
Sequential Patterns for Extracting Protein-Protein

Interactions from Biomedical Texts

Přemysl Vı́tovec, Jǐŕı Kléma
Gerstner Laboratory

Department of Cybernetics
Czech Technical University in Prague
{vitovpre,klema}@fel.cvut.cz

Report No: GL 226/11

1



Abstract

This research report explores the use of sequential patterns in the task of protein-
protein interaction extraction from biomedical texts. We introduce two concepts of
automated sequential pattern construction and validation: frequent patterns tuning
(FPT) and maximal generic patterns instantiation (MGPI). In FPT, frequent pat-
terns are first mined from the training data, and next, after filtering out irrelevant
patterns, additional patterns are derived from the mined patterns using taxonomies
and linguistically sound distance constraints to improve the generalizing power and
to better fit the underlying structure. The MGPI, on contrary, provides more control
over the pattern structure: the pattern is structurally determined by a predefined
generative grammar and only specific subsequences, common to many other related
generic patterns, are extracted from the training data (and subsequently validated)
independently of the current generic pattern. Moreover, addressing the essentially
non-sequential character of natural language, we propose a method of text pre-
processing aimed to improve the performance of arbitrary interaction extraction
methods employing sequential patterns. To evaluate and compare the predictive
power of both sequential pattern concepts and to determine the relevancy of the
preprocessing step, we present a comprehensive set of experiments performed on
standard data sets annotated for protein-protein interactions. The results rise the
need for discussion about suitable testing method, mostly targeting inconsistencies
in interaction annotations among and within the testing corpora.

2



1 Introduction

Biomedical texts contain a huge body of scientific findings written down in an un-
structured way. Protein-protein interactions (PPIs) represent one of the most rele-
vant pieces of information whose automated extraction helps to make the search for
relevant information easier, improves overall understanding of biological processes
and facilitates construction of their structured models. In this paper, we address
the problem of identification of protein interaction pairs in texts with the aid of
linguistic rules based on sequential patterns.

To put it in simple terms, we search for frequent sequences of linguistic ele-
ments/items that characterize protein-protein interaction with sufficient confidence.
The linguistic rule has a form if a sequential pattern containing two protein names
then the referred proteins interact. Obviously, the sequential pattern has to satisfy
several constraints. Firstly, the pattern must contain two protein names. Secondly,
the pattern must be frequent, i.e. to have a reasonable number of occurrences in
the text corpora. Thirdly, we search for emerging patterns, the patterns whose
frequency significantly changes from the class of protein interactions to the class of
accidental protein co-occurrence. To exemplify, the sequential linguistic rule if P1
activate P2 then P1 and P2 interact is a rule that is likely to satisfy all the con-
straints as it is simple enough to be frequent and contains the verb that typically
characterizes interaction. The sequential pattern P1 activate P2 makes the condi-
tional part of the rule which applies to any word sequence that contains two protein
names and the verb to activate in the given order and within a reasonable linguistic
distance (P1 activates P2, P1 is activated by P2, and possibly also to the phrase P1
surprisingly does not activate P2 to provide an occurrence of the sequential pattern
match out of the class of protein interactions).

The use of (sequential) patterns represents one of the principal approaches to
the PPI extraction task. One of its main advantages lies in human understandable
patterns, there are methods that enable their manual construction as well as fully
automatic learning. In this report, we deal exclusively with automatic methods of
sequential pattern mining and systematically study their performance on benchmark
data sets annotated for protein-protein interactions in terms of precision, recall and
F-measure. We address two key aspects of automated sequential pattern mining.
First, we evaluate the influence of the degree of control over the structure of target
patterns. For this purpose, we distinguish two concepts of automated sequential
pattern construction: frequent pattern tuning (FPT) and maximal generic pattern
instantiation (MGPI). FPT relies on a general sequential mining procedure that
does not work with any structural constraints dedicated to the natural language. In
brief, any frequent sequential pattern containing two protein names is extracted from
the training data, further validated and generalized. MGPI, on contrary, provides
more control over the pattern structure. The pattern is structurally determined by
a predefined generative grammar and only specific subsequences, common to many
generic patterns, are extracted from the training data (and subsequently validated)
independently of the current generic pattern. Next, we change the degree of text pre-
processing to address the essentially non-sequential character of natural language.
Intuitively, sequential patterns extracted from unpreprocessed texts should exhibit
low precision, since they do not cover sufficiently the underlying clause structure,
even if structural restrictions like prepositional distance are applied. We introduce

3



several preprocessing procedures to minimize the gap between expressivity of se-
quential patterns and the tree-like structure of natural language. Clause splitting
splits clauses and minimizes extraction of patterns based on protein occurrences
with no coordination. Clause linearization takes an arbitrarily complex clause of
non-sequential nature and transforms it to an equivalent set of structurally simpler
sequences being sequential with respect to the highest level predicate. Argument
propagation reduces the effect of anaphoricity and pronominality. Text compression
minimizes a sequence of nominal chunks by removal of all redundant components.

Although the experiments do not provide as unambiguous results as expected,
the following conclusions can be drawn. The increased degree of control over the
structure of target patterns brings a higher precision, MGPI dominates over FPT.
The increased degree of text preprocessing improves FPT precision, while it has
an inconclusive effect on MGPI. The previously mentioned growths in precision are
compensated in recall which results in inconclusive effects on F-measure. Although
there are obvious inconsistencies in interaction annotations among and within the
testing corpora, the main conclusion is that the straightforward application of se-
quential pattern mining to the task of PPI extraction represented by the FPT
method with no preprocessing performs surprisingly well.

The rest of this report is organized as follows. Section 2 motivates and overviews
text preprocessing carried out in the study. Section 3 deals with automatic methods
of sequential pattern mining. Section 4 describes the experimental workflow and
summarizes the reached results. Finally, Section 5 provides conclusions and future
work.

2 Text preprocessing

Even though every language utterance (speech, written text) shows itself as a se-
quence, the underlying higher order language units (texts, sentences, clauses) are
tree constructs. As a result, application of sequential patterns to raw textual data
leads often to false positives, as shown in examples 1 and 2, assuming the semanti-
cally relevant sequential pattern P1 activates P2.

(1) A activates all these proteins and B inhibits... → interact(A, B)?

(2) A activates B (-)induced proteins... → interact(A, B)?

(3) A activates B and inhibits C → A activates B, 〈none〉 inhibits C

In ex. 1, the involved proteins A and B are subjects of different clauses, i.e.
there is no coordination between proteins A and B. Based on this observation, the
clause splitting rises as a first requirement for the text preprocessing. In ex. 2, on
the other hand, the involved proteins reside in the same clause, but each of them
belongs to a different predication, A being subject of the verb predicate activates
and B of the nested nominal predicate (-)induced. Thus, the second requirement for
the text preprocessing is to convert the clause to such a form whose sequentiality
dominates over the tree-like nature. This step will be referred to as clause lineariza-
tion. Moreover, having segmentized the sentence into clauses, i.e. isolated the top
level sentence predications into separated sequences, some of them may have lost
one of their crucial arguments, as demonstrated in ex. 3. To prevent false negatives,

4



one more requirement needs to be raised: argument propagation.
In conclusion, the text preprocessing we propose works in three subsequent

steps: (1) clause splitting, (2) clause linearization and (3) argument propagation.
In addition to that, we will also discuss a text compression technique aiming to
remove irrelevant and noisy elements from the text. All heuristic rules introduced
in the following sections are applied to texts tagged for parts-of-speech.

Methods of text preprocessing leading to structurally simpler forms have already
been reported in the literature. Within the biomedical domain, Miwa et al. [12]
apply a predefined set of linguistic rules to deep parser output; Jonnalagadda
et al. [10], in contrast, employ text transformations to improve the quality of the
subsequent parse. A comprehensive overview of general text simplification have been
presented by Siddharthan [21], who considers also discourse relations to ensure
the cohesion of the preprocessed text. Text simplification has been also discussed in
other application domains, such as semantic role labeling [24], headline generation
[5] or sentence summarization [23].

2.1 Clause splitting

The clause splitting proceeds as detection of clausal coordination and subordina-
tion indicators. Since subordination principle is most typically restricted to clausal
constructs, subjunctions (e.g. because) are reliable indicators of clause boundaries,
however, the return from the subordinated level back to parent level is often by no
means indicated. Coordination, on the other hand, appears on each level of the
sentence structure, therefore the coordination indicators (i.e. commas, dashes, con-
junctions) are typically ambiguous. To deal with this task, a set of heuristic rules
derived from stylistic commonalities is applied.

The chunk and token level coordinations together with appositions and exem-
plifications are handled similarly as Miwa et al. reported in [12]: A and protein
→ A etc. However, we propose the following extension, expressed in a simple rule:
if two nominal chunks both containing named entities appear coordinated and there
is no reason not to treat them as such, merge them into one chunk, e. g. A and B
→ A+B. However, if it comes to a protein pair, both of which show strong affinity
one to a preposition (i. e to the left) and one to a (nominal) predicate (i. e. to the
right), they cannot be merged: e. g. ... of A and B activation of....

Coordinated nominal chunks sequences are also frequent in biomedical literature.
They are treated in the following manner: For each nominal chunk sequence, new
clause is created, in which the original coordination is replaced by the particular
chunk sequence. Moreover, if any subsequent coordinated chunk sequences contain
protein names, they are extracted as separated sequence, e.g. ... A, inhibitor of B.

2.2 Clause linearization

The clause linearization takes an arbitrarily complex clause (not sentence) as input
and transforms it to an equivalent set of structurally simpler sequences, whose se-

1Structures NV of NOM by NOM (e. g. activation of P2 by P1) are not covered due to argument
variability.

2Structures NA of NOM to INF (PREP) NOM (e. g. ability of P1 to interact with P2) are also
covered.

5



Table 1: Nominal predicates: structure. Legend: nc ∼ noun chunk, ncs ∼ noun
chunk sequence, nv ∼ verbal noun, na ∼ adjectival noun, pred ∼ predication, to ∼
to, by ∼ by, prep ∼ preposition, inf ∼ infinitive, pp ∼ past participle, adj ∼ adj.

Class Type Pred. scheme
Left arg. Predicate Right arg. Example

I1 nc nv prep nc/ncs/pred A activation of B
A II2 nc na to inf (prep) nc/ncs/pred A ability to activate B

III nc pp nc/ncs/pred A (-)induced B
IV nc/pred pp by nc/ncs/pred A induced by B

B V nc/pred ing (prep) nc/ncs/pred A interacting with B
VI nc/pred adj prep nc/ncs/pred A necessary for B

Table 2: Nominal predications as argument. Legend: nc ∼ noun chunk, ncs ∼ noun
chunk sequence, nv ∼ verbal noun, na ∼ adjectival noun, pred ∼ predication, to ∼
to, prep ∼ preposition, inf ∼ infinitive, pp ∼ past participle

Type Resolvent(s) generally Example
I nc nv A activation

nv prep nc/ncs/pred activation of B
II nc na A ability

na to inf nc/ncs/pred ability to activate B
III pp nc/ncs/pred (-)induced B

quentiality with respect to the highest level predicate dominates over the underlying
non-sequential nature. Thus, it partially reveals the clause structure, but without
introducing common dependency or constituent tree constructs. What it actually
does, is determining the extent of individual predications contained in the sentence.
A predication decomposes into predicate, either verb predicate or one of the nom-
inal constructs listed in Table 1, and its left and right argument areas. Instead of
individual tokens, the clause is modelled as a sequence of predicates (predA, predB)
and intermediate argument areas (arg), as shown in Figure 1 above.

Each clause is split into two parts: (1) left boundary + left argument area of the
verb predicate and (2) verb predicate + right argument area of the verb predicate.
The structure within these parts is modelled as left-to-right descending cascade, the
upper level being function of the immediate lower level. This function depends on

Text [b] arg1 predA2 arg3 verb4 arg5 predB6 arg7

A activation of B stimulates C induced by D
Verbal [b] resolvent(1,2,3) verb4 arg5

A activation stimulates C
activation of B stimulates C

Nominal arg1 predA2 arg3 arg5 predB6 arg7

A activation of B C induced by D

Figure 1: Clause linearization principle. Legend: predA, predB ∼ predicates; arg
∼ argument area; [b] ∼ boundary.

6



sequential ordering of the involved predicates. Predicates of class A contribute to
the nearest left predication by resolvent (see Table 1), thus becoming directly part
of the upper predication; predicates of class B, on the other hand, do not join the
upper predication personally. This difference in syntactic behaviour results from the
different roles these predicates play in the information structure: A-class predicates
become focus of the previous predication, while B-class predicates only append an
additional information to the previous content. Demonstration is given in Figure 1.

The algorithm of the clause linearization proceeds as follows:

1. The input sequence is transformed into sequence of predicates and intermedi-
ate argument areas;

2. The new sequence is further decomposed into three subsequent parts: left verb
argument area (L), verb predicate (V) and right verb argument area (R);

3. The following procedure is applied both to L and R: Starting from the right-
most construct, the transformations listed in Table 3 are iteratively applied,
each producing one terminated sequence, which is appended to the result
pool, and one or more unterminated sequences, which are passed to the next
iterations, until no transformation is applicable.

4. All possible sequences are composed from unterminated sequences L, V and
unterminated sequences R. Results are stored in the result pool.

For simplicity reasons, we do not discuss the coordinated nominal predicates
in this overview. Furthermore, note that the clause linearization is designed with
the following normalization principle in mind: if it is possible, make each sequence
contain at most one predicate (ex. 4), otherwise ensure that the possible argument
confusion is not fatal (ex. 5).

(4) A activates B (-)induced C → A activates (-)induced C, B (-)induced C

(5) A activates inhibition of B by C → A activates inhibition of B by C

2.3 Argument propagation

Each predication takes physically place at the clause level, but all its components
are not necessarily physically present in the clause, i.e. individual clauses are not
independent from each other. Anaphoricity and pronominality are widely employed
within sentence to build interconnections between individual clauses, thus effectively
preventing the redundancy. As a result, instead of sentence in ex. 6 we most
probably meet its modifications given in ex. 7.

(6) A protein activates B and A protein also interacts with C

(7) A protein activates B and it also interacts with C or A protein activates B
and also interacts with C

Having split the sentence into individual clauses, we need to recover the seman-
tics virtually expressed in ex. 6 from the original expressions in ex. 7. The argument
propagation, applied to linearized clauses, proceeds by propagating the entire verb

7



Table 3: Transformations used in the linearization process. Legend: predA, predB
∼ predicates; arg ∼ argument area.

Action Feature Scheme Example

1. Input: ... verb|boundary1 arg2 predA3 arg4 ... activates A (-)induced B
Term.: arg2 predA3 arg4 A (-)induced B
Unterm.: ... verb|boundary1 resolvent2,3,4 ... activates (-)induced B

2. Input: ... verb|boundary1 arg2 predA3 arg4 ... activates A induced by B
Term.: arg2 predA3 arg4 A induced by B
Unterm.: ... verb|boundary1 arg2 ... activates A

3. Input: ... arg1 predA2 arg3 predA4 arg5 ... A activation of B (-)induced C
Term.: arg3 predA4 arg5 B (-)induced C
Unterm.: ... arg1 predA2 resolvent3,4,5 ... A activation of (-)induced C

4. Input: ... arg1 predA2 arg3 predB4 arg5 ... A activation of B induced by C
Term.: resolvent1,2,3 predB4 arg5 B induced by C
Unterm.: ... arg1 predA2 arg3 ... A activation of B

5. Input: ... arg1 predB2 arg3 predA4 arg5 ... A activating B (-) induced C
Term.: arg3 predA4 arg5 B (-)induced C
Unterm.: ... arg1 predB1 resolvent2,3,4 A activating (-)induced C

6. Input: ... arg1 predB2 arg3 predB4 arg5 ... A necessary for B induced by C
Term.: arg3 predB4 arg5 B induced by C
Unterm.: ... arg1 predB2 arg3 ... A necessary for B

argument areas to corresponding positions, either empty or purely pronominal ar-
gument areas, using the rules in Table 4. Note that the relations between clauses
have been detected during the clauses segmentation phase.

The syntactic transformations described here are similar to those described by
Jonnalagadda et al. [10], and more extensively by Siddharthan [21]. On
contrary, Miwa et al. do not propose such transformation, but they define rules
for selecting relation related regions, either single clauses or concatenations of two
subsequent clauses, one of which being relative or predicative clause. Vickrey
and Koller [24], on the other hand, go even further in application of syntactic
transformations: the convert each clause to its canonical form.

2.4 Text compression

The notion of head word and attributes, used in linguistics to denote the inter-
nal structure of the nominal phrase, can be approximated within our sequential
paradigm by assuming the right most nominal of the nominal chunk to be the head
word while the others to be attributes. Attributes put specifications (or even restric-
tions) onto the head word, thus causing the sentence to diverge from its hypothetical
generic meaning. In the mining process, however, these specifications are often ir-
relevant, as we are interested in a particular and highly specific type of information;
moreover, they can even divert the mining process from crucial text components to
minor ones. This can be prevented by simplifying the nominal chunks using the fol-
lowing rule: is there is no protein name in attributive position, replace the nominal
chunk with its head word (ex. 8), otherwise propagate the protein name into the
head position and replace the nominal chunk by the new head (ex. 9).

(8) active protein A → A

(9) sudden A activation → A

8



Table 4: Basic argument insertion. Legend: inserted left or right argument areas
marked as underlined; arrival places marked with asterisk; removed parts marked
in square brackets.

Clause Example
Coor. cl. P1 activates P2 [and] * interacts

with G3
Subor.
cl.

P1 activates P2 [because it] * inter-
acts with G3

Subor.
cl.

[because] P1 appears in cells [it] *
interacts with P2

Rel. cl. P1 activates P2 [which] * interacts
with G3

Rel. cl. P1 activates P2 [which] G3 stimu-
lates *

Rel. cl. P1 appears in cells [in which it] *
interacts with P2

Rel. cl. we investigated P1 [which] P2 binds
to *

ing-cl. P1 stimulates P2 [by] * activating
G3

ing-cl. P1 stimulates P2 [,] * activating G3
Inf. cl. P1 stimulates P2 [to] * activate G3

In current grammar models, prepositional arguments play crucial role in deter-
mining relations, including those needed to detect protein interactions. On the other
hand, many of them are facultative arguments of predicates or arguments of other
language units; and these modifiers may again bring the confusing redundancy to
the mining process. This can be prevented by applying the following two-step pro-
cedure: (1) for each nominal chunk containing a protein name and preceded by the
of-preposition, remove both the chunks and the preposition and replace the preced-
ing nominal chunk by the protein name; (2) for each nominal chunk not containing
any protein name and preceded by a preposition, remove both the chunk and the
preposition (ex. 10 and 11). This procedure (nominal chunk sequence reduction) is
applied as the second step of sequence simplification, therefore all nominal chunks
are structurally minimal.

(10) A binds in close proximity to B → A binds to B

(11) A activated in close proximity by expression of B → A activated by B

The text redundancy with respect to the particular purpose of the text mining
method has been addressed multiple times in the literature: The replacement of a
nominal chunk by a single word (head word) is used in the work of Jonnalagadda
et al. [10]. Other authors operate with higher level language structures, leaving
out peripheral phrases [5, 10], the whole clauses [12, 23] or specific semantic class
of expressions such as time expressions [5].

9



3 Sequential patterns

Pattern based methods are widely used in the domain of the biomedical relation min-
ing. The pattern concepts include handcrafted patterns and the patterns induced
automatically from the training data. The pioneering work of Ono et al. [15]
employs manually created patterns in the form of regular expressions; Blaschke
and Valencia [1] use syntactic frames extracted manually from textual data and
scored according to confidence and frequency. Most of the approaches, however,
aim at automated pattern generation: Hakenberg et al. [9, 8] base their highly
promising approach upon the idea of sentence alignment, which has been also uti-
lized by Huang et al.. Plake et al. [16] take a predefined set of patterns as
an input for genetic algorithm, designed to optimize these patterns to better fit the
language data. Finally, Chiang et al. [4] and Cellier et al. [3] apply frequent
patterns mining to discover relevant patterns. A comprehensive study of sequential
pattern mining have been also presented by Mendes et al. [11], even though in a
different text mining domain.

In this chapter, we present two concepts of sequential pattern mining: frequent
patterns tuning (FPT) and maximal generic patterns instantiation (MGPI). Both
concepts build upon the principle of the frequent patterns. The key difference lies
in the scope in which this principle is applied or, alternatively, in whether both
the pattern structure and lexical instantiations or rather the latter are learned in
the learning step. Both approaches require the input text to be tagged for parts-of-
speech and protein names, no predefined list of interaction expressing words is used,
no human intervention is needed. Both methods involve three steps: (1) pattern
generation, (2) pattern validation and (3) interaction extraction.

3.1 Frequent patterns tuning

From the strictly linguistic point of view, frequent sequential patterns are not ex-
pected to perform well in the task of relation mining from the scientific texts, even
if applied to simplified, one-predicate sequences obtained in the preprocessing step.
The reason is that they are derived purely from the surface structure (sequence of
words). They are, in principal, unable to mirror sufficiently the underlying deep
structure, which in fact is modelled as a tree construct in linguistics. However, the
simplicity of this approach and the fact that a great portion of grammatical meaning
is indeed expressed by the position of the particular element in the word sequence
in English motivates us to investigate the possibilities of improving the predictive
power of frequent patterns.

Cellier et al. [3] employ frequent patterns mining in a straightforward way:
Frequent patterns are considered as candidate patterns for interaction extraction
which, however, proceeds manually. To lower the number of candidate patterns,
they filter the mined pattern set using simple constraints (two genes in the patterns
etc.). Moreover, to give prominence to the most significant patterns, they employ
recursive mining. Even though this approach does not consider any structure behind
the text, the reported performance of the patterns applied to raw text is surprisingly
good; though the testing method is rather unclear. In contrast, Chiang et al.
stress the importance of the structural component of the patterns. They use a
predefined list relation expressing words as seeds to obtain word sequences (starting

10



and ending with protein names), which are further generalized to corresponding tag
sequences. Those sequences exhibiting reasonable frequency are selected for manual
curation. The reported performance of such patterns is also very good, though also
here the testing method is not very clear.

The principle of FPT is to stimulate the convergence of the initial set of frequent
patterns to a selection of high confidence patterns in the pattern validation process,
while not significantly decreasing the potential recall of the resulting set. The
tuning process operates as follows: for each pattern in the set of the mined frequent
patterns, a limited set of new patterns is created by applying predefined rules which
each adds a single modification to the pattern, either structural or lexical; thus,
the mined frequent patterns are populated in a controlled way. In the pattern
validation process, those pattern variants which capture the real language structure
more reliably are expected to achieve higher confidence rate.

Structural dimension: distance constraints Each predicate binds specific ar-
guments (semantic participants), some of which are obligatory and the other facul-
tative. Generic patterns contain only a predicate and its obligatory arguments, but
in real texts, predicates may bind also various other circumstantials, thus putting
specifications or even restrictions on the respective predication. Arguments, after
linearization restricted to subject, object and prepositional arguments, are expressed
either by nominal chunk or by preposition followed by nominal chunk. However,
these structures are not necessarily direct arguments of the predicate, but they bind
instead to some other language unit. Most typically, the closer to the predicate,
the more likely to be a direct predicate argument. This observation introduces the
need of a distance measure to be integrated into the pattern mining process.

Due to the model mismatch (sequential vs. tree-like), we point out, how gram-
mar terms are understood in the sequential paradigm, before discussing the proposed
distance measure: First assume the pattern P1 activates P2. In this pattern, P2
is an object argument according to the grammar. In the sequential paradigm, this
translates to nominal chunk containing a protein name and following the predicate
in some distance. Similarly, consider now the pattern P1 binds to P2. In grammar
terms, to P2 is the prepositional argument; in the sequential terms, this is expressed
as preposition following the predicate in some distance and nominal chunk following
the preposition in some distance.

The distance measure targeted for FPT is defined as a number of prepositions
differing from of between two arbitrary language units. The list of controllable
prepositional distances is presented in Table 5. Clearly, by setting the maximum
allowable distance, we are able to align (approximately) the sequential model to the
common grammar model. In the following, we discuss the particular effects of this
procedure on all four controllable distances.

The object argument appears most typically immediately behind verbal pred-
icate, thus, given the pattern P1 activate P2, setting the d1 to zero will probably
prevent the extractor from false positives, as shown in ex. 12. However, in some
rare cases (ex. 13), this can also produce false negatives.

(12) A [activates] cell growth inprep absence of [B], maxdist = 0⇒ TN1

1in square brackets elements between which the prepositional distance is investigated

11



Table 5: Controllable distances expressed by the prepositional distance. Legend: in
square brackets elements between which the prepositional distance is investigated;
vpred ∼ verb predicate, npred ∼ noun predicate, prep ∼ preposition, prot ∼ protein
name, nc ∼ nominal chunk.

From To Examples d
vpred nc A [activates] [B] 0

A [activates] expression of [B] 0
vpred prep A [binds] [to B] 0

(+ nc) A [binds] in close proximity [to B] 1
prot npred [A] [activation] of B 0

[A] [induced] B 0
prep nc A necessary [for] [B] 0

A necessary [for] expression of [B] 0

(13) A [activates] multiple proteins likeprep [B], maxdist = 0⇒ FN

Prepositional arguments exhibit relatively floating behaviour, as a result of
which the effect of setting the maximum allowable prepositional distance to a fixed
value appears to be more complex. Ex. 14 and 15, assuming the pattern P1 binds
to P2, demonstrate the positive and negative effect, respectively.

(14) A [binds] inprep close proximity toprep other protein thanprep [to B], max-
dist = 1⇒ TN

(15) A [binds] inprep close proximity toprep proteins [like B], maxdist = 1⇒ FN

The tight connection between nominal predicates and their left arguments is
extremely stable, therefore setting the prepositional distance to minimum definitely
improves the precision of the interaction extraction, as shown in ex. 16, considering
the pattern P1 activation of P2.

(16) ... of [A] together withprep [activation] of B, maxdist = 0⇒ TN

Prepositions require their arguments to immediately follow them without excep-
tion, thus setting the prepositional distance to minimum seems reasonable to avoid
false negatives, see ex. 17 employing the pattern P1 necessary for P2. However,
counter examples do also exist (ex. 18).

(17) A necessary [for] cell proliferation withoutprep [B contribution], maxdist =
0⇒ TN

(18) A necessary [for] multiple proteins likeprep [B], maxdist = 0⇒ FN

The idea of distance constraints is not new [1, 16, 18]. However, other authors
understand the distance as a number of words between two elements of interest,
while our definition of distance measure is motivated linguistically.

Lexical dimension: taxonomic relations The input for the sequential mining
algorithm is a set of token sequences, where each token is composed of a stemmed
word and a grammar tag, assigned to the word by a language tagger and possibly

12



further refined during the text preprocessing phase. Such composits hold the most
specific information about the individual words of the original sentence. The infor-
mation decomposes into (1) semantic and (2) grammar component, e.g. assuming
the token activate@VBZ, the semantics is given from the great part by the lexi-
cal meaning of the verb activate, whereas the grammar specification, namely third
person singular present form, is held by the grammar tag.

When searching for frequent patterns or during the pattern validation phase, the
specificity of the grammar component may lower the chance to find or validate less
common, yet important patterns, therefore the specific grammar tags are replaced
with more generic ones: all verb tags are replaced by a single tag, similarly for
nouns, adjectives and prepositions. As a result, the discriminative power decreases,
but in fact, we only need to differentiate between basic parts-of-speech (tagclasses).
However, two specific situations motivate not only to follow the path of abstraction,
but also to include patterns with multiple level of abstraction: (1) The output of
the tagger contains misclassified words, e.g. bind or interact classified as nouns
etc., thus by abstracting from the grammar specification also misclassified tokens
can be matched. (2) The discriminative power of a sequential pattern without
the lexical component of a selected token may be high enough in order to include
only the grammar specification. Assuming that the corresponding variants with the
lexical component included are infrequent, the pattern containing generalization
may effectively cover all of them. However, fully lexicalized tokens should naturally
represent the core of any sequential pattern.

As a result, we operate with the following three-level taxonomy: (i) word@tagclass,
(ii) word, (iii) tagclass. Sequential patterns may combine tokens from multiple lev-
els, though abstract levels make sense only in context of the two motivations, from
which they have been derived. Irrespective to whether taxonomy is included or
not, one taxonomical relation is always included: protein names are replaced by the
general entity tag in all sequential patterns. Patterns with generalized tokens are
derived in the postprocessing phase from the mined fully specified patterns. This
approach prevents the mining process from intractable computational complexity
and, in addition to that, it also corresponds to the above motivation principles.

Taxonomical relations, as introduced by Agrawal and Srikant [22], are im-
plicitly used in any interaction extraction system combining multiple abstraction
levels in their pattern architecture, e.g. Chiang et al. combine relation express-
ing word with part-of-speech tags; Hakenberg’s multilayer sentence alignment [8]
is another example, though somewhat specific.

3.2 Discussion

Intuitivelly, sequential patterns derived from frequent patterns should exhibit low
precision, since they do not cover sufficiently the underlying clause structure, even if
structural restrictions like prepositional distance are applied. As a demonstration,
assume the pattern P interact@VERB with@PREP P being applied to clauses 19,
20 and 21. Clearly, it matches all the three clauses, however, two of the matches (20
and 21) generate false positives, since the negation elements fail and unable have
not been taken into account.

(19) P1 is able to interact with P2

13



(20) P1 fails to interact with P2

(21) P1 is unable to interact with P2

To solve this problem, one could require only the most specific matching pat-
tern to be considered for classification. Following our example, the pattern P inter-
act@VERB with@PREP P would be rejected in favour of more specific pattern P
fail@VERB interact@VERB with@PREP P in clause 20, similarly, in clause 21, the
pattern P1 unable@ADJ to@TO interact@VERB with@PREP P would be preferred.
However, are we likely to obtain a comprehensive set of such extended patterns by
simply searching for frequent patterns? Following the path of intuition, the answer
is no. More specifically, we may obtain such patterns for some of the keywords, say
interact, but hardly for all the relevant ones, say activate, inhibit, induce etc.

Obviously, this is a consequence of learning the patterns as a whole which im-
plicitly assumes syntagmatic dependence between the individual components in the
pattern. However, in the real world sentences the syntagmatic relations do not
necessarily imply full syntagmatic dependence. To clarify this statement, consider
the variants of the pattern P interact@VERB with@PREP P 22, 23 and 24. The
subsequences delimited by the square brackets represent the blocks between which
no tight syntagmatic dependence really exists (even though there are naturally syn-
tactic rules which determine the ordering of these blocks): both modifiers might
and fail to can appear with most of the finite verb forms.

(22) P1 [might] [interact with] P2

(23) P1 [fail to] [interact with] P2

(24) P1 [might] [fail to] [interact with] P2

As a result, instead of the patterns as a whole it seems reasonable to learn the
subsequences (subpatterns) corresponding to the individual blocks. However, this
requires the pattern structure to be completely known. This motivates us to propose
the following alternative approach.

3.3 Maximal generic pattern instantiation

Two crucial observations can be made using the examples 22, 23 and 24: (1) the
variability of the structural blocks is significantly smaller than the variability of
the parent patterns; (2) the individual structural blocks appear in many patterns.
Building on these observation, the idea of the MGPI can be formulated in the fol-
lowing way: assuming that the parent pattern structure is completely known, a
comprehensive set of all structural blocks can be easily determined and the struc-
tural blocks can be learned independently.

To demonstrate the effect of the suggested concept, consider the sentence 25.
Assume that we have identified the following pattern matching this clause, P [VERB
TO] [VERB PREP] P, but we have not observed P fail@VERB to@TO inter-
act@VERB with@PREP P in the training data. However, we have observed both
fail@VERB to@TO (∼ VERB TO) and interact@VERB with@PREP (∼ VERB
PREP), therefore we have a successful match. If both blocks exhibit sufficient con-
fidence, the protein pair P1+P2 will be classified as interaction - even though this
would be hardly the case in our example.

14



Transcription rules
larg → x ∈ PROTEIN
rarg → x ∈ PROTEIN
mod1 → x ∈ 〈none〉, MD
mod2 → x ∈ 〈none〉, VERB TO
vpred → x ∈ VERB, VERB PREP
pattern → larg mod1 mod2 vpred rarg
Example patterns
PROTEIN VERB PROTEIN
PROTEIN MD VERB PROTEIN
PROTEIN VERB TO VERB PROTEIN
...

Figure 2: Generating generic patterns. Legend for terminal symbols: MD ∼ modal
verb, TO ∼ to, others are self-explaining.

(25) P1 failed to interact with protein P2

We now discuss the learning process. Assume we dispose of a set of generic
patterns of different complexity (length). For each training sequence we proceed in
the following steps:

1. the most specific generic pattern matching the example is identified (typically
one, however, multiple patterns differing in structure are also possible);

2. for each structural block contained in the generic pattern, the corresponding
word sequence is extracted from the training example;

3. according to the label for the identified gene pair, either true positive or false
positive rate of all word sequences instantiating the structural blocks of the
generic pattern is increased.

Notice that all structural blocks of a generic pattern are evaluated in the same
way, regardless of the semantics of the instantiating words. Thus, assuming the
example 25 as a training example and fail to and interact with as the instances
of the corresponding structural blocks VERB TO and VERB PREP, interact with
will get increment in false positive, even though it normally describes interaction.
However, since interact with does not frequently appear with modifiers like fail to
due to the block independence, the expected behaviour (i. e. successfully identifying
interacting pairs) of interact with will come out in positive examples.

What remains is to clarify how the generic patterns are obtained. The need
for predefined set of generic patterns is a clear disadvantage of the generic pattern
instantiation. However, manual pattern definition can be avoided by employing a
simple generative grammar. The generative grammar consists (in general) of the
following components: terminal symbols, nonterminal symbols and transcription
rules. A simple example of the adaptation of this strong computational and linguis-
tic formalism is presented in Figure 2.

The MGPI can be regarded as an adaptation of the frequent patterns princi-
ple: Instead of mining the patterns as a whole, it is used to mine the structural

15



blocks constituting the generic pattern. Moreover, also the prepositional distance
discussed as a means of control over the pattern structure is frequently applied in
the generative grammar component.

4 Experimental results

There are several annotated protein-protein interaction (PPI) corpora, which have
become gold standard for evaluating protein-protein extraction corpora: Aimed
[13], IEPA [6] HPRD50 [6], LLL05 [14] and Bioinfer [20], all of which are studied
in detail in [19]. We chose four of these corpora to evaluate our system and added
two other annotated datasets: Charlotte Brun [2] corpus and BC-PPI dataset
[7]. We decided for this rather extensive testing to avoid overfitting and to get the
precise idea about the real performance of the proposed methods without missing
any important aspect of the problem.

A large number of PPIs are expressed by a limited set of predicates, such as
activate, inhibit, interact; activation, inhibition, interaction, thus it is almost pos-
sible to define the list manually as some approaches do, e. g. [1]. However, the real
vocabulary of predicate keywords includes also other, less frequent though equally
relevant words. To enable such less frequent or less obvious words to come out
into the final set, we need sufficiently rich training data. Fulltext articles obviously
contain a significantly richer vocabulary than the annotated corpora introduced
above (manually extracted and annotated, mainly from abstracts, limited size and
rather standardized vocabulary). Similarly, also the structural variability tends to
be higher in fulltext articles, which proves to be essential especially for MGPI. The
pattern validation requires the training data to be annotated for PPIs. Per sentence
annotations are virtually limited to those datasets used for testing. However, PPIs
such as HPRD2 contain a large amount of per article annotations (articles provid-
ing evidence for PPI). A a result, the training set is composed of sentences from
1000 randomly collected articles mentioned in HPRD, each containing at least two
HGNC names3.

The complete workflow is depicted in Figures 3 and 4. We use Treetagger4 for
part-of-speech tagging, Geniass5 for sentence splitting and Dmt4sp [17] for mining
mining frequent patterns (FPT learning only). Note that in the validation process
we are unable to use proper confidence as we are given only per article annotations,
i.e. an interaction declared in HPRD is not guaranteed to be verbally expressed
in the particular sentence, from which the pair has been extracted; similarly an
interaction not contained in HPRD is not necessarily false positive. Therefore,
instead of proper confidence, patterns are evaluated using pseudo-confidence, which
is calculated as if HPRD were a per sentence label, with the only exception that
interaction pairs containing at least one protein not contained in HPRD are simply
ignored.

Tables 6 and 7 summarize the best achieved results for FPT and MGPI, respec-
tivelly, in terms of precision, recall and F-measure. To evaluate the real impact of

2http://www.hprd.org
3http://www.genenames.org
4http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.

html
5http://www-tsujii.is.s.u-tokyo.ac.jp/~y-matsu/geniass

16



Fulltext articles
↓

POS + NER
↓

Articles tagged for POS and protein names
↓

Text preprocessing: simplification and compression
↓ ↓

FPT MGPI
↓ ↓

candidate patterns candidate subpatterns
↓ ↓

validation against HPRD database
↓ ↓

patterns subpatterns

Figure 3: Pattern generation workflow

Annotated PPI corpus
↓

POS
↓

Annotated PPI corpus tagged for POS
↓

Text preprocessing: simplification and compression
↓ ↓

Tuned frequent Gen. patterns +
patterns learned subpatterns
↓ ↓

interactions interactions

Figure 4: Interaction extraction workflow

individual peprocessing steps, we include results for all preprocessing levels. Recall
that the preprocessing techniques are not independent from each other but they
are applied cummulatively, i.e. clause linearization is possible only after the sen-
tence has been split into individual clauses and argument propagation works with
linearized clauses.

The first obvious result is that FPT performs surprisingly well on the testing
corpora. In accordance with our expectation, the text preprocessing (sentence sim-
plification only, text compression will be discussed below) in its complete form leads
to a higher precision rate, but as it strongly decreases the recall rate, the resulting
F-measure is lower for the majority of testing datasets compared to the case when
no preprocessig has been applied. In case of MGPI, the text preprocessing has lower
impact on the performance rates. This is understandable, taking into account that
the clause structure is to large extent reflected in the pattern structure. According
to the results, the MGPI outperforms the FPT, but less than expected.

17



The negative impact of the text preprocessing on the recall can be explained in
the follwing way: The heuristic transformations applied in the individual prepro-
cessing steps rely to a great degree on the metalingual information contained in the
part-of-speech tags, but this information is not rarely errornous. The most offending
tagger errors include confusions of past tense forms (VBD tag) with past participle
forms (VBN tag) and inconsistent ing-form disambiguation (verb, noun or adjec-
tive?). Both clause splitting and clause linearization depend strongly on the correct
or at least consistent classification of these language phenomena. Further errors
rise from the insufficient interpretation of various correctly tagged constructs, the
most difficult being again the correct understanding of forms that are grammatically
homonymous.

The effect of text compression is clearly positive. Reducing the nominal chunks
to minimal chunks adds up to 6% to the F-measure in case of FTP and 1% in case of
MGPI. Similarly, shortening the nominal chunk sequences increases the F-measure
by 7% and 1%, respectively. Thus, the FPT benefits from text compression more
strongly than the MGPI. Moreover, the text compression drastically reduces the
computational time in case of the FPT. Furthermore, both pattern tuning tech-
niques (i.e. distance constraints and taxonomies) contribute significantly to the
overall performance: the F-measure of pure frequent patterns is up to 9% lower
than that of FPT given in Table 6.

The testing corpora differ from each other significantly both in the range of
language expressions regarded as interaction evidence and in the quality of anno-
tations, thus leading to inconsistencies among the individual corpora and in the
individual corpora. In case of Charlotte Brun corpus, we had to analyze all
sentences manually, removing at least the most obvious inconsistencies. This raises
the need for a serious discussion about the appropriate testing method.

Table 6: FPT: best results with (no compression). Legend: NP ∼ no preprocessing,
CS ∼ clause splitting, CL ∼ clause linearization, AP ∼ argument propagation.

Corpus Aimed Brun
Level P R F P R F
NP 0.55 0.55 0.55 0.5 0.88 0.64
CS 0.58 0.47 0.52 0.45 0.53 0.49
CL 0.59 0.43 0.5 0.36 0.52 0.43
AP 0.59 0.53 0.56 0.43 0.51 0.47

Corpus HPRD50 IEPA
Level P R F P R F
NP 0.64 0.94 0.76 0.62 0.94 0.75
CS 0.64 0.7 0.67 0.67 0.7 0.68
CL 0.54 0.62 0.58 0.64 0.56 0.6
AP 0.55 0.71 0.62 0.67 0.65 0.66

Corpus LLL05 BC-PPI
Level P R F P R F
NP 0.51 0.97 0.67 0.25 0.84 0.39
CS 0.73 0.7 0.71 0.44 0.38 0.41
CL 0.7 0.47 0.56 0.43 0.37 0.4
AP 0.71 0.6 0.65 0.43 0.52 0.47

18



Table 7: MGPI: best results with (no compression). Legend: NP ∼ no preprocess-
ing, CS ∼ clause splitting, CL ∼ clause linearization, AP ∼ argument propagation.

Corpus Aimed Brun
Level P R F P R F
NP 0.4 0.71 0.51 0.53 0.74 0.62
CS 0.53 0.5 0.51 0.65 0.39 0.49
CL 0.5 0.45 0.47 0.56 0.33 0.41
AP 0.5 0.56 0.53 0.55 0.41 0.47

Corpus HPRD50 IEPA
Level P R F P R F
NP 0.7 0.78 0.74 0.66 0.82 0.73
CS 0.76 0.59 0.67 0.81 0.57 0.67
CL 0.68 0.55 0.61 0.76 0.45 0.57
AP 0.78 0.59 0.67 0.77 0.54 0.64

Corpus LLL05 BC-PPI
Level P R F P R F
NP 0.52 0.92 0.66 0.3 0.76 0.43
CS 0.78 0.63 0.7 0.41 0.51 0.46
CL 0.74 0.48 0.58 0.51 0.44 0.47
AP 0.77 0.61 0.68 0.5 0.52 0.51

5 Conclusion and further work

The expectations raised about frequent pattern performance and the impact of
the text preprocessing have not been confirmed unambiguously. Nevertheless, this
does not suspend valuable conclusions: The increased degree of control over the
pattern structure draws the performance towards higher precision, thus MGPI as
a limiting case consistently outperforms FPT. However, a significant decrease of
recall diminish the effect of the text preprocessing to the resulting F-measure. Both
text compression and the proposed tuning methods exhibit clearly positive effect
on the performance of the frequent patterns, as a result of which FPT performs
surprisingly well, compared to MGPI, especially when no preprocessing has been
applied. In the future work, we need to perform a more detailed analysis of errors
to precisely identify the factors in the text preprocessing contributing to low recall
rates.

Acknowledgment

The work of Přemysl Vı́tovec was funded by the Grant Agency of the Czech Tech-
nical University in Prague, grant No. SGS11/126/OHK3/TT/13. The work of Jǐŕı
Kléma was funded by the Czech Ministry of Education in the framework of the
research programme Transdisciplinary Research in the Area of Biomedical Engi-
neering II, MSM 6840770012.

19



References

[1] Christian Blaschke and Alfonso Valencia. The frame-based module of the su-
iseki information extraction system. IEEE Intelligent Systems, 17:14–20, March
2002.

[2] Christine Brun. Christine Brun Corpus. http://www.biocreative.org/ac-
counts/login/?next=/resources/. Accessed March 2011.

[3] Peggy Cellier, Thierry Charnois, and Marc Plantevit. Sequential Patterns to
Discover and Characterise Biological Relations. In Lecture Notes in Computer
Science, volume 6008/2010, pages 537–548, 2010.

[4] Jung-Hsien Chiang, Hsiao-Sheng Liu, Shih-Yi Chao, and Cheng-Yu Chen. Dis-
covering gene-gene relations from sequential sentence patterns in biomedical
literature. Expert Syst. Appl., 33:1036–1041, 2007.

[5] Bonnie Dorr, David Zajic, and Richard Schwartz. Hedge trimmer: A parse-
and-trim approach to headline generation, 2003.

[6] Katrin Fundel, Robert Küffner, and Ralf Zimmer. RelEx—Relation extraction
using dependency parse trees. Bioinformatics, 23(3):365–371, 2007.

[7] Jörg Hakenberg. BC-PPI Corpus. Humboldt-Universität zu Berlin - Insti-
tut für Informatik, http://www2.informatik.hu-berlin.de/ hakenber/corpora/.
Accessed March 2011.

[8] Jrg Hakenberg, Ha Vo Leaman, Robert amd Nguyen, Siddhartha Jonnala-
gadda, Ryan Sullivan, Christopher Miller, Chitta Baral, and Graciela Gon-
zalez. Efficient extraction of protein-protein interactions from full-text arti-
cles. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
7(3):481–494, 2010.

[9] Jrg Hakenberg, Conrad Plake, Loic Royer, Hendrik Strobelt, Ulf Leser, and
Michael Schroeder. Gene mention normalization and interaction extraction
with context models and sentence motifs. Genome Biology, 9:S14, 2008.

[10] Siddhartha Jonnalagadda, Luis Tari, Jorg Hakenberg, Chitta Baral, and Gra-
ciela Gonzalez. Towards effective sentence simplification for automatic process-
ing of biomedical text. CoRR, pages –1–1, 2010.

[11] Ana Cristina Mendes and Cludia Antunes. Pattern mining with natural lan-
guage processing: An exploratory approach. In Machine Learning and Data
Mining in Pattern Recognition, pages 266–279, 2009.

[12] Makoto Miwa, Rune Saetre, Yusuke Miyao, and Jun’ichi Tsujii. Entity-focused
sentence simplification for relation extraction. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics, COLING ’10, pages 788–
796, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

[13] Raymond J. Mooney. AiMed. University of Texas at Austin,
https://wiki.inf.ed.ac.uk/TFlex/AiMed. Accessed March 2010.

20



[14] C. Nédellec. Learning Language in Logic - Genic Interaction Extraction Chal-
lenge. In Proceedings of the 4th Learning Language in Logic Workshop 2005,
2005.

[15] Toshihide Ono, Haretsugu Hishigaki, Akira Tanigami, and Toshihisa Takagi.
Automated extraction of information on protein-protein interactions from the
biological literature. Bioinformatics, 17(1):155–161, 2001.

[16] Conrad Plake, Jörg Hakenberg, and Ulf Leser. Optimizing syntax patterns
for discovering protein-protein interactions. In Proceedings of the 2005 ACM
symposium on Applied computing, SAC ’05, pages 195–201, New York, NY,
USA, 2005. ACM.

[17] M. Plantevit, T. Charnois, J. Klema, C. Rigotti, and B. Cremilleux. Combining
sequence and itemset mining to discover named entities in biomedical texts: A
new type of pattern. International Journal of Data Mining, Modelling and
Management, 1:119–148, 2009.

[18] D. Proux, F. Rechenmann, and L. Julliard. A pragmatic information extraction
strategy for gathering data on genetic interactions. In Proceedings of the 9th
International Conference on Intelligent Systems for Molecular Biology (ISMB-
2001), pages 279–85, 2000.

[19] Sampo Pyysalo, Antti Airola, Juho Heimonen, Jari Björne, Filip Ginter, and
Tapio Salakoski. Comparative analysis of five protein-protein interaction cor-
pora. BMC Bioinformatics, 9(Suppl 3):S6, 2008.

[20] Sampo Pyysalo, Filip Ginter, Juho Heimonen, Jari Bjorne, Jorma Boberg,
Jouni Jarvinen, and Tapio Salakoski. BioInfer: a corpus for information ex-
traction in the biomedical domain. BMC Bioinformatics, 8(1):50+, 2007.

[21] Advaith Siddharthan. Syntactic ssimplification and text cohesion. Language
and Computation, 4:77–109, 2006.

[22] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In EDBT, pages 3–17, 1996.

[23] Lucy Vanderwende, Hisami Suzuki, Chris Brockett, and Ani Nenkova. Beyond
sumbasic: Task-focused summarization with sentence simplification and lexical
expansion. Inf. Process. Manage., 43:1606–1618, November 2007.

[24] David Vickrey and Daphne Koller. Sentence simplification for semantic role
labeling. In Meeting of the Association for Computational Linguistics, pages
344–352, 2008.

21


