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Abstract: Sequential data represent an im-
portant source of automatically mined and
potentially new medical knowledge. They can
originate in various ways. Within the pre-
sented domain they come from a longitudi-
nal preventive study of atherosclerosis – the
data consist of series of long-term observa-
tions recording the development of risk fac-
tors and associated conditions. The intention
is to identify frequent sequential patterns hav-
ing any relation to an onset of any of the
observed cardiovascular diseases. This pa-
per focuses on application of inductive logic
programming. The prospective patterns are
based on first-order features automatically ex-
tracted from the sequential data. The fea-
tures are further grouped in order to reach fi-
nal complex patterns expressed as rules. The
presented approach is also compared with
the approaches published earlier (windowing,
episode rules).

Introduction

Medical databases have accumulated large quantities
of information about patients and their clinical con-
ditions. Relationships and patterns hidden within
this data can provide new medical knowledge, which
has been proven in a number of medical data mining
applications. However, the data are rarely provided
in a format suitable for immediate application of con-
ventional attribute-valued learning (AVL). In some
tasks, a domain-independent preprocessing method-
ology (e.g., feature selection) is sufficient. In other
tasks, domain-specific preprocessing shows vital and
may strongly increase mining performance. But, the
domain-specific algorithms are frequently conducted
by the trial-and-error method, which is often time
consuming and demands both for experienced re-
searcher and medical expert.

The presented paper focuses on mining tempo-
ral and sequential medical data which usually ask
for complex and sophisticated preprocessing. A se-
quence is understood as a sequence of events where
each event is described by its value altogether with a

time stamp. Event types can also be distinguished.
Whole dataset can either contain a single sequence or
it can be composed of an arbitrary number of shorter
and independent sequences. The ultimate goal is to
identify strong sequential patterns, i.e., such event
chains (sub-sequences) that appear frequently in the
dataset and optionally study their interaction with
the target event. The typical target event in a med-
ical application can be a disease manifestation or a
change of the state of health.

In particular, the paper centers on the study Stu-
long [1], a longitudinal primary preventive study of
middle-aged men lasting twenty years. The study
contains data resulting from observation of approxi-
mately 1400 men, the main intention of the project
was to identify risk factors of atherosclerosis. The
data is inherently multi-relational. The main atten-
tion is paid to the table of checkups including results
of a series of long-term observations recording the de-
velopment of risk factors and associated conditions.
A single man represents a single sequence, i.e., the
task deals with a base of sequences. Since men were
followed for different time periods - some of them un-
derwent 20 checkups while others many fewer - the
sequences vary heavily in their length. There are
several risk factors followed (BMI, blood pressure,
biochemical explorations) - the task has to also con-
sider different event types. Finally, the immediate
measurements represent the event values. Disease
appearance is also recorded and time-stamped.

The intention of the study mentioned-above can
be rephrased in terms of sequential data mining as
follows. The intention is to identify frequent sequen-
tial patterns having any relation to an onset of any
of the observed cardiovascular diseases (CVDs). Ex-
amples of such patterns can be following: (1) when
BMI goes down and then it increases again while
blood pressure increases then CVD is more likely to
appear, (2) when BMI increases and HDL cholesterol
is low then CVD is more likely to appear.

The Stulong study made a subject of
ECML/PKDD data mining challenge in past
years. A great majority of contributions took no ac-
count of the issue of sequential mining, nevertheless
several papers relevant to this issue appeared. Our



former paper [3] presents a windowing, the domain-
specific approach based on trend features generated
through aggregation windows. Incidentally, the
examples of patterns mentioned above represent
two of true outcomes of this approach. The second
approach [5] mines for episode rules with a universal
tool WinMiner. Besides the domain independence,
the added value consists in supplying the optimal
window sizes of the discovered relations.

This paper applies another paradigm becoming
popular in domains structured as the Stulong study
- inductive logic programming. The paper applies
a general tool RSD [4] for relational subgroup dis-
covery in individual-centered domains. The prospec-
tive patterns are expressed in a form of first-order
features automatically extracted from the sequential
data. Relevance of these features can be then studied
in terms of AVL - the features can even be grouped
in order to reach final complex patterns.

The main contribution of the paper lies in the
RSD application as well as in general comparison
with the approaches published earlier. The pa-
per compares the reached results simultaneously dis-
cussing issues of simplicity, comprehensibility and
reusability.

RSD: Relational Subgroup Discovery

Relational rule learning is typically used in solving
classification and prediction tasks. The former re-
search within the Stulong domain has proven that
the discovered patterns (and undoubtedly hidden
ones too) do not show the strength to reliably distin-
guish between diseased and healthy individuals a pri-
ory. The task should rather be defined as subgroup
discovery. The input is a population of individuals
(middle-aged men) and a property of those individu-
als we are interested in (a CVD onset), and the out-
put are population subgroups that are statistically
“most interesting”: are as large as possible, have the
most unusual statistical (distributional) characteris-
tics with respect to the property of interest and are
sufficiently distinct for detecting most of the target
population. The definition of subgroups arises out of
the sequential patterns reflecting temporal develop-
ment of risk factors.

Relational rule learning can be adapted also to
subgroup discovery. A relational subgroup discov-
ery system RSD has been devised [4]. It is based
on principles that employ the following main ingre-
dients: exhaustive first-order feature construction,
elimination of irrelevant features, implementation of
a relational rule learner, use of the weighted covering
algorithm and incorporation of example weights into
the weighted relative accuracy heuristic.

The whole process can be simplified as follows.
The system tries to construct features first, i.e., con-
junctions of literals available in the domain. Their

critical property is potential to form subgroups as
defined above. Then, the features are grouped into
rules, whose critical property is very similar. They
only stress the coverage issue, i.e., they try to cover
as many target individuals that have not been cov-
ered yet as possible (for details see [4, 6]).

Mining The Stulong Data

Feasibility, complexity, resolution

When mining the Stulong data, the most general and
natural approach seems to be to allow arbitrary se-
quential features. Those features capture sequences
of arbitrary length and they are inherently inter-
transactional, i.e., each sequence may contain events
from different risk factors. Two examples of such se-
quences/features that emphasize time relations are
shown in Figure 1. Time relations are modelled by
binary predicates a f ter1, a f ter2, ..., a f tern – meaning
that the second event occurred 1, 2 or n checkups af-
ter the first event – and simultaneous – meaning that
the events occurred in the same checkup. Of course,
there could also have been defined various general-
izations of a f ter predicate, e.g., the second event oc-
curred at an arbitrary checkup following the checkup
of the first event. Let us point out that the check-
ups are slightly irregular in time but for the sake of
simplicity we consider the checkups being annual in
this text.

In order to minimize preprocessing work, the
continuous risk factors can be discretized by an-
other set of predicates (e.g., weight cat(X, small)
:- X < 64.). This approach can also bring
a higher variability in definition of events as
the event can be understood as an immediate
feature value (weight(checkupi,71)) or a category
(weight(checkupi,X), weight cat(X ,xsmall)). Then,
the (simplified) textual representation of a feature
can be as follows:

feature(ID,PAT):-checkup(PAT,Time1),

checkup(PAT,Time2), after1(Time1,Time2),

syst(Time1,V1), syst_cat(V1,low),

syst(Time2,V2), syst_cat(V2,high).

The feature holds for each individual/patient hav-
ing two consecutive checkups, whose systolic blood
pressure value changes from ”low” category to ”high”
category. It can be seen that each event corresponds
to three predicates (defining patient/time, risk fac-
tor/value and category), moreover, the events have
to be associated with a time predicate.

Although the variability of candidate sequences
is desirable from the point of view of the final prac-
tical knowledge, it can hinder the feasibility of se-
quence space search. The number of generated fea-
tures can become exceedingly high and disable to
generate the rules in a reasonable time. Suppose we
have a number of attributes a, a number of values of



each attribute v, and a length of a sequence l. Then,
the amount of possible single-transactional sequences
is O(ns) = vl bounded, while the number of inter-
transactional sequences is O(ni) = (av)l . The amount
of sequences grows exponentially with the maximal
allowed sequence length. Computation is even more
cumbersome when considering features. As men-
tioned above, the feature length multiply exceeds the
sequence length (as each event corresponds to more
predicates and the events have to be mutually or-
ganized), while computational burden grows expo-
nentially with the maximal allowed feature length
again. In some sense, the feature space exceeds the
originally intended sequence space since the system
cannot distinguish between meaningful and pointless
features (that do not correspond to any sequence) 1.

Therefore the feature and consequently the se-
quence length have to be limited as well as the num-
ber of values being distinguished as events and the
number of risk factors. As a result, sequences which
are long and consisting of many attributes with many
different values cannot be generated.

It follows that searching for inter-transactional
sequences is computationally very demanding. Let
us estimate the number of candidate sequences in
the Stulong domain. The number of checkups varies
from 1 to 21, around 80% of men were measured for
5 and more times – it seems to be reasonable to allow
for the sequences limited by 5 events. The group of
the most significant variables consists of 5 risk fac-
tors (the systolic and diastolic blood pressure (SYST,
DIAST), level of cholesterol in mg%(CHLSTMG),
triglyceride level in mg%(TRIGLMG) and body
mass index (BMI), there were tens of different val-
ues measured. Obviously, there are tens of billions
of candidate sequences.

Consequently, the number of attributes has to be
cut down, which causes loss of the information about
the relationships between attributes. At the same
time the length of sequences needs to be cut down,
which reduces resolution in the time domain. The
number of possible attribute values has to be lowered
(a reasonable amount of discretization categories can
only be used), which reduces the resolution in the
data domain. The inter-transactional nature of se-
quences may therefore be seen by some rather a prob-
lem than a feature, but we have to keep in mind, that
albeit it’s computational intensity it is a new way of
handling information and, as proposed in [2], new
and more effective algorithms of inter-transactional
rules processing are being developed. We have spent
some time trying to find an equilibrium between the

1RSD by no means generates arbitrary features, i.e., arbi-
trary conjunctions of literals. The feature space is implicitly
reduced as every variable has to be used as the input variable
at least once, features cannot be decomposable, predicates can
be defined as antisymmetric, etc. The real computation also
depends on background knowledge design that can introduce
high-level predicates further reducing the feature space.

number of attributes and the length of sequences and
then we decided to take kind of a “third way” and we
divided the data to 3 disjunct windows as described
thereunder.

Figure 1: Inter-transactional sequences in Prolog

Data preprocessing

One of the first tasks we have to cope with in order to
use RSD effectively is preprocessing. RSD loads and
interprets language declarations and data in a pred-
icate logic format [6]. Converting the dataset from
simple tables to Prolog code involves a lot of work,
and it would be almost impossible to do this by hand.
To address this problem, a Java conversion program
has been developed. It is a simple console program
run from the command line, which reads the data
in the comma separated values (CSV) format and
outputs .pl (Prolog code) and .b (background knowl-
edge) files. The Java program is in early alpha ver-
sion, it will be made public later. The final relational
representation covers patients, times of examinations
and examination data themselves. The background
knowledge defines how to work with time, what is
a time sequence, and what elements can individual
features consist of. The time sequences vary in their
length, CVDs may appear at their end only. Appar-
ently, the most recent measurements at the end of
the sequence are also the most important as they are
most likely to affect the current state of the patient.

The main preprocessing tasks are: (1) to gener-
ate the Prolog code for feature template construc-
tion, (2) to carry out attribute discretization and
(3) to perform trend construction. While the first
task is necessary formatting, the other two tasks
address effectiveness. As outlined in the previ-
ous section, immediate utilization of Prolog predi-
cates for preprocessing turned out to be quite in-
effective, because an extra predicate is needed for
each discretization made, which effectively doubles
the length of the features and decreases compu-
tational effectiveness of feature generation. Thus,
the features were discretized in advance in terms of
preprocessing. The following discretized attributes
were generated: NORMBMI, NORMSYST (NORM-
DIAST), NORMCHLSTMG, NORMTRIGLMG. All



those attributes are derived from appropriate Stu-
long risk factors BMI, SYST, DIAST, CHLSTMG
and TRIGLMG mentioned earlier. The discretized
attributes were transformed from the original at-
tributes by equidistant discretization into 3 intervals
referred to as “low”, “medium” and “high” 2.

Another way that helps to simplify feature
construction and that makes it more effective
is introduction of short-time trends. The at-
tributes TRENDBMI, TRENDSYST (TRENDDI-
AST), TRENDCHLSTMG, TRENDTRIGLMG rep-
resent transformations of original sequences, which
are reflecting the speed of change of the attribute
value in time. Possible values of the “trend” at-
tributes are “down2”, “down”, “flat”, “up”, and “up2”,
meaning “big decrease”, “decrease”, “no change”, “in-
crease”, and “big increase” of the attribute value re-
spectively. When dealing with trend attributes sim-
plification is obvious. The feature that holds for each
patient having two consecutive checkups, whose sys-
tolic blood pressure value changes from ”low” cate-
gory to ”high” category introduced in the previous
section can be expressed as follows:

feature(ID,PAC):-checkup(PAC,Time1),

trendsyst(Time1,big_increase).

The target (class) attribute CVD is a binary at-
tribute signalling the presence of an cardiovascular
disease at the end sequence corresponding to the
given individual (0 – non diseased, 1 – diseased).

The final set-up

Preprocessing proposed and implemented in the pre-
vious section reasonably reduces the feature length
while preserving the complexity of the underlying
sequence. To finish the final set-up, proximity of
CVD onset has to be also quantified. The length of
the original sequences varies from 1 to 21 checkups,
the average is around 8. The individual sequences
(SYST, BMI, etc.) were divided into 3 disjunct win-
dows called begin, middle, end, where end covers last
4 events, middle covers another 4 events before the
end, and begin covers the rest - all the events from
the beginning of the sequence to the middle window.
Each generated feature is located in one of those win-
dows and it may contain one sequence of a maximum
length of 2. The time predicates a f teri were replaced
by the binary predicates a f ter beg, a f ter mid and
a f ter end defining that the second event occurred an
arbitrary time after the first event and both of the
events are located in the same window (beg stands
for the beginning window etc.).

When combining features into rules, each rule
consists of a maximum of 3 features. This gives us an

2There are many alternate ways to discretize – a finer parti-
tioning, equi-depth discretization or local approaches defining
interval boundaries for every single patient separately could
have also been applied.

opportunity to describe a sequence with a maximum
length of 6. Those numbers may of course vary in
future applications, but the principle will be essen-
tially the same. Examples of the final rules can be
seen in the next section.

Results

In this section, selected generated rules and their in-
terpretations are presented. Let us take a look at the
following rule:

class:0, conf:0.968, cov:0.156, lift:1.308

f(7369,A):-checkup(A,B), normsyst(B,medium),

trendbmi(B,flat), trendsyst(B,up).

f(3068,A):-checkup(A,B), checkup(A,C),

after_mid(C,B), trendbmi(C,flat).

f(1158,A):-checkup(A,B), checkup(A,C),

after_beg(C,B), normtriglmg(B,low),

trendtriglmg(C,up2).

The rules have the same form as the classical de-
cision rules Cond⇒ Class, where Cond (premise) is
“object satisfies all the listed features” and Class (re-
sult) is “object is assigned the listed class”. How-
ever, the rules are not used to classify the individ-
uals but to distinguish interesting subgroups. Thus
they can also or rather better be viewed and treated
as association rules Ant⇒ Suc. As a matter of fact,
classical association rule characteristics serve for the
purpose of their evaluation – they can be viewed
at the first row of the rule. Class 0 suggests that
the rule concerns non diseased individuals. Cover-
age cov = n(Ant)/n, where n(Ant) is the number of
instances covered by the rule’s antecedent, n is the
number of all patients. Coverage is the fraction of pa-
tients covered by the rule. Rules with low coverage
(5% or less) are usually considered useless. Confi-
dence con f = n(Ant∩Suc)/n(Ant) is the accuracy of
the rule. It expresses how many instances that sat-
isfy the premise also satisfy the result. Lift is defined
as li f t = con f /pa, where pa = n(Suc)/n is the prior
probability of the rule’s class. It conveys how much
better is the rule’s performance compared to a triv-
ial classifier, which assigns all instances into one class
and its performance is the same as the prior proba-
bility of the class.

Remaining rows present the antecedent, namely
3 features, which have to be satisfied simultaneously.
The meaning of the first feature is that the patient
had an examination, in which he had medium sys-
tolic pressure, a steady trend of BMI and a rising
trend of systolic pressure. The meaning of the sec-
ond feature is, that the patient had two examinations
(B and C) in the middle of the time sequence and
examination C happened before examination B. In
the examination C, he had a steady trend of BMI.
The third feature says that the patient had two ex-
aminations (B and C) in the beginning of the time
sequence and examination C happened before exam-
ination B. In examination C he had a steeply rising



trend of triglycerides and in examination B he had
a low level of triglycerides. To summarize up all the
three features: Our patient had long time ago a steep
rise of triglycerides followed by a low level of triglyc-
erides. Short time ago, he had a steady trend of
BMI. At any time in history, he had a medium level
of systolic pressure, steady trend of BMI and a ris-
ing trend of systolic pressure. Patient, who satisfies
those conditions, has 30.8%3 more chance of not hav-
ing a cardiovascular disease than the average. Let’s
take a look at another rule:

class:1, conf:0.615, cov:0.049, lift:2.367

f(4380,A):-checkup(A,B), checkup(A,C),

after_end(C,B),normsyst(B,high),trendbmi(C,flat).

f(4124,A):-checkup(A,B),checkup(A,C),

after_end(C,B),normbmi(B,medium),trendchlstmg(C,up2).

f(4439,A):-checkup(A,B),checkup(A,C),

after_end(C,B),normsyst(B,high),trendchlstmg(C,up2).

This rule has a very good lift, but its coverage is
on the edge of usefulness. So the rule is very strong,
but valid only for a small fraction of instances. All
the events are happening at the end of the sequence,
very short time before the cardiovascular disease was
found. This patient had flat trend of BMI followed by
high systolic pressure, steeply rising trend of choles-
terol level followed by medium level of BMI and high
systolic pressure. To summarize a bit again, those
features mean that the patient had normal BMI with
steady trend, and after that he had a steep rise of
cholesterol level followed by high systolic pressure.
Patients, who satisfy those conditions, have a 137%
more risk of cardiovascular disease than the average.

But we shall keep in mind, that this rule was in-
duced from quite a small number of examples, so its
predictive/descriptive value is limited. The value of
the rule can be assumed from real group sizes. The
coverage 0.049 implies that the rule covers 39 indi-
viduals. As the prior probability of the diseased class
is around 26%, there are 10 diseased individuals ex-
pected in a randomly chosen group of 39 individuals
while the rule covers 24 diseased individuals. Con-
sidering the binomial probability formula, there is
only the probability 2.6e−6 that a rule covering 24
and more diseased out of 39 individuals occurs at
random. Nevertheless, repeated trials have to also
be taken into account as we have searched through a
large number of potential rules.

Relational subgroup discovery can also be utilized
for non-sequential data. In such a case, the applica-
tion is still more straightforward resulting in rules as
follows:

class:0, conf:0.910, cov:0.084, lift:1.230

f(9745,A):-liquors(A,none).

f(9737,A):-beer(A,more_than_1_liter).

This rule means that strong beer drinkers who
do not drink liquors are 23% less likely to have a

3Taken from the lift characteristics, p = (li f t −1) ·100%

cardiovascular disease. When compared with tra-
ditional association rule mining or statistical anal-
ysis, the relational method outputs a comparable set
of non-sequential rules (actually, the same rule as
this was already found before). Sequential and non-
sequential predicates/features can be naturally com-
bined as demonstrated in the following rule:

class:1 conf:0.568, cov:0.055, lift:2.185

f(9738,A):-beer(A,occasionally).

f(8453,A):-checkup(A,B),normchlstmg(B,medium),

trendchlstmg(B,flat).

f(3787,A):-checkup(A,B),checkup(A,C),after_mid(C,B),

trendtriglmg(B,down2),trendtriglmg(C,flat).

The rule can be interpreted such that occasional
beer drinkers with a normal cholesterol level with
a steep drop of triglycerides level in blood have a
118% more chance of developing CVD. Of course, the
coverage characteristic has to be considered again.

When putting those two rules together, one might
infer that a good prevention of CVD is not to drink
liquors, and to stop smoking (which is a common
knowledge), but the interesting part is, that it also
helps to drink a lot of beer, but not for people with
dropping triglycerides in blood.

Table 1: Characteristics of the strongest found rules

Class Confidence Coverage Lift

0 0.9 0.32 1.22

0 0.95 0.2 1.28

0 0.97 0.16 1.31

0 0.90 0.15 1.22

0 0.91 0.08 1.23

0 0.97 0.13 1.31

0 0.95 0.05 1.29

0 1.0 0.07 1.35

1 0.45 0.17 1.73

1 0.47 0.13 1.81

1 0.47 0.1 1.8

1 0.57 0.06 2.19

1 0.62 0.05 2.37

1 0.7 0.03 2.68

The presented examples demonstrate the struc-
ture and interpretation of the inferred rules. It is
impossible to list all the meaningful rules and their
interpretations. Table 1 gathers quantitative charac-
teristics of the most promising rules which can ex-
press their real strength. Generally speaking, the
rules having better coverage mostly have a lower lift.
As the non-disease group is larger, the rules aimed at
this group show better coverage, the diseased group
is just the opposite. When confronted with a com-
mon medical knowledge, the majority of the rules
seems to be sound, others may be considered as in-



teresting, surprising or even contradictory.

Discussion

The generated rules are able to describe detailed in-
terconnections between attributes in time, and are
quite immune to errors coming from having too many
different sequences because of minor changes in at-
tribute values or time placement. On the other hand,
the proposed method is not effective when used on
systems, where those minor changes may have a ma-
jor influence on the property of interest. The time
axis is abruptly split while physiological nature of
the modelled phenomenon ask for smooth treatment.
The method is also better suited for finding local
patterns than global models. When used directly for
classification (i.e., intended for prediction), its per-
formance is the same or worse than standard learning
techniques (i.e., Decision Table, J48 Decision Tree,
Bayesian network, etc.).

On the other hand, the proposed relational
method is able to find patterns, which might
be omitted by standard association rule learn-
ing algorithms and systems for mining non-
intertransactional episode rules from sequential data.
Generally speaking, the method can be considered
as fully general. However, its performance is highly
dependent on the data mining goal, the nature of
the dataset and subsequent design of preprocessing
and/or background knowledge.

Let us compare the presented method with its al-
ternatives. Windowing is a simple and often used
method to transform sequential data. The sequence
of data can be either decomposed into several dis-
junctive windows or a sliding window approach can
be applied. In both cases, the windows are sub-
sequently replaced by aggregate attributes (linear
trends are mostly used) and analyzed by traditional
AVL. [3] applies the method of the fixed length slid-
ing window to Stulong data. Although this method
brought very good results in the particular task, it
has to be tailored to the analyzed domain. Ques-
tions such as ”what is the optimal window length?”
or ”is the linearization a proper generalization of the
prospective patterns?” have to always be considered.

WinMiner [5] presents a general tool allowing to
search for episode rules – patterns that can be ex-
tracted from a large event sequence. When dealing
with the Stulong data, similar problems as discussed
in this paper have to be solved first. In particular, a
proper discretization has to be proposed in order to
distinguish event types, inter-transactional patterns
can be searched for if and only if the event types are
distinguished also for distinct risk factors. During
runtime the maximum time gap between the first
and the last prospective events has to also be lim-
ited in order to cope with the exponential growth of
the search space. The sequential patterns found by

RSD and WinMiner are similar. In principal, RSD
allows the user to better pre-specify the searched pat-
terns via background knowledge and thus restrict the
searched space which may, on the other hand, turn
out to be time consuming and ask for expert knowl-
edge in relational learning.
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