene clusters can then
be used to control the subsequent experiments such
that a gene cluster is given preference, e.g., if most of
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its gene members are associated with highly enriched
annotation terms that are found in the traditional en-
richment analysis of the total gene list. [6] introduced
the first tool for gene ontology functional analysis, the
first discussion and comparison of various statistical
functional analysis models is available in [7]. The
detailed overviews of enrichment tools can be found
in [8], [9].
However, functional annotations can also be em-

ployed in classification of gene expression (GE) data
to obtain more interpretable, robust and potentially
accurate predictive models. Classification based on
GE monitoring by DNA microarrays (often referred
to as molecular classification) is a natural learning
task with immediate practical uses. There have been
several early success stories [10], [11], [12], followed
by a large number of studies with the main goal of
predicting cancer outcome (an overview is provided,
e.g., in [13]). Recent surveys [14], [15] have demon-
strated serious technical flaws in a large proportion
of these studies, which were published in high-impact
biomedical journals, and have found that most of the
published results are overly optimistic. The routine
application of GE classification is limited by frequent
inaccuracies in the resulting classifiers and their in-
ability to be understood by physicians. Molecular
classifiers based solely on GE in most cases cannot be
considered useful decision-making tools or decision-
supporting tools.
Recent efforts in the field of molecular classification

aim to employ additional information available for
genes, proteins and tissues that are being studied.
They follow the major trend that is currently prevail-
ing in the area of general GE data analysis. The anal-
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ysis that was formerly aimed at identifying individual
genes that are differentially expressed across sample
classes [16] now focuses on identifying entire sets of
genes with significantly different expression [17], [18],
[19]. The genes share a set of characteristics that are
defined by prior biological knowledge. The set-level
techniques applied to GE classification develop new
features that correspond to gene sets that represent
pathways, their sub-clusters or gene-ontology terms
at various levels of generality [20], [21]. The authors
of [22] propose a method that integrates a priori the
knowledge of a gene network into a classification
that results in classifiers with biological relevance,
a good classification performance and an improved
interpretability of the results. [23] introduced the con-
cept of condition-responsive genes (CORGs), which
are the genes with the highest discriminative power
in a pathway. The activity of a pathway is defined
as a vector of CORG expression activity, and markers
based on CORGs have been shown to improve the
predictive results when compared with the random
gene subset for a pathway. In [24], the authors com-
pute the pathway activity score and the pathway
consistency score. These two scores are then used as
features for classifying phenotypes. The consistency
score is defined using gene interaction networks.
In this paper, we propose the use of FC as a

feature extraction tool for subsequent classification of
GE samples. The main idea is to replace the sample
features that originally corresponded to genes with
a lower number of more robust, more interpretable
features that correspond to the gene cluster centers.
The dimensionality reduction of GE data by gene
clustering with subsequent classification has already
been proposed in [25]. The method is referred to as the
prototype gene method, and the authors suggest that
more accurate (and presumably more interpretable)
classifiers can be created. However, this conclusion is
only drawn from a two-dataset experiment. The paper
does not employ any prior knowledge regarding gene
function (the authors suggest that it will be used
in future works) and derives the k-mean clusters
by the Euclidean distance based on the GE profiles
themselves.
This paper primarily addresses the extent to which FC

is useful in the analysis of GE data. We assert that this
question can only be partially answered when FC is
applied within its traditional enrichment framework.
In [2] the authors note that there is not a null hy-
pothesis test to directly compare the quality of clus-
tering algorithms. General remarks on the challenges
of assessing the capabilities of any gene-set analysis
method in real experiments can be found in [26],
[17]. The common difficulty is that the ground truth
is never known. The clustering outcome is therefore
evaluated mainly in terms of its interpretability and
in the scope of functional annotation data. Cluster
compactness and stability are the most informative

indirect measures of clustering outcome quality based
on this point of view. The other common way of eval-
uating interpretability is purely subjective. Biomedi-
cal researchers interpret particular clusters, pick the
most interesting clusters (those that can be given a
plausible explanation) and compare them manually
with other clusters derived from other bioinformatics
tools. Although the comparison is convincing and the
applicability of prior biological knowledge is broadly
taken for granted, this method of evaluation leaves
much room for subjective analysis. The author of
[27], [28] summarizes the principal reasons for the
demonstrable increase in the rate of false positive
findings in research in general. It is also shown that
the analysis of high-dimensional molecular data is
increasingly affected by the risk for false positive
conclusions.
This study considers another relevant criterion of

clustering quality: performance. The performance cri-
terion is orthogonal to the criteria of interpretabil-
ity. It evaluates the clustering outcome in a wider
context of GE data that underlie the creation of the
gene list that is to be interpreted. Clearly, it is im-
portant that the clusters are interpretable, but they
also need to prove meaningful in the original setting.
The common method of performance evaluation is as
follows. First, the gene clusters that are differentially
expressed among the sample classes are identified.
Then, the top-ranking clusters are interpreted, and
it is demonstrated that their meaning is consistent
with the definition of sample classes, which typically
concern diseased and non-diseased individuals or dif-
ferent disease variants. This method of evaluation is as
subjective as the interpretability evaluation mentioned
above.
We propose the employment of an indirect, but

entirely objective and impartial, method based on pre-
dictive accuracy (PA) to assess the performance of gene
clustering approaches. The PA is estimated from the
classification framework. The methodology that al-
lows us to use PA to compare the efficiency of various
types of gene clustering approaches is given briefly
as follows. First, the involved genes whose expression
levels are measured are clustered. Second, the features
of the GE samples that originally corresponded to
genes are replaced by features that correspond to the
centroids of the clusters. Third, the classifiers, which
are prescribed by formal models to determine the
class of the new, unclassified samples, are learned, and
their unbiased PA is estimated. Finally, the difference
in the PA achieved for the various gene-clustering ap-
proaches is statistically evaluated. Note that the first
two steps correspond to the procedure called feature
extraction. The last two steps implement and evaluate
the classification. Here, they serve to compare the
different methods of feature extraction.
We assert that, there are two necessary conditions

for applying FC to the analysis of GE data. First, the
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gene functional clusters need to perform better than
random gene clusters (random clustering decomposes
a gene list by disregarding any available information
on the genes). If not, the functional clusters have
no meaning for the data that created the gene list.
Second, the gene functional clusters must achieve a
performance comparable to that of the clusters that
are based on gene expression profile similarity (the
approach mentioned earlier in [25]). If not, there is
a straightforward way to better cluster the genes
without knowledge regarding their functionality. Con-
sequently, the vague initial question is rephrased in
terms of two technical hypotheses that compare the
PA achieved by classifiers based on different types of
gene clustering approaches: (1) FC leads to a better
predictive performance than random clustering (RC)
without knowledge of biological relevance; and (2)
FC and gene expression clustering (GEC), which groups
genes according to the similarity of their expression
profiles, have equally predictive performances.
This study should not be taken as an effort to

develop the most accurate molecular classifiers. It
instead aims to provide a robust test of the hy-
potheses stated above regarding the applicability of
prior biological knowledge for further processing and
understanding of GE data. To demonstrate the direct
performance of FC in feature extraction for further
classification, two more comparisons are drawn. We
compare the FC-based feature extraction to feature
selection that chooses the most differentially expressed
genes and to the fundamental treatment that learns
using all original data features.
The rest of this paper is organized as follows.

Section 2 gives details on the FC, RC and GEC al-
gorithms. Section 3 describes the experimental proto-
col and provides and interprets the hypothesis test
results. Section 4 discusses a few additional issues
on the applicability of FC. Section 5 reviews the
contributions of this study and outlines directions for
future work.

2 METHODS

This section reviews the differences among the gene
clustering approaches (FC, RC and GEC) imple-
mented here. It also summarizes the prior biological
knowledge that is used in FC.

2.1 Biological prior knowledge

In this paper, we define prior biological knowledge
as any information that is not available in a GE
dataset but that is related to the genes contained in the
dataset. There is a rich body of knowledge available
for genes including a short textual description of gene
function, the cellular location, a bibliography, interac-
tion partners and links with other genes, membership
and role in pathways, referential sequences and many
other pieces of information.

The way we apply the biological prior knowledge
in functional clustering was mainly inspired by the
popular “DAVID Gene Functional Clustering Tool”
[2], which represents one of the most consistent efforts
to fuse the available knowledge found in various
biological annotation databases (14 annotation cat-
egories including Gene Ontology, KEGG Pathways,
BioCarta Pathways, Swiss-Prot Keywords). Techni-
cally, the uniform list of annotation terms adopted
from DAVID is applied to describe each gene. The
background knowledge is represented as a binary
gene-term matrix enable to cope with the many-to-
many gene-to-term relationships that are found in
functional annotation databases.
On the other hand, there are obvious limitations of

such a representation. The annotation does not fuse all
of the possible heterogeneous knowledge resources,
and gene links or genomic sequences cannot fit this
format. The binary resolution ignores variance in re-
liability of the individual annotation records, e.g., the
Gene Ontology evidence codes (the computationally
derived annotations are generally thought to be of
lower quality than those inferred from direct exper-
imental evidence [29]). Pathways are treated as gene
sets, their network structure is not concerned.
Because we implemented the presented method

in R, we use the annotation packages from the
open source Bioconductor bioinformatics software
[30]. In particular, we use two annotation packages:
the Affymetrix HuGeneFL Genome Array annota-
tion data (hu6800.db for the GPL80 platform) and
the Affymetrix Human Genome U133 Set annotation
data version (hgu133a.db for the GPL96 platform),
which correspond to the microarray chips from the
datasets used in the experiments. Last but not least,
there is a technical limitation of functional clustering
caused by the significant number of probes and genes
without annotation. In the employed versions 2.5.0
(hu6800.db) and 2.4.5 (hgu133a.db) of the annotation
packages, 23%, respectively 43% of the probes remain
unannotated and thus excluded from clustering.

2.2 Gene similarity/distance

The proper distance function is a keystone of any
clustering algorithm. The gene distance grows with
the dissimilarity of a gene pair, and the normalized
distance is a real number from 〈0, 1〉, where 0 is
the identity and 1 indicates the maximum possible
dissimilarity. The gene similarity is the complement
of the distance function to 1. The simplest definition
of gene distance is applied in RC, where a pair of
genes is assigned a random distance value. In GEC,
the Euclidean distance is used. The Euclidean distance
of two genes, u and v, is defined as

d(u, v) =

√

√

√

√

n
∑

i=1

(xiu − xiv)2, (1)
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where n is the number of samples and xiu is the
expression value of the gene, u, in sample, i. In FC,
the kappa similarity measure adopted from [31], [2] is
used. The kappa of a gene pair is computed from the
binary vectors of the annotation terms assigned to the
genes (the term can be present or absent for the given
gene). The kappa of two genes, u and v, is defined as

κ(u, v) =
Ouv − Auv

1 − Auv

, (2)

where Ouv represents the observed co-occurrence and
Auv represents the chance co-occurrence. Let T be a
set of observed annotation terms, and let C00 be the
number of terms that occur in neither u nor v. Let C01

be the number of terms that occur in v, but not in u,
and let C10 be the number of terms that occur in u,
but not in v. Finally, let C11 be the number of terms
that are observed in both u and v. Then, Ouv and Auv

are defined as

Ouv =
C11 + C00

|T | (3)

and

Auv =
C∗1C1∗ + C∗0C0∗

|T |2
, (4)

where C∗1 = C01 + C11, C1∗ = C10 + C11, C∗0 = C00 +
C10 and C0∗ = C00 + C01.

2.3 Clustering algorithms

Gene clusters can be found using the gene dis-
tance/similarity measures. This subsection briefly re-
views the clustering algorithms used earlier in FC and
GEC and explains the choice of clustering algorithms
made in this study.
The contribution of gene functional annotations

in GE data analysis can be most easily illustrated
when an identical clustering algorithm is used for
functional, random and gene expression clustering.
By applying only one clustering algorithm, we can
increase the reliability of the hypothesis tests, as the
issue of the influence of the clustering algorithm and
its parameterization on the PA can be completely
omitted. Therefore, we have reviewed the clustering
algorithms that were actually applied earlier in FC
and GEC, studied their evaluation or reevaluated
them and attempted to identify an algorithm that best
fits both fields of application. The algorithm selected
also needs to be computationally feasible for large,
genome-wide lists. Finally, the repetitive nature of our
study needs to be addressed. In GEC, clustering needs
to be performed for every single cross-validation split
(10,000 total runs as we deal with 10 datasets, 10 fold
cross-validation, 10 numbers of clusters and 10 repe-
titions). In FC, only 200 runs are needed (2 platforms,
10 numbers of clusters and 10 repetitions) because the

clustering is independent of the GE data. Section 3.2
discusses the experimental design in detail.
The first candidate is the heuristic fuzzy partition

(HFP) clustering algorithm that was developed for
the DAVID Functional Annotation Clustering Tool [2].
The authors of the tool experimentally verified that
fuzzy clustering best fits the gene annotation data
and the nature of functional relationships of the genes
from the viewpoint of interpretability. We therefore
reimplemented the HFP clustering algorithm in R [32],
accelerated it and made it scalable to genome-wide
experiments. However, we have found that the HFP
clustering algorithm does not suit the gene profile
similarities that have distributions that are unlike the
kappa similarity distribution for functional annota-
tions. The algorithm is difficult to regulate to obtain a
reasonable number of reasonably sized clusters (small
changes in the control parameters often result in very
different clustering of the initial gene set). In addition,
the HFP clustering algorithm has a higher empirical
computational complexity than a crisp clustering al-
gorithm such as k-means or k-medoids clustering, and
applying it multiple times for GEC is not computa-
tionally feasible.
The second candidate for a uniform clustering al-

gorithm is the k-means algorithm [33], which was
applied for GEC in [25], [34], [35], [36], [37]. The algo-
rithm appears to be suitable for the GEC application
from the viewpoint of PA, its ease of control and
its efficiency for repetitive execution. Although the
algorithm cannot be immediately applied to FC be-
cause it deals with cluster centroids whose functional
annotation vectors are unclear, it can be replaced by
a similar algorithm: k-medoids [38]. We believe that
the k-medoids algorithm is the best choice of the three
for the following reasons: (1) the algorithm shares its
main characteristics with the k-means algorithm; both
of the algorithms are partitional, crisp (not fuzzy) and
minimize the distance between objects that belong
to a cluster and the center of that cluster; (2) as
with the HFP clustering algorithm, the k-medoids
algorithm uses medoids as cluster centers in the place
of centroids; it also allows the use of a similarity
matrix instead of the data matrix for the input (the
object coordinates in the feature space do not need
to be available), and it is therefore more suitable for
use with the κ similarity that is recommended by the
DAVID Functional Annotation Clustering Tool; and
(3) although fuzziness is a desirable property because
of the biological nature of the gene functions and the
resulting enhanced capabilities, e.g., for interpretation
of the results, we have experimentally verified that
the impact of k-medoids on PA with respect to the
HFP clustering algorithm is marginal and appears to
be positive.
In the end, our study implements two different

clustering algorithms. We used our own Python im-
plementation of the k-medoids algorithm for FC,
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whereas GEC employs a Scipy [39] implementation
of the k-means algorithm as a benchmark algorithm
for GEC. In both FC and GEC, the initial medoids
and centroids, respectively, were selected randomly
from the considered genes. RC starts with the gene
clusters that are found by FC. Then, the genes are
randomly shuffled among the clusters. The random
shuffling preserves the cluster sizes found in the FC
and guarantees that the differences between the RC
and FC are not the result of a different number and
size of the clusters.
We believe that this strategy results in a less bi-

ased analysis than the direct comparison between the
most frequently used algorithms for FC and GEC,
which are the HFP and k-means algorithms. We have
experimentally verified that the answers for the key
questions remain the same with regard to FC and
RC, which are driven by the HFP clustering algorithm
and GEC performed with the k-means clustering algo-
rithm. In this study, we emphasize the hypothesis tests
that are reached with similar clustering algorithms in
FC, RC and GEC, as they allow for a simpler and
more readable formulation of the second technical
hypothesis.

2.4 Cluster expressions

After gene clustering, the expression of the gene clus-
ters needs to be computed. The original GE datasets
are transformed from the original m-dimensional gene
space into q-dimensional cluster space (m ≫ q). Let
xi = (xi1, . . . , xim) be a sample from the original
feature space, where xij , j = 1, . . . ,m is the expres-
sion value of the gene, j, in the sample, i. Next, let
C1, . . . , Cq be the gene clusters found via a particular
clustering algorithm. Then, x̃i = (x̃i1, . . . , x̃iq) is a
sample from the q-dimensional reduced space, where
x̃ij , j = 1, . . . , q is the expression for the value of the
gene cluster, j, in the sample, i, which is computed as

x̃ij =

∑

g∈Cj

xig

|Cj |
. (5)

3 EXPERIMENTS

The goal of the conducted experiments was to com-
pare FC, RC and GEC in terms of the PA of the
classifiers learned on datasets that have the dimen-
sions reduced by the given gene clustering approach.
In this section, we describe the datasets that were
used as well as the experimental framework, and we
summarize the results.

3.1 Datasets

For the experiments, we used a set of ten publicly
available GE datasets that have two class labels. The
key parameters of the datasets are summarized in
Table 1. The datasets were normalized by quantile

normalization [49] to have the same distribution of GE
for each sample in the given dataset. The following
criteria were considered during the datasets selec-
tion: (1) availability – all of the datasets are publicly
available via NCBI GEO [50] and have preferably
been used by other researchers as benchmarks; (2)
informedness – the GE measured must correlate with
the target class somehow; otherwise, no clustering
or learning approach will differ from random assort-
ment; (3) difficulty – the relationship between GE and
the target class must not be trivial or absolute; if a
single gene perfectly splits the samples then there is
no room for gene clustering; and (4) platform – we
deal with only 2 microarray platforms to accelerate
the experiments (RC and FC remain identical for
different datasets that use the same platform).

3.2 Design

To compare FC, RC and GEC, we used 10 k values
(k = 2c, c = 1, 2, . . . , 10) that determine the number
of clusters, 10 datasets (see Section 3.1) and 5 classi-
fication algorithms (see below). For each combination
of the gene clustering approach, number of clusters,
classification algorithm and dataset, a PA value is
computed as follows. At first, 10 partial PA values are
computed, each of them is computed via stratified 10-
fold cross-validation (as recommended in [51]) with
different random seeds for the cluster initialization.
Then, the final PA for the given combination is com-
puted as the average of 10 partial PA values. The
partial PA values are computed and averaged to avoid
bias from random shuffling in RC and from random
initialization in FC and GEC. In this way, 500 (10 k

values × 10 datasets × 5 classification algorithms) fi-
nal values of the PA for each gene clustering approach
are obtained.
The particular classifiers were learned by five dif-

ferent classification algorithms: support vector ma-
chines [52] (with linear kernel and hyper-parameters
of C = 1.0 and ǫ = 0.1), random forests [53] (with
100 random trees from

√
n random features, where

n is the size of original dimension), C4.5 [54], naı̈ve
Bayes [55] and nearest neighbor [56]. The support
vector machines represent the most frequently used
classification algorithm in GE classification [57]. They
are known to be able to cope with unfavorable rates
of sampling (tissues and other biological situations)
and variables (features or genes). The random forests
method represents a robust ensemble classification
algorithm that is suitable for GE data [58], whereas
C4.5 produces decision trees that are instantly read-
able by a human and are the first option based on
interpretability. The naı̈ve Bayes and nearest neighbor
algorithms represent classic and computationally effi-
cient classification algorithms that are known to have
reasonable accuracy, and in our study, they primarily
serve to minimize the learning bias.
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TABLE 1
An overview of the key parameters of the benchmark datasets.

Dataset Reference Number of samples Class ratio Number of features Platform

ALL/AML [12] 72 47:25 7,129 GPL80

AML [40] 64 38:26 22,283 GPL96

Breast cancer [41] 29 15:14 22,283 GPL96

Gastric cancer [42] 30 22:8 7,129 GPL80

Glioma [43] 85 59:26 22,283 GPL96

Hypertension [44] 20 14:6 7,129 GPL80

MGCT [45] 27 18:9 22,283 GPL96

Prostate cancer [46] 20 10:10 22,283 GPL96

Sarcoma/Hypoxia [47] 54 39:15 22,283 GPL96

Smoking [48] 44 26:18 7,129 GPL80

We opted for the modifications of the classifica-
tion algorithms that require as few hyper-parameters
as possible to avoid needing another nested cross-
validation cycle to optimize them. The nested cross-
validation is time consuming, especially for GEC,
as it would multiply the number of clustering runs
(genome-wide clustering is the most time-consuming
step). It also tends to decrease the sample numbers
and the variability in the individual stratified folds.
The actual applied hyper-parameters are known to
be robust at their default setting (support vector ma-
chines) or there has been a recommendation for their
heuristic prior initialization (random forests). Orange
[59] implementation of the classification algorithms
was applied.

3.3 Results

By applying the described procedure, 1,500 (3 gene
clustering approaches × 10 k values × 10 datasets
× 5 classification algorithms) estimations of PA were
obtained. The main objective of our study is to com-
pare the individual gene clustering approaches. The
hypotheses regarding the equality of the gene clus-
tering approaches in terms of their predictive perfor-
mance were tested via the Wilcoxon signed-rank test
[60], as recommended in [61] in place of the widely
used t-test. The hypotheses were tested at a level of
significance of α = 0.05. If not stated otherwise, the
same statistical test and the same α level were used
in other experiments too.
First, the medians over the 500 PA values available

for the individual clustering approaches can be com-
puted. However, this condensed summary gives only
a rough view of the total performance because the PA
measured in the different domains is not commensu-
rable and is highly variable; therefore, aggregating it
over domains is not meaningful [61]. Instead, mutual
direct comparisons should be based on the gene clus-
tering approach rankings, which consider successes
and failures rather than the absolute accuracy of
the methodology. For example, for the ALL/AML

TABLE 2
Mean ranks of the gene clustering approaches with

regard to PA. The table shows the mean domain ranks
(averaged over all of the classification algorithms and
k values) and the total mean ranks (averaged over all

of the domains, last row).

Dataset FC GEC RC

ALL/AML 1.53 1.82 2.64

AML 2.22 1.58 2.20

Breast cancer 2.00 2.10 1.90

Gastric cancer 1.52 2.26 2.21

Glioma 2.32 1.62 2.05

Hypertension 1.50 2.42 2.07

MGCT 2.33 1.46 2.21

Prostate cancer 1.91 1.82 2.27

Sarcoma/Hypoxia 2.00 1.26 2.74

Smoking 1.20 2.98 1.82

All 1.85 1.93 2.21

domain, naı̈ve Bayes classifier algorithm and k = 16
(16 clusters), the gene clustering approaches had ac-
curacies of FC 90%, RC 83%, and GEC 92%. The
ranking is FC – 2nd, RC – 3rd and GEC – 1st; the
difference in the PA does not matter. The mean ranks
are meaningful even if they are obtained over different
datasets. The conclusions with regard to the ranks of
the clustering approaches are shown in Table 2 (the
final row gives a condensed summary). As outlined in
Section 1, our main interest is in paired FC versus RC
and in FC versus GEC. The first null hypothesis, that
FC and RC have equally predictive performances, was
rejected in favor of the alternative hypothesis, FC has
a higher predictive performance than RC (one-sided
test, p-value = 0.042, which is < α). The second null
hypothesis, FC and GEC are equally predictive, could
not be rejected in favor of the alternative hypothesis,
FC and GEC have distinct predictive performances
(two-sided test, p-value = 0.85, which is > α).
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However, the most relevant conclusions must be
drawn from the paired differential analysis that has
the largest statistical power. The analysis relates the
accuracy values reached by two gene-clustering ap-
proaches when the other settings are identical. Our
interest is again in paired FC versus RC and in FC
versus GEC; therefore, 500 (10 k values × 10 datasets
× 5 classification algorithms) differential values are
obtained for each pair when the differential accuracy
for both of the clustering pairs is calculated. The box
plots for the particular datasets and the clustering
pairs are depicted in Fig. 1.
The following statistical test summarizes the visual

differences seen in the results shown in Fig. 1. Prior
to the test, the aggregate across the k values and
classification algorithms has to be calculated because
the runs with different classification algorithms and
different k values within a dataset are dependent (that
is, a higher accuracy in one predicts a higher accuracy
in the others and the same holds true for differences).
Then, the final test deals with 10 medians of 50
(10 k values × 5 classification algorithms) different
accuracy values. In other words, it tests a vector of
10 independent median values that are derived for
10 different datasets. The median is used in place
of the mean because the differential accuracy for the
particular datasets has an asymmetric distribution.
The first null hypothesis, that FC and RC have

equally predictive performances, was rejected in favor
of the alternative hypothesis, FC has a higher predic-
tive performance than RC (one-sided test, p-value =
0.019, which is < α). FC performed better than RC on
eight out of ten benchmark datasets. Compared with
a randomly selected gene set, the functional cluster
has increased interpretability and performance.
The second null hypothesis, FC and GEC are

equally predictive, could not be rejected in favor of the
alternative hypothesis, FC and GEC have distinct pre-
dictive performances (two-sided test, p-value = 0.92,
which is > α). FC performed better on five of ten
benchmark datasets, and GEC performed better on
the other five datasets, which suggests that functional
clusters represent an alternative to purely statistical
clusters in terms of PA. Note that GEC often identifies
gene clusters that share no common annotation pat-
tern and cannot be plainly interpreted. In the case of
equally predictive performances, preference is given
to the more interpretable option. This option is clearly
represented by functional clusters, which are naturally
complemented by a shared functional pattern.

4 DISCUSSION

This section provides comments that will aid in the
interpretation of the results provided in the previous
section, describes the influence from the number of
clusters and the classification algorithm and compares
two principal approaches for dimensionality reduc-
tion. Although the discussed issues can be regarded

as technical details with respect to the key questions,
they may help place the results into perspective and
provide additional details.

4.1 Number of clusters

The clustering algorithms used enabled us to imme-
diately compare the gene clustering approaches based
on the functional, gene-expression-based and random
gene distances across the considered k values. The
differential comparisons can be seen in Fig. 2. The
margin between FC and RC is most distinct for lower
numbers of clusters and tends to decrease steadily as
the number of clusters increase. A few large random
clusters have significantly less information than the
functional ones, whereas the large number of smaller
random clusters can have nearly the same level of
informedness as the functional ones. This observation
is in agreement with an earlier conclusion that the
enrichment of gene expression clusters for biological
function is generally the highest at a relatively low
number of clusters [62]. FC generates large clusters
of genes that tend to share expression profiles, and
this relationship decreases as the number of clusters
increases. The margin between functional clustering
and GEC does not show a strong pattern.
Fig. 3 shows that the PA increases with an in-

creasing number of clusters. The gene clustering ap-
proaches are comparable with the full set of features
(the dotted line) when the number of clusters reaches
approximately 100, which suggests that the original
performance can be maintained with a reasonable di-
mensionality reduction; however, the number of clus-
ters cannot be extremely low without sacrificing PA.
Note that the optimal number of clusters differs across
domains. As a matter of fact, there are 5 domains
with a clear coherent range of the numbers of clusters
with the PA of FC higher than the referential one
derived from the full gene set. This characteristic is
not obvious in Fig. 3 for its aggregation over domains.

4.2 Classification algorithms

We experimented with five diverse classification algo-
rithms (see Section 3.2). None of the methods given
below is superior to the others in principle. The main
reason for using the pool of learning algorithms is
to avoid a dependence of the experimental results on
their specific biases. Therefore, the answer given by
the pool of methods is more illustrative and robust
than the answers provided by any given method. Still,
a brief comparison of the classification algorithms can
illustrate their differences. Fig. 4 shows the overall
performance of the individual algorithms. The only
significantly different pairs are random forests ver-
sus C4.5 and random forests versus support vector
machines (Friedman test [63], p-value = 0.019 and
p-value = 0.039, respectively). The low accuracy of
the support vector machines algorithm (with a linear
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Fig. 1. Box plots for the PA differences for the given datasets and hypotheses: (a) FC versus RC; and (b) FC
versus GEC. Each box plot is computed from 50 (10 k values × 5 classification algorithms) values for the PA
difference.
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Fig. 3. Medians of the PAs for three ways of gene
clustering. The dotted line represents the median of the
PAs for the full gene set without dimension reduction.
Each median is computed from 50 (10 datasets × 5
classification algorithms) values for the PA.

kernel) indicates the nonlinearity of the classification
problems that are being considered. The improved
accuracy of FC with respect to RC is preserved across
the classification algorithms; its significance can be
proven for the nearest neighbor and random forests
algorithms (one-sided test with Bonferroni-Dunn ad-
justment, p-value = 0.003 and p-value = 0.041,
respectively).

4.3 Feature selection

This paper focuses on clustering as a method that
reduces the dimensionality of GE data. The new
features that are generated are represented by the

C4.5 NB NN RF SVM
Classification algorithm

30

40

50

60

70

80

90

100

PA
 [%

]

Fig. 4. Box plots for the PAs for the given classification
algorithms, namely C4.5, naı̈ve Bayes (NB), nearest
neighbor (NN), random forests (RF) and support vector
machines (SVM). Each box plot is computed from 300
(3 gene clustering approaches × 10 k values × 10
datasets) values for the PA.

cluster centroids, which are extracted from the origi-
nal features. The parallel approach to dimensionality
reduction lies in feature selection (FS); a review of
its use in bioinformatics can be found in [64]. FS is
frequently implemented with GE data for the selection
of differentially expressed genes. Criteria such as the
absolute t-test statistic can be used to rank the genes,
and permutation tests can help to establish a threshold
for genes that are significantly related to the response.
To place the algorithms for feature extraction that
were discussed and compared in this study into a
wider context, we also compared their performance
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Fig. 2. Box plots for the PA differences for a given number of features and pairs of feature extraction/selection
approaches: (a) FC versus RC; (b) FC versus GEC; (c) FC versus FS; and (d) FC versus the full gene set without
dimension reduction. Each box plot is computed from 50 (10 datasets × 5 classification algorithms) values for
the PA difference.

against FS. We ranked the genes by t-test, selected
the most differentially expressed genes (the thresholds
were gradually set to match the number of clusters)
and ran the classification algorithms. The process
was repeated 10 times for 10-fold cross-validation. As
shown in Fig. 2(c), the PA achieved is clearly superior
to that achieved by clustering. The null hypothesis
that FS and FC have equally predictive performances
was rejected (two-sided test, p-value = 0.002), which
is not surprising because FC ignores the sample class
labels, a significant information source for the feature
transformation phase. Fig. 5 demonstrates that FS
improves a PA in comparison with the full gene set
without dimension reduction.

4.4 Functional clustering improvements

Our study did not aim to achieve the maximum PA.
To do so, FS would clearly be the first dimension

reduction option chosen on the basis of its simplicity
and performance. Maximization of the PA by FC
would include FS as one of the early steps. We have
implemented and tested a simple FC improvement
that exploits FS and the sample class labels: (1) in
order to reduce noise, the cluster centroids represent
only differentially expressed probes (t-test is applied,
the probes with p-value < 0.01 log

2
k are used, the

threshold increases with k to minimize empty or
trivial centroids); (2) in order to minimize the negative
influence of averaging, each cluster is represented by
2 centroids, upregulated and downregulated probes
are treated separately; and (3) to keep the number
of centroids equal with the number of clusters, the
final set of k cluster centroids is made by the most
differentially expressed ones. Fig. 6(a) shows that the
improvements boost the PA of FC, Fig. 6(b) demon-
strates that its performance becomes comparable with
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Fig. 5. Differential PA box plots comparing classifica-
tion based on FS and the full gene set without dimen-
sion reduction. Each box plot is computed from 50 (10
datasets × 5 classification algorithms) PA differential
values.

FS. Although it can be argued that FS is still an easier
method to reduce dimension, the above described
experiment suggests that the approaches that combine
FC with FS (and potentially GEC) shall not be ignored.

5 CONCLUSION

This paper proposes a general methodology to im-
partially verify the applicability of particular types of
gene clustering approaches. The verification is con-
ducted within the predictive classification framework
and focuses on prior biological knowledge-based FC.
The framework uses three parallel methods of gene
clustering. It statistically tests for differences in the
PA of machine learning classifiers that are trained on
the centroids of particular clusters. We experimentally
verified that FC has a higher PA than RC without
biological relevance. The effect of prior biological
knowledge is remarkable for two main reasons: (1)
it can be statistically verified for a limited set of ten
GE datasets; and (2) it persists in simplified cluster
construction based on GE averaging (see Equation 5),
which does not distinguish between gene activation
and inhibition. We also showed that FC performs
comparably to GEC, which groups genes according
to the similarity of their expression profiles.
In addition, we showed that FC can provide a

reasonable dimensionality reduction without sacrific-
ing the PA achieved with the full set of features.
This observation is promising concerning simplicity
of the currently implemented FC, namely the above-
mentioned cluster averaging, but also the frequent
utilization of genes whose GE profiles have no relation
to the phenotype, the imperfections in gene distance
calculation and the probes and genes with missing
annotations. Another interesting characteristic is that

FC is carried out independently of GE data, which
makes it an unsupervised and potentially computa-
tionally efficient feature extraction technique. Unlike
GEC, FC is carried out just once per a particular gene
set (platform) and the clusters are immediately appli-
cable across the GE experiments using the particular
platform.
At the same time, it holds that FC does not achieve

a PA that is comparable to that achieved by FS, and
combining the two techniques would maximize per-
formance. It was experimentally demonstrated that
FS is a simple method that improves a PA in a vast
majority of domains (of course, the conclusion is
influenced by the selection of classification algorithms
and their noise robustness) and differential expression
can hardly be ignored when calculating the cluster
aggregates.
There are several directions for future work. First,

the current pair of hypotheses can logically be sup-
plemented by a third null hypothesis, there is no
synergic action between the knowledge-based FC, GE-
based GEC. We showed that both GE data and prior
biological knowledge regarding gene roles, functions
and interactions can underlie the creation of gene
clusters. There are at least three reasons to believe
that these algorithms can complement each other:
(1) FC corresponds to a universal gene partitioning,
whereas GEC provides a local partitioning for specific
biological conditions; (2) FC clusters only the genes
with an existing annotation, whereas genes without
an annotation are left unused or create a cluster
without real meaning; GEC uses all of the genes (both
with and without annotation), which gives GEC an
advantage over FC; and (3) FC deals with human-
created annotations, whereas GEC creates ad hoc links
based on a limited number of arrays that are known to
provide only a noisy image of gene actions. However,
the testing of this hypothesis lies beyond the scope
of this paper, as there are many ways to aggregate
clusters raised from FC and GEC into unified knowl-
edge and statistical groups. Some general ideas re-
garding clustering aggregation can be found in [65]. In
[66], the authors introduce the problem of combining
multiple partitions of a set of objects into a single
consolidated clustering without accessing the features
or algorithms that determined these partitions. A
discussion on early, intermediate and late integration
of microarray and medical literature data for gene
clustering can be found in [67].
Second, the current cluster expression is computed

in the most straightforward way by averaging the
expression levels of the cluster members. A more
complex cluster activity function could also consider
the internal structure of the gene set that generates a
cluster. The structure could potentially be extracted
from the prior biological knowledge, and it could
also be (re)invented statistically from GE data. How-
ever, preliminary efforts to employ the statistical SVD
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Fig. 6. Illustration of the effects of FC improvements (FCi). Box plots for the PA differences for a given number
of features and pairs of feature extraction/selection approaches: (a) FCi versus FC; (b) FCi versus FS. Each box
plot is computed from 50 (10 datasets × 5 classification algorithms) values for the PA difference.

method for constructing metagenes proposed in [68]
did not provide a detectable immediate improvement
[21].
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