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Abstract Regarding association rules, transcriptomic data represent a
difficult mining context. First, the data are high-dimensional which asks
for an algorithm scalable in the number of variables. Second, expres-
sion values are typically quantitative variables. This variable type further
increases computational demands and may result in the output with a
prohibitive number of redundant rules. Third, the data are often noisy
which may also cause a large number of rules of little significance. In this
paper we tackle the above-mentioned bottlenecks with an alternative ap-
proach to the quantitative association rule mining. The approach is based
on simple arithmetic operations with variables and it outputs rules that
do not syntactically differentiate from classical association rules. We also
demonstrate the way in which apriori genomic knowledge can be used to
prune the search space and reduce the amount of derived rules.
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1 Introduction

At present, large quantities of gene expression data are generated. Data mining
and automated knowledge extraction in this data belong to the major contem-
porary scientific challenges. For this task clustering is one of the most often used
method [2] – the most similar genes are found so that the similarity among genes
in one group (cluster) is maximized and similarity among particular groups (clus-
ters) is minimized. Although very good results are gained by this method there
are three main drawbacks [3]:

1. One gene has to be clustered in one and only one group, although it functions
in numerous physiological pathways.

2. No relationship can be inferred between the different members of a group.
That is, a gene and its target genes will be co-clustered, but the type of
relationship cannot be rendered explicit by the algorithm.

3. Most clustering algorithms will make comparisons between the gene expres-
sion patterns in all the conditions examined. They will therefore miss a gene
grouping that only arises in a subset of cells or conditions.



Association rule (AR) mining [1] can overcome these drawbacks. However,
when dealing with datasets containing quantitative attributes it is often advisable
to adapt the original AR mining algorithm. Mining of quantitative association
rules (QARs) is considered as an interesting and important research problem. It
was described in several papers such as [5], [6], [18], [19] which proposed various
algorithmic solutions. Nevertheless, the proposed algorithms often do not take
time consumption into the account.

QAR mining techniques aimed at gene-expression data were proposed for
example in [4] or [15]. Half-spaces are used to generate QAR in [4], rules of the
form ’if the weighted sum of some variables is greater than a threshold, then, with
a high probability, a different weighted sum of variables is greater than second
threshold’. An example of such rule can be ’0.99 gene1 - 0.11 gene2 > 0.062
→ 1.00 gene3 > -0.032’. This approach naturally overcomes the discretization
problem, on the other hand it is quite hard to understand the meaning of the
rule.

In [15], the authors bring external biological knowledge to the AR mining.
They mine rules which directly involve biological knowledge into the antecedent
side of the rule. The given method can be applied to mine annotated gene ex-
pression datasets in order to extract associations like ’cell cycle→ [+]condition1,
[+]condition2, [+]condition3, [−]condition6’, which means that, in the dataset,
a significant number of the genes annotated as ’cell cycle’ are over-expressed in
condition 1, 2 and 3 and under-expressed in condition 6. This approach works
with binary values of gene-expression only.

In this paper, QAR mining algorithm [12] is used and further developed.
Despite it is very different from the classical AR algorithms, it outputs asso-
ciation rules in the classical form ’genei = <l valuegi..h valuegi> ∧ genej =
<l valuegj ..h valuegj> ∧ ... → cancer = 0/1. We can read this rule as ’when
the value of genei is between l valuegi and h valuegi and the value of genej is
between l valuegj and h valuegj and ... then with a high probability the cancer
will (not) occur’. The task can be rephrased as search for the genes and their
values that coincide with the appearance of cancer.

The algorithm is by no means limited to the particular right hand side (RHS)
of rules. The target variable cancer is used here as it represents the most inter-
esting outcome. The invariable RHS also simplifies the evaluation in Section 4.
As follows from the structure of the rules, the presented algorithm deals with dis-
cretized quantitative attributes. A priori discretization influences resulting rules.
One of the main interests of this paper is to compare the discretization into more
bins (which prevents information loss) with binarization.

Background knowledge (BK) – the external apriori biological information –
can be extracted using various publicly accessible web databases and tools [7],
[8], [10]. Possibility of using this source of information to improve the generation
of ARs is another aim of this paper. We show that appropriate implementation
of BK can improve the quality of generated rules. The simplest utilization of BK
is to give the rules their biological sense by straightforward annotation of the set
of rules without their pruning. BK also helps to focus on specific rule subsets
by early utilization of regular expressions. The most interesting use of BK is to



get the most plausible rules by application of gene similarity. Moreover, BK can
significantly reduce the search space.

The paper is organized as follows: Section 2 presents the SAGE data, studies
possible ways of its preprocessing and introduces apriori knowledge relevant to
the given dataset. Section 3 gives an outline of QAR algorithm and discusses the
ways it can employ apriori knowledge. Section 4 summarizes the reached results
with the main stress on the effects of discretization and utilization of apriori
knowledge. Finally we conclude in Section 5.

2 Character of SAGE data and preprocessing of raw data

The SAGE (Serial Analysis of Gene Expression) technique aims to measure the
expression levels of genes in a cell population [20]. In this paper, the raw data
matrix described in [11] was used. The expression dataset consists of 11082 tags
(i.e., genes or attributes) whose expression was measured in 207 SAGE libraries
(i.e. 207 biological situations or experiments). The tags represent the subset of
human genome which is currently unambiguously identifiable by Identitag [3],
the biological situations embody various tissues (brain, prostate, breast, kidney
or heart) stricken by various possible diseases (mainly cancer, but also HIV and
healthy tissues).

gene1 gene2 ... genen cancer

situation1 0 15 ... 0 0
situation2 8 4 ... 0 1

...
...

...
...

...
...

situationm 3 0 ... 39 1

Table 1. The structure of the raw SAGE data (n=11082, m=207), the gene values
correspond to the expression of the particular gene in the particular biological situation,
cancer stands for a binary class.

The structure of the raw SAGE expression dataset is in Table 1. As the main
observed disorder is carcinoma, a target binary attribute cancer was introduced
by the domain expert. The class value is 0 for all the healthy tissues and also the
tissues suffering by other diseases than cancer (77 situations, 37.2%). It is equal
to 1 for all the cancerous tissues (130 situations, 62.8%).

SAGE datasets are sparse – a great portion of gene-expression values equal to
zero. The distribution of zeroes among genes is very uneven. Housekeeping genes
are expressed (nearly) in all the tissues, however there is a reasonable amount of
genes having zero values in almost all situations. Such genes are not suitable for
further rule mining. Table 2 shows the numbers of frequently expressed genes.
We can see that out of the total number of 11082 genes, only 97 have at least
95% non-zero values.



X number of genes

5% 97
20% 305
50% 1038
80% 2703

Table 2. The number of genes having at the most X% of zero values

2.1 Discretization of expression values

In order to minimize the role of noise in SAGE data, the data are usually dis-
cretized first. As the discretization also brings the information loss, it is always
disputable which type of discretization to apply. For a thorough discussion upon
the impact of discretization see [16].

Binarization is now the most widely used method of discretization of gene
expression data, where 0 means that the gene is under expressed and 1 means
that the gene is over expressed. There are two disadvantages of data binarization:
(1) it results in the biggest information loss, (2) it significantly influences (or
rather forms) the output rules.

Table 3 describes the distinction among different types of binarization. ’Max
-Y%’ binarization means that the Y% of the highest value is the 0/1 threshold
(provided the highest value of genei is 100 and Y=90%, the threshold is 10, all
the values above are encoded as 1). In ’median’ binarization the border is the
value of median. Logically, the most uniform distribution is obtained through the
’median’ binarization. The most similar to ’median’ is ’Max -80%’ binarization
using the gene sets with lower numbers of zeros values and ’Max -90%’ using the
gene sets with higher numbers of zero values.

Max -90% Max -80% Max -70% Median

X gene-set 0/1 ratio 0/1 ratio 0/1 ratio 0/1 ratio

5% 0.28 / 0.72 0.56 / 0.44 0.74 / 0.26 0.49 / 0.51
20% 0.32 / 0.68 0.59 / 0.41 0.77 / 0.23 0.49 / 0.51
50% 0.45 / 0.55 0.66 / 0.34 0.81 / 0.19 0.49 / 0.51
80% 0.60 / 0.40 0.74 / 0.26 0.84 / 0.16 0.61 / 0.39

Table 3. The results of binarization in terms of the 0/1 ratio. X defines the gene sets
shown in Table 2.

Discretization into more bins enables more accurate rules. However, the classi-
cal equi-width and equi-depth approaches fail in this case. The former introduces
intervals that are nearly empty, the latter keeps the same frequency across the
intervals with unnatural bounds. The discretization based on 1-D clustering has
to be employed. In short, the discretization steps repeated for each attribute are:



1. Initialize equi-distantly the centers of bins.
2. Assign every record value to the nearest center.
3. Recalculate every center position (average value of all records assigned to the

center).
4. If the position of all centers did not move then end, else go to 2/.

The results of discretization into four and six bins are in Table 4. 4-bin dis-
cretization has approximately the same number of values assigned to the lowest
bin as ’Max -80%’. Better resolution is obtained in higher values only. Using 6-bin
discretization the resolution is better even in low values. But still low numbers of
values are assigned to the higher bins. This is caused by the original distributions
of gene expression values, where the majority of values is very close to zero.

4-bin discretization 6-bin discretization

X gene-set 1/2/3/4 ratio 1/2/3/4/5/6 ratio

5% 0.63 / 0.24 / 0.08 / 0.05 0.45 / 0.27 / 0.13 / 0.06 / 0.06 / 0.03
20% 0.65 / 0.25 / 0.07 / 0.03 0.48 / 0.29 / 0.12 / 0.05 / 0.04 / 0.02
50% 0.69 / 0.23 / 0.06 / 0.02 0.52 / 0.27 / 0.10 / 0.04 / 0.05 / 0.01
80% 0.74 / 0.19 / 0.05 / 0.02 0.59 / 0.20 / 0.08 / 0.04 / 0.08 / 0.01

Table 4. The ratio of the number of values using the clustering discretization.

2.2 Background knowledge

Genomic websites such as NCBI [10] or EBI [9] offer a great amount of heteroge-
neous background knowledge available for various biological entities. In this paper
we focused on Gene Ontology (GO) terms. To access the gene annotation data
for every tag considered, RefSeq identifiers were translated into EntrezGene iden-
tifiers [8], the mapping approached 1 to 1 relationship. Knowing the gene identi-
fiers, the annotations were automatically accessed through hypertext queries to
the EntrezGene database [10] and sequentially parsed by Python scripts.

GO terms A list of related GO terms can be found for each gene (however
for a certain portion of genes there are no GO terms available and the list is
empty). This list characterizes the given gene and can be used to assume on its
molecular function (MF) or the biological processes and the cellular components
it participates in. The lists can be searched by regular expressions in order to
focus on specific subsets of genes.

Similarity matrices GO terms can straightforwardly be used to compute sim-
ilarity among genes. The rationale sustaining this method is that the more GO
terms the genes share, and the more specific the terms are, the more likely the
genes are to be functionally related. Two matrices – for BPs and MFs – created
by authors in [11] are used. The structure of the gene similarity matrices is in



Table 5. The similarity values lie in the interval < 0; 1 >, where 1 stands for the
genes with the identical description for the given category of terms. There are
around 85% of missing similarity values (denoted n/a) for the genes with empty
lists of related GO terms.

gene1 gene2 gene3 gene4 ... genen

gene1 0.15 0.75 n/a ... n/a
gene2 n/a 0.12 ... 0.93
gene3 0.64 ... n/a
gene4 ... n/a

...
...

genen

Table 5. The structure of the gene similarity matrix.

In order to simplify the notion of similarity, both the above-described matrices
are combined into one matrix as follows:

simij = sim(BP )2ij + sim(MF )2ij

where sim(BP )ij is the similarity value for the genes i and j with respect to their
biological process GO terms, sim(MF )ij is the similarity value for the same genes
with respect to their molecular function GO terms.

3 QAR algorithm

An innovative QAR algorithm [12] is used for AR generation in this paper. The
detailed algorithm description is out of the scope of this paper. The essential
principles of the algorithm can be summarized as follows:

1. The input of the algorithm is a set of atomic attributes: a1, a2, ...an.
2. All the atomic attributes are discretized into D discretization bins and mapped

to the consecutive row of integers beginning with one and ending with D (one
represents the lowest value and D the highest value of an atomic attribute).

3. These preprocessed atomic attributes pa1, pa2, ...pan are used to construct
compound attributes – xi(pa1, pa2, ...pan) : Nn → N . Compound attribute is
xi(pa1, pa2, ...pan) =

∑n
k=1 ckak, where ck = {-1, 0, 1}, where i is number of

compound attribute.
4. Each atomic (compound) attribute has a discrete distribution Pi(t), two

atomic (compound) attributes have a joint distribution Pij(t, s).
5. O is a set of all compact square or rectangle areas o⊂<−∞,∞> x <−∞,∞>.

For each pair (xi, xj) ∈ P the algorithm searches for the best areas of interest
o, where for each (α, β) ∈ o

Pi(α)Pj(β)− Pij(α, β) ≥ ε



6. From the areas of interest the best rules are extracted.

This algorithm takes an inspiration from earlier proposed algorithms [6], [14]
or [19], but it comes with lower time consumption and pruning of redundant
rules. On the other hand, the algorithm does not exhaustively enumerate all the
relevant rules as it is not based on complete search through the state space.
The algorithm works for binary attributes as well, although it loses its main
advantages.

3.1 Injection of background knowledge into QAR algorithm

In order to increase noise robustness, focus and speed up the search, it is vital
to have a mechanism to exploit background knowledge during AR generation. In
the presented algorithm, BK can be taken into the account during the phase that
combines atomic attributes into compound attributes.

The first option takes advantage of the lists of terms that describe the indi-
vidual atomic attributes (genes in the SAGE data). The terms enable to focus
on the rules that contain genes with specific characteristics. Provided x denotes
a compound attribute, the variable regexp(x,’∗ribosom∗’) delivers the number
of genes that belong to x and whose at least one term matches the regular ex-
pression ’∗ribosom∗’. The variable can be employed to get a limited set of rules
that concern mainly (or only) ribosomal genes.

The second option exploits the gene similarity matrices [11]. This option fo-
cuses on plausible ARs, i.e., the rules that contain at least a certain portion of
genes having common properties. The properties themselves do not have to be
given by the user. An association rule can originate solely from the compound
attributes with the value of gene similarity higher than a user defined threshold.
Provided x denotes a compound attribute, the variable svsim(x) gives the num-
ber of gene pairs belonging to x whose mutual similarity is known (distinct from
n/a) and mvsim(x) stands for its counterpart. Sumsim(x) denotes the similar-
ity sum over the set of genes belonging to x, insim(x, min,max) stands for the
number of gene pairs whose similarity lies between min and max.

Consequently, the variable sumsim(x)
svsim(x) makes the average similarity of the com-

pound attribute x, while the variable insim(x,thres,1)
svsim(x) gives a proportion of the

strong interactions (similarity higher than the threshold) within the compound
attribute. The variable svsim(x)

svsim(x)+mvsim(x) can avoid the compound attributes with
prevailing genes of an unknown function. Relational and logical operators enable
to create the final constraint, e.g., V1 ≥ thres1 and V2 6= thres2 where Vi stands
for an arbitrary variable characterizing the compound attribute. Although we
consider GO terms only, the framework is obviously general and the constraints
can also be simultaneously derived from different external datasets.

The described technique obviously causes early pruning of the search space.
Some of the compound attributes are rejected and the algorithm does not further
search for the rules which do not satisfy the condition given by BK.



4 Experiments and results

This section presents the achieved experimental results. The influence of selected
discretization methods is discussed. ARs in the classical form are generated. Con-
ditions on the gene expression values are conjuncted on their LHS, the number
of conditions is limited to three. The rules always have the attribute ’cancer’ on
their RHS. Confidence, support [1] and lift [17] measures are used to evaluate the
quality of rules.

The file with maximum of 5% zero values was used. The input table for AR
mining consists of 98 genes (attributes) and 207 situations (transactions). The
number of attributes is low as the general scalability of the presented algorithm is
not concerned here. It has already been proven in earlier works [12,13], along with
its ability to reduce redundancy of the resulting set of rules. The main concern
is to demonstrate applicability of BK to further improve understandability and
scalability of QAR mining.

4.1 Rules without background knowledge

Table 7 shows the influence of discretization methods on the number of generated
rules. This number is several times higher using a multi-bin discretization com-
pared with binarization. There are also distinctions among particular binarization
types, although not so significant. More rules are generated using binarizations
with a more uniform distribution of zero and one values.

Similarity of rules generated by different discretization techniques was also
examined, although it is hard to exactly compare different sets of rules. We
considered two rules equal when all the antecedent genes, which occurred in the
first rule also occurred in the second rule. For example, if genes with ID numbers
9, 13 and 82 occurr in the rule1 and the same genes also occurr in the rule2, then
rule1 = rule2, no matter what values the genes take in the rules. The results are
captured in Table 6, where the value on i-th column and j-th row is gained as

rij =
number of rulesi,j

number of rulesj
,

where number of rulesi,j is the number of rules generated both by the i-th type
of discretization and by the j-th type of discretization and number of rulesj is
the total number of rules generated by the j-th type of discretization.

We can see that the ratios are quite low. It means that one can achieve a
certain percentage of rules that agree in both types of discretization but quite a
high number of rules is different. For example, when using ’Max -70%’ and ’Max
-80%’ we gain approximately the same absolute number of rules from which only
one fifth is equal. Also, ’6-bin’ discretization identifies only from 60% to 70% of
rules identified using other types of discretization.

Experimentally it was found that these numbers depend on min supp thresh-
old. Lowering min supp the ratios of ’identical’ rules increase and higher numbers
of similar rules are generated.



Max -90% Max -80% Max -70% Median 4-bin 6-bin

Max -90% 1 0.37 0.07 0.57 0.30 0.56
Max -80% 0.25 1 0.21 0.41 0.58 0.51
Max -70% 0.05 0.18 1 0.39 0.45 0.74
Median 0.26 0.29 0.23 1 0.48 0.61
4-bin 0.12 0.37 0.25 0.44 1 0.58
6-bin 0.15 0.20 0.25 0.35 0.36 1

Table 6. The number of the equal rules having 3 antecedent attributes generated by
different discretization methods.

4.2 Using background knowledge (BK) for rules generation

Syntactically the same rules were generated with using BK, but a pruning con-
dition was added. Using notation from Section 3.1, the applied conditions can be
written as: ’generate rules with a compound attribute x only if insim(x, 0.65, 2) ≥
1’. It means that x is acceptable only if there is a pair of genes of x whose similar-
ity is higher than the min sim = 0.65 threshold (at the same time it positively
holds svsim(x) ≥ 2). This condition early prunes the space of compound at-
tributes and it is not only a rule filtering condition as for example min conf
condition.

Max -90% Max -80% Max -70% Median 4-bin 6-bin

3-ant (min conf=0.9) 1 102 1 672 1 453 2 392 2 617 4 210
3-ant (min conf=1.0) 88 33 15 90 126 65

3-ant (min conf=0.8) 1 681 3 227 1 977 5 453 4 432 6 966
3-ant (min conf=0.9) 150 152 117 317 247 360

Table 7. The number of rules created by different types of discretization without using
background knowledge (top) and with background knowedge (bottom). Min supp =
0.1, min lift = 1.3, min similarity = 0.65

Binarization 4-bin 6-bin

without background knowledge 1.5 x 106 6.5 x 106 1.2 x 107

with background knowledge 1.7 x 105 7.1 x 105 1.3 x 106

Table 8. Number of verifications.

The number of rules (bottom part of table 7) is approximately 10 times lower
than without using BK, the same holds for the number of verifications that the
algorithm carries out. For min conf = 0.8 we obtain approximately the same
number of rules as for min conf = 0.9 without BK. Time consumption remains



about ten times lower as the time-consumption of used algorithm does not depend
on min conf .

Further, the similarity of rules generated with and without BK is explored.
In Table 9 we can observe the top 5 genes (top) and the top 5 pairs of genes
(bottom) according to the number of their occurrences in rules.

without BK with BK

Max -80% Median 4-bin 6-bin Max -80% Median 4-bin 6-bin

4 9 2 13 41 58 13 13
75 6 13 97 18 36 97 41
70 58 6 2 43 9 41 97
43 97 3 6 16 43 16 9
72 52 97 3 52 13 58 16

4-44 21-58 25-78 13-97 3-88 16-58 13-75 6-17
4-75 9-55 2-18 2-97 53-75 13-58 13-55 11-97
55-72 9-42 89-97 2-90 42-43 22-51 6-17 11-13
4-71 9-36 2-97 13-46 41-76 43-75 13-40 13-75
4-70 9-52 3-75 13-86 41-63 43-52 11-13 13-95

Table 9. Top 5 genes (top) and top 5 pairs (bottom) according to the number of
occurrences in rules.

For ’4-bin’ and ’6-bin’ discretizations the top 5 gene lists are almost the same.
Without BK, all of the 4-bin discretization top genes are also the top genes for
6-bin discretization. With BK this holds for 4 out of 5 genes. By contrast, for
binarizations (both with and without BK) there is no overlap in the top gene lists.
If we compare the gene lists of the identical discretizations with and without using
BK, we observe that the multi-bin discretization and the ’median’ binarization
get the identical gene sets with and without BK.

For the top 5 pairs we have very similar observations as for the lists of top
5 genes. Generally, in the categories with and without BK the 4-bin and 6-bin
discretizations are giving very similar results. ’Max -80%’ and ’median’ binariza-
tions differentiate quite a lot. Between the two categories the most similar results
are gained for 4-bin and 6-bin discretizations.

A more detailed comparison of particular gene occurrences in generated rules
with and without BK is in Figure 1. Some of the genes have almost the same num-
ber of occurrences (gene13), whereas other genes which have a very high number
of occurrences using BK do not appear frequently in runs without application of
BK (gene41).

In general, the genes with prevalence of ’n/a’ values in the similarity matrices
are discriminated from the rules when using BK. However, a gene without anno-
tation can still appear in a neighborhood of ’a strong functional cluster’ of other
genes. This occurrence then signifies its possible functional relationship with the
given group of genes and it can initiate its early annotation. On the other hand,



the genes with extensive relationships to the other genes may increase their oc-
currence in the rules inferred with BK.

Figure 1. The frequency of particular genes in the generated rules with and without
background knowledge for ’6-bin’ discretization.

5 Conclusions

In this paper, an alternative approach to QAR mining was verified on gene ex-
pression data. The paper discussed the influence of discretization methods on
the generated rules. It was shown that the output set of rules is significantly
influenced by the used discretization both wrt the number of generated rules and
their composition. The presented QAR algorithm allowed us to use advantages
of discretization into more bins and at the same time to generate rules without
combinatoric explosion and without generation of redundant rules. In the light
of our findings we think that more attention should be paid to the automatic
discretization of gene expression values.

The paper also described and implemented the general framework for ex-
ploitation of BK during AR mining. It mainly helps to automatically focus on
the most plausible candidate rules. At the same time, pruning conditions based
on BK reduce time consumption significantly, while the number of plausible rules
remains approximately the same. The conditions used in presented experiments
were quite simple. Exploration of other possibilities of this framework and using
more complex BK conditions is one of our major future challenges.
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