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Abstract
The paper tries to evaluate contribution of a
special case of case-based reasoning, namely
of instance-based modelling, to decision sup-
port in areas working with large amount of
data. We concentrate on methodological
questions of automated modelling and on ad-
vantages of our approach. It concerns namely
description of the system life cycle, review of
potential evaluation functions and division of
data into training, testing and validating sets.
Last but not least, the paper describes a real-
life application of an instance-based model-
ling tool: we have complemented commercial
CBR-Works 3.0 Professional system with an
original module of automated interface. This
module enables evolutionary optimisation of
the model. The features of the resulting com-
plex are shown on a case study concerned
with prediction of result of Coronary Artery
Bypass Graft (CABG) surgery operation.

1 Introduction
Case-based reasoning (CBR) [Kolodner, 1993] means
adapting old solutions to meet new demands, using old
cases to explain new situations, or to critique new
solutions. CBR means reasoning from precedents to
interpret a new situation or create an equitable solution
to a new problem. CBR is able to utilize the specific
knowledge of previously experienced, concrete prob-
lem situations (cases). A new problem is solved by
finding a similar past case, and reusing it in the new
problem situation. A second important feature is that
CBR is an approach to incremental, sustained learning,
since a new experience is retained each time a problem
has been solved, making it immediately available for
future problems.

If we watch the way people solve problems, we are
likely to observe case-based reasoning in use all
around us. Consider, for example, a doctor faced with
a patient who has an unusual combination of symp-
toms. If the doctor has seen a patient with similar
symptoms previously, he or she is likely to remember
the old case and consider the old diagnosis as a solu-
tion to this new problem. If coming to that diagnosis
was time-consuming in the earlier case, this method

results in big savings of time. Of course, the doctor
cannot assume the old answer is correct. He or she
must still validate it for the new case in a way that
does not prohibit considering other likely diagnoses.
Nevertheless, quoting the old case allows the doctor to
generate a plausible answer easily.

The CBR paradigm covers a range of different
methods for organising, retrieving, utilising and in-
dexing the knowledge retained in past cases. The term
CBR is often used both as a generic one for several
types of more specific approaches, and for one such
approach. In its specific meaning, typical case usually
has a certain degree of richness of information con-
tained in it, and certain complexity with respect to its
internal organisation. General background knowledge
is used during reasoning process in order to modify, or
adapt, a retrieved solution when applied in a different
problem-solving context.

Nevertheless, the problem domain description in
medical or other fields of study can often result in a
standardised case description close to feature vector
holding numeric values or symbolic values with simple
inner structure. This situation can occur not only
within shallow tasks. Even the huge and well-
administered databases containing national registries
correspond to a case structure that is not intricate
enough to take advantage of all the upper mentioned
CBR characteristics. On top of that, the solved tasks
have very often quite simple definition space of the
final solution. To persuade its future users about its
usefulness, the system should first prove its predictive
power when trying to answer unambiguous or one-
dimensional questions before it is allowed to suggest
more complex solutions. In particular, our ultimate
goal is to build a system predicting the process of
cardiological operation. But such a plan seems preco-
cious before we can successfully predict whether to
operate or not.

Then, is it still reasonable to use CBR in its generic
meaning at least? Of course it is, as CBR can offer
some comparative advantages. The first, CBR ap-
proaches are particularly suited for tasks where ab-
stractions tend to yield over-generalisation. Additional
benefit can be gained by using local information to
characterise states and generate predictions. By re-
taining specific cases, decision can always be ex-
plained with aid of them. CBR represents lazy problem
solving [Aha, 1998] where computation is performed
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on demand-driven basis. That is why, this approach is
suited for incremental learning as well. Last but not
least, CBR tolerates missing values, as it requires
processing only the values known for the given query.

CBR theory [Aamodt and Plaza, 1994] denotes our
view of automated modelli ng in medical systems as
instance-based reasoning (IBR). IBR is a specialisation
of another subclass of CBR - exemplar-based reason-
ing (EBR), which defines its concepts extensionally, as
the set of all its exemplars. Solving a problem is a
classif ication task. The set of classes constitutes the
set of possible solutions. Modification of a solution
found is therefore outside the scope of EBR. The IBR
syntactic specialisation is based on simple representa-
tion of the instances. Moreover, IBR aims to study
automated learning with no user in the loop. It is a
non-generali sation approach to the concept learning
problem addressed by classical, inductive machine
learning methods.

2 Medical Systems
In medical decision support systems, general models
of the given domain are usuall y generated. This ap-
proach works well , however in some cases it seems to
be better if concrete past cases are available for deci-
sion making.

Comparing diff erent machine learning (ML) ap-
proaches developed for answering the same question
of prediction, neural networks offer usually the best
solutions in terms of proposed evaluation function but
they do not give any clue how the decision is formed.
The decision trees are usually a little bit worse with
respect to evaluation function calculated over all tested
examples, but they come up with very lucid and under-
standable structure generating the final solution. The
advantage of this tree is that it is general. On the other
hand it can never be complex enough to answer all or
at least reasonable part of expert's questions/doubts.

Instance-based learning seems to be a very natural
approach to balance some of the above-mentioned
disadvantages, as it is very simil ar to physician's no-
tion of the given problem. The instance-based learning
can answer both simple predictive questions and more
complex questions of the whole process of treatment.
Yes/no answers (or rather one-dimensional answers)
applied e.g. in case of elective operations have to
weight all risk factors that accompany the operation
and post-operational recovery against risk factors con-
nected with the fail ure caused by putting off the op-
eration. The more complex type of answers seems to
be even more suitable for instance-based reasoning as
it gives the chance to take advantage of its knowledge-
oriented procedures (and then it can be referenced as
CBR). It can be utili sed e.g. when physician searches
for optimum process of operation and wants to follow
past successful operations. Simil arly, the instance-
based reasoning can be used to avoid past questionable
interventions.

2.1  Data Used in The Learning Process
ML theory suggests many diff erent approaches how to
deal with available data when model is generated.
They can diff er particularly in relation to the type of
learning, which determines constant model character-
istics, and size of data set itself. On all accounts, they
foll ow two fundamental intentions: to enable genera-
tion of model with predictive power as high as possi-
ble and to give a chance to independently estimate its
performance on future data and guarantee the model
validity over these unseen data. In order to meet these
two goals, all the data can not be used within model
generation (adjusting model settings). The hold-out
method divides data into two distinct sets: training set
is used in learning and testing set is used in evaluation.
N-cross-validation method divides the data into N
partitions. Learning process runs in N steps, in each
step i all the partitions except the i-th are used in
learning, the i-th group is used for testing. Leave-one-
out method is a special case of cross-validation, each
partition consists of just one case and so number of
learning steps is equal to number of data records. This
method is very easy to be implemented with the in-
stance-based techniques as it is trivial to ignore single
case when searching for the most simil ar cases.

In recent years, attention is paid to generating and
combining diff erent but sti ll homogenous classifiers
with techniques called bagging, boosting or bootstrap-
ping [Breiman, 1994, Dietterich and Kong, 1995].
They are based on repeated generation of the same
type of model over evolving training data. These
methods enable reduction of model variance. The
authors prove that they can not be applied to instance-
based learning cycle for the sake of method stability
with respect to perturbations of the data. However, the
idea of model variance reduction motivated our design
of voting among several models based on the most
promising settings.

2.2  Evaluation Function
Evaluation function is used to assess and diff erentiate
the quality of solutions produced by diff erent model
settings and consequently it determines model refine-
ment. Proper selection of the evaluation function
seems to be key issue of the automated system design.
Improper, superficial or schematic definition of the
evaluation function brings undesired model bias and
finally asks for time-consuming reiteration of experi-
mental procedures. Generall y speaking, the evaluation
function should be objective, easily calculated and has
to give a chance to determine uniquely an ordering of
rated model settings. The common artificial intell i-
gence and medical practice offers four diff erent atti-
tudes to overall quality evaluation of the solution pro-
duced by a model. Type of predicted variable and type
of decision system output (that do not have to be nec-
essaril y same) determine their choice mainly.

The simplest attitude makes use of basic statistic
functions calculated at a time over all training exam-
ples. An average accuracy defined as the relation be-
tween the correctly classified and all t raining objects



can be used for this purpose for models that output
categories. Simil arly, the mean average absolute error
can be used for model that are numeric. The advantage
of this attitude lies in its simplicity; the disadvantage
is that it can very often happen to be misleading.

The second approach coming from medical f ield
separates the function to two distinct sub-measures -
sensitivity and specificity. They are calculated in the
same way as the average accuracy function (or other
statistic functions), however sensitivity regards only
positi ve patients (patients with observed final diagno-
sis) and on the contrary specificity deals only with
negative patients (patients without observed final di-
agnosis). It is obvious that introduction of evaluation
function division to these two distinct measures brings
much more objectivity when dealing with unbalanced
domain (the number of positi ve patients exceeds sig-
nificantly number of negative patients or vice versa).
On the other hand, the automated evolutionary devel-
opment of the model usually asks for a single number
to rank each model so that sensitivity and specificity
should be used to design a unique measure anyway.
However, if it is designed as a linear combination of
both these sub-measures it can stil l keep the proportion
between positive and negative patients. Obviously, the
sensitivity and specificity can be applied if and only if
when patients can be separated to two distinct mutu-
ally exclusive categories.

The next approach further refines the previous one.
Each basic misclassification is assigned a level of
importance – differential misclassification cost. The
overall evaluation function is calculated as an average
sum of weighted classif ication error costs. To be more
specific, it can be laid down that it is much worse to
predict an il l patient to be healthy than vice versa as
this type of misclassification leads to the more exten-
sive patient examination only. Opposite case can lead
to patient examination delay and at the same time to
serious consequences. The above mentioned explana-
tion takes into the consideration only two possible
decisions, as a matter of course the decisions can be
much more complex and the error types can be valued
by an error significance table. Although it is not abso-
lutely obvious, very small changes in the error signifi-
cance table can cause indispensable changes in model
and intermediately in its behaviour. The special case of
the error costs seems to be the classif ication to ordered
set of classes (e.g. healthy, beginning il lness, seriously
il l) where the misclassif ication to adjoining class is not
as serious error as assigning to distant class. The dif-
ferential misclassif ication costs are employed by e.g.
well -known algorithm C5.0 as well.

The fourth extensively used evaluation function we
would li ke to mention is a receiver operating curve
(ROC) characteristic. This measure comes to use
mainly when it is not desirable to make the model
predictions distinct, although the final classes are. The
area under ROC gives a good chance to convert a quite
complex and balanced comparison of all the predic-
tions and real classifications to a single number. It can
be shown that the area represents the probability that a
randomly chosen diseased subject is correctly rated or

ranked with greater suspicion than a randomly chosen
non-diseased subject. In medical imaging studies the
ROC curve is usually constructed as follows: images
from diseased and non-diseased patients are thor-
oughly mixed, then presented in this random order to a
decision system which is asked to rate each on a scale
ranging from definitely normal to definitely abnormal
[Hanley and McNeill , 1982]. The scale can be either
continuous or discrete ordinal. The points required to
produce the ROC curve are obtained by successively
considering broader and broader categories of abnor-
mal in terms of decision system scale and comparing
the proportion of diseased and non-diseased patients.

In the section conclusion must be mentioned that
above described evaluation process can become more
complex with increasing complexity of the solutions
produced by a model. More dimensional solutions
consequently bring additional dimension to the
evaluation process. These complex solutions further-
more ask for intelli gent exploitation of the deep do-
main knowledge during evaluation function design.

3 CBR-Works 3.0
CBR-Works is a case-based reasoning system created
in the frame of INRECA project. It is suited for intel-
li gent solutions in a variety of domains and environ-
ments [CBR, 1998]. It includes the graphical editors
that can support the user to design sophisticall y com-
plex knowledge models. The system deals with con-
cepts, types, simil arity measures, weights and filters.
Four separate interfaces provide a way to use elements
for modelling concepts and types, case-base manage-
ment, and case based retrieval:

• The concept hierarchy interface serves as an editor
to build the concept part of the model,

• the types hierarchy interface serves as an editor to
define the types and their similarity measures be-
ing used in the model,

• the CBR-Works case base interface provides the
tools to manage the case base,

• the consultation interface offers operation to re-
trieve cases either by filli ng out a query or being
guided by the query wizard.

The user can either define its own model elements
or it can put in use modelling wizards and util ise stan-
dard predefined elements. The system is available on
all major operating systems: Windows, UNIX, Mac-
intosh (we have used Windows version).

However, when it comes to automated modelling or
batch testing only, the on-li ne user interfaces become
ineff icient. Fortunately, CBR-Works uses a standard-
ised exchange language especially developed for CBR
appli cations called Case Query Language (CQL). It
provides communication between CBR-Works servers
and clients as well as it serves as interface language
between the CBR-Works components. CQL is an ob-
ject-oriented language for storing and exchanging the
domain model description and cases in form of ASCII
fil es. Furthermore, CQL is used for transportation of



model and cases between CBR-Works servers and
clients [CBR, 1998]. By means of CQL the system can
be extended without restraint.

4 CBR Modelling Interface
CBR modelling interface [Palous, 2000] we have de-
veloped consists of four main conceptual units (see
Figure 1). CQL wrapper is used to construct CQL
queries from raw training/testing data and current
experiment setting first, later it decomposes the CQL
server responses to meaningful answers. Evaluation
unit derives and accumulates the individual solutions,
after all the training/testing examples are processed it
calculates overall evaluation for the current evaluation
setting. As a matter of fact it satisfies two distinct
requirements: first it defines a way individual solu-
tions are derived and for the second it identif ies over-
all function in terms of previously defined theoretical
demands. The experiment settings unit keeps current
population of experiment settings and provides them
graduall y to the CQL wrapper during testing. The last
evolutionary adaptation unit is responsible for genera-
tion of a new population of experiment settings at the
end of each testing step.

Figure 1 Automated modelli ng cycle

Construction of every domain model begins with
initial definition of model settings within CBR-Works
system by an expert (or with aid of background knowl-
edge). He defines namely concept hierarchy and se-
lects f itting concept simil arity metrics. After that, case
memory is loaded with feature vectors of selected
patients. The patient vectors are transformed into CQL
language first (stand-alone CQL_transformer is used
for this purpose) and then imported into CBR-Works.
Next, automated modelling can start. Diff erent model
settings are generated step by step and evaluated over
training data using leave-one-out cross-validation. We
employed genetic algorithms (GA) [Kubali k and
Lazansky, 1998] and sequential search (SS) of re-
stricted state space of possible parameter settings.
Comparison of GA and SS depends mainly on level of
restrictions of sequential search that determines how
fast and exhaustive the second method is. Finally, the

best model (the model with the highest value of
evaluation function) is vali dated over testing (vali dat-
ing) data – in order to avoid overfitting, the model
should show approximately the same value of evalua-
tion function for the testing data as it shows for the
training data set.

The previous paragraph regards but does not explain
other important issues of IBR and automated model-
li ng. There are many questions, e.g. which and how
many patients are to be included into case memory,
training and testing sets; can these sets change in it-
erative nature; shall we repeat the training cycle more
times for diff erent distribution of patient records
among the data sets; what to do when the model
proves to be overfitted and so on. Answers to all these
questions are closely tied down to number of patients
we deal with and time demands connected with each
training cycle (experiments show that one query hav-
ing tens of attributes to memory containing thousands
of cases takes tens of seconds). The more patients we
have the larger data sets we can create. The larger data
sets are more time demanding when processed and that
is why it is often hardly possible to iterate or repeat
the training cycle. Moreover, they do not tend to pro-
duce overfitted models.

CBR interface has been developed in C++ Builder
3.0, MS Windows environment. The program is tabu-
lar and simply controll able, with minimum need of
help. It communicates with CQL-server through Telnet
protocol. The C++ library (namely TtnCnx component
package) from Internet Component Suite package
(freeware) is used for this purpose. It foll ows that the
interface is able to connect to the server that can be
anywhere in the Internet. Even thought the remote
operation is not desirable when the model is tuned as it
brings additi onal time delay it can be utili sed for later
consultation of its final version.

5 Case Study: Predictive Model Of
Heart Operation Result

MEDICON Center is the center for development and
operation of appli cation and communication environ-
ment of the healthcare data network in the Czech Re-
publi c. It is intended to be a valuable resource for
publi c, health outcome researchers, and academicians
both in and outside of the Czech Republic. It is fo-
cused on establishment of the Merged National Regis-
try (MNR) on Cardiovascular Interventions. Currently
the MNR contains information on quality and results
of diagnostic and therapeutic interventions done in
selected relevant cardiovascular diseases. Currently
the aggregated registry embodies 10.595 records. One
record corresponds to one cardiovascular intervention.
Each record consists of 160 attributes. The registry is
run in environment of the informational system PATS
(The Patient Analysis and Tracking System). PATS
allows creation and administration of clinical user
flexible databases. At the same time, it off ers tools for
long-term follow-up and statistical analysis pursuance.
Well -known Bayesian technique is used for the pur-
pose of short time patient oriented predictive statistics
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as well as for the purpose of general health care sys-
tem predictive statistics that are done in long-term
horizon [Medicon, 1998].

The Artificial Intell igence group at Czech Technical
University was provided with the aggregate registry
with an intention to use machine learning (ML) tech-
niques for development of a tool which could enhance
the PATS system predictive domain. The report
[Klema et al., 1998] presents preliminary experiments
and their results. The research was aimed on Coronary
Artery Bypass Graft (CABG) surgery, we have tried to
construct a predictive model of heart operation result
with aid of decision trees. The model predicted the
result of patient operation (dead – li ving, nearmiss+ -
nearmiss-) on the basis of the patient anamnesis and
his/her pre-operative state. The methodology of deci-
sion tree construction proved to be rather ineff icient
for effectual distinction between successful and unsuc-
cessful operations prior to its execution. We came to
conclusion that the overall poor quality of decision-
making was mainly caused by objective matter. All the
information gains calculated during the process of the
tree building showed that dependency of the final class
on the other attributes is low. There was no single
attribute exhibiting strong influence on the operation
result. At the same time we draw conclusions that
instance-based learning can bring additional gain when
solving problems that are too hard to be described by
highly generali sed pieces of knowledge represented
e.g. by a small set of rules or by a decision tree.

Three diff erent classes were derived from two origi-
nal attributes NEARMISS+ and STATUS.
NEARMISS+ is the calculated parameter and it glob-
ally appreciates the quality of the intervention. It is a
binary parameter, where 0 means intervention with a
good result and 1 means intervention with a bad result.
STATUS parameter denotes patient state after opera-
tion (1 – sti ll alive, 2 – died during operation, 3 – died
during hospitalisation, 4 – re-operation is necessary, 5
– died up to 30 days after operation, 6 – died more
than 30 days after operation, 7 – death caused by a
factor other than operation).

• Class 0 – NEARMISS+ is 0, arbitrary value of
STATUS,

• Class 1 - NEARMISS+ is 1, STATUS differs from
2 and 3,

• Class 2 - NEARMISS+ is 1, STATUS is 2 or 3.
The other reason why the decision tree showed to be

ineffective seems to be the unequal distribution of the
patient set among the final classes. Figure 2 shows that
more than 87% of the registry is assigned class 0,
while only about 1% of examples belong to class 2.
The classes 1 and 2 were classified with quite low
accuracy that could be caused by noise and overfitting
elimination technique. The classes rare in the training
data can be more often affected by the pruning, as they
are more inclinable to be misplaced with noise and
consequently removed from the final tree structure.
The evaluation function with diff erential misclassifi-
cation costs brought improvement of the classification

accuracy for the rare classes 1 and 2 but the proper
setting of the costs which was made by hand showed
to be problematic and highly time-consuming.

Figure 2 Class distribution within the MNR

The advantage of instance-based modelli ng interface
lies in its flexibility. Block structure gives a good
chance to change procedure of experiment with respect
to problem domain characteristics. The most straight-
forward way of automated modell ing is applicable just
for the problem domains with many available records.
The patient record set is randomly divided to two data
sets – training and testing set. Distribution of patients
among classes in both data sets should keep original
distribution. The proportion of patients between data
sets depends on time restrictions – the less time the
automated modell ing can take the higher number of
patient records is inserted into the testing set. The
training set is used simultaneously as case memory and
training set in terms of Figure 1. The nearest case has
to be always removed from query answer, as it is defi-
nitely the current training example. This technique we
used to predict CABG operation result as well.

Evaluation unit derives the individual solutions in
the form of class competence estimates. Each training
example is assigned a probabil ity vector defining its
competence to classes 0,1 and 2. The vector values
correspond to portions of individual classes among
relevant cases and to the simil arities of these cases to
the given example.

The overall evaluation of the current model setting
can be done in more ways. ROC characteristic is
probably the most suitable one from the point of view
of medical risk stratification. On the other hand, if we
want to have a chance to compare IBR results to deci-
sion tree results the evaluation should be based on
specificity and sensitivity. The maximum probabil ity
Pi is taken from every testing example vector and
compared to its real classification. The overall quality
of provided solution is derived of average match over
the individual classes.

Experiments are very time consuming. So far we did
not run any automated cycle with all the available data
included in training or testing set and therefore we
cannot compare our results to preliminary experiment
outputs. The reduced tests were run both with GA and
SS. The sequential search run on 3378 cases in mem-
ory, training set consisted of 55 examples. The auto-
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mated setting tuning brought more than 25% increase
of evaluation function, however reasonable part of this
increase was caused by overfitting because of small
training set. There were identified about 10 most rele-
vant attributes (Age, BSA, Diabetes, PTCA, Pre-
operation state, …) that roughly correspond to expert
assumptions. Significance of less relevant attributes is
never constantly low, consequently the attribute set
proves to be hardly restricted. The final experiment is
going to be run as soon as the reduced experiments
suggest credible sectional procedures.

6 Conclusions
The paper deals with the field of instance-based rea-
soning. It addresses issues and assets connected with
design and util isation of systems employing such type
of reasoning. We have introduced the CBR modell ing
interface that puts the hinted thoughts in practice. The
CBR modelling interface extends CBR-Works system.
It complements it by automated modelling features and
creates full scope IBR system.

The features of the resulting system are shown on a
case study concerned with prediction of result of
Coronary Artery Bypass Graft (CABG) surgery opera-
tion. The prediction of CABG operation result prior
the operation proves to be a hard task as the result is
remarkably influenced by the course of the operation
itself. Nevertheless, the suggested approach applies all
its comparative advantages – adaptabil ity with respect
to its inner structure and consequently flexibil ity in its
appli cation and evaluation and ability to offer more
information than other system types offer as relevant
cases bring it anyhow. The experiments confirmed that
possibili ty to optimise model parameters improves
IBR performance so that it can be as good or even
better than alternatives.

On the contrary, the indispensable disadvantage of
the system lies in its enormous time requirements
during the model tuning. The most time is spent by
CBR Works system when searching for the most
similar cases. We have already started to develop an
alternative database subsystem that emulates all the
necessary CBR Works features available through
CQL. Preliminary experiments show that the speed-up
of the non-optimised subsystem is two orders of the
magnitude compared to the originally used CBR
Works. The improvement seems to be promising as the
subsystem can be further accelerated. The next sug-
gested step is to design the patient database as distrib-
uted. Optimisation search techniques can be applied as
well , although we are aware that sophisticated O(n
log(n)) search techniques (e.g. k-d trees [Friedman et
al., 1977]) become quite ineff icient in high dimen-
sional spaces with dynamically changing search pa-
rameters.
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