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Abstract. The common problems in machine learning from omics data
are the scarcity of samples, the high number of features and their com-
plex interaction structure. The models built solely from measured data
often suffer from overfitting. One of possible methods dealing with over-
fitting is to use prior knowledge for regularization. This work analyzes
contribution of feature interaction networks in regularization of ensem-
ble classifiers representing another approach to overfitting reduction. We
study how utilization of feature interaction networks influences diversity
of weak classifiers and thus accuracy of the resulting ensemble model. The
network and its random walks are used to control the feature random-
ization during construction of weak classifiers, which makes them more
diverse than in the well-known random forest. We experiment with differ-
ent types of weak classifiers (trees, logistic regression, näıve Bayes) and
different random walk lengths and demonstrate that diversity of weak
classifiers grows with increasing network locality of weak classifiers.

Keywords: ensemble learning, random forest, prior knowledge, diver-
sity, gene expression

1 Introduction

In recent years, the fields of genomics, proteomics and metabolomics (collectively
omics) have been strongly influenced by progress in high-throughput technolo-
gies which led to a boost of generated data. These omics data are thoroughly
analyzed to learn about the mechanisms of shaded diseases, to predict the dis-
ease onset and progression, or to set a proper treatment protocol. One of the
common problems in learning from omics data is the scarcity of available sam-
ples, namely when compared with their large dimensionality. This inconvenient
ratio, altogether with common noisiness, leads to overfitting as the number of
possible hypotheses immensely exceeds the number of training examples. In the
field of machine learning, the overfitting is commonly addressed by the means of
regularization, when a prior hypothesis is imposed during the learning process.
Another approach to deal with overfitting, namely the one caused by the noise,
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is ensemble learning. Ensemble methods train multiple classifiers and use these
classifiers to create an aggregated classifier for a single task. These ensembles
usually outperform each of the base classifiers, which they are composed from,
in most classification tasks [7,8]. The key assumption of ensemble models is that
the underlying classifiers are diverse, i.e., that they make different errors, and
thus they can together achieve higher predictive performance than could have
been obtained from any of the constituent classifiers [7,23].

In this paper, we study how regularization by domain knowledge may con-
tribute to the diversity of ensemble classifier and consequently boost its perfor-
mance. This paper follows the work of [2,1] where random forests (RFs) [5] get
enriched with domain knowledge. The knowledge is here defined as prior known
interaction between omics features. Since the interacting features are considered
correlated, the base classifiers built on different sets of interacting features are
assumed to be decorrelated and therefore more accurate in common. The goal is
to show how ensemble classifiers can increase their diversity due to prior knowl-
edge and be further used for better predictions of the onset and progression
of heterogeneous multifactorial diseases such as myelodysplastic syndrome that
serves as a case study in the experimental part.

2 Motivation and Related Work

The key feature of an ensemble is the diversity between its base classifiers. The
ensemble provides higher accuracy, only if the ensemble members disagree about
some inputs [6,15,25]. So far, there have been several attempts to increase this
diversity and potentially its ability of generalization.

A straightforward approach to deliver the ensemble diversity is manipulating
training samples. This method is applied to unstable classifiers such as neural
networks (NNs) and decision trees (DTs) [20]. Most known examples are bag-
ging [4] and boosting [22]. Similarly, one may manipulate with the feature set.
The random subspace (RS) method (also called attribute bagging) creates ran-
dom subspaces of the feature space, each base classifier is trained using one of
these subspaces [20,21,11]. This method is recommended especially when the di-
mension of the feature space is very high and most other classification methods
suffer from the curse of dimensionality [11]. An orthogonal way to achieve diver-
sity is by manipulating the algorithm that creates base classifiers. The learning
algorithm can change its parameters, for example the topology of NN [12], the
pruning factor of DTs [20] or the starting point and the way of traversal in the
hypothesis search space [6]. According to Rokach [20], there are two methods of
manipulating the space traversal — random-based strategy and collective perfor-
mance strategy [20]. The random-based strategy uses randomness to gain higher
diversity; one of the most common examples is a random forest [5], in which a
weak classifier does not select the best feature in each its node but only the best
feature from a certain feature subset. A different forest randomization strategy
was used in [8], where, for each tree, “the 20 best candidate splits are computed,
and then one of these is chosen uniformly at random”. Contrarily, the collective
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performance based strategy creates the ensemble as a whole while trying to in-
crease its accuracy by various means. The base classifiers might cooperate with
each other in order to specialize, i.e., be diverse from others [20].

The most impacting of collective performance strategy is the family of penalty
methods. They add a penalty term to the error function of an ensemble to encour-
age diversity among base classifiers [6,20,21]. Several penalty methods were pro-
posed and analysed in the literature — e.g., negative correlation learning [20,6]
or root-quartic negative correlation learning [6].

Besides ensembles, another approach to address overfitting is regularization.
It applies especially when the sample size n is much smaller than the number of
measured features p, n � p. As mentioned in Sect. 1, regularization means im-
posing certain hypothesis during the learning process, while this need not to be
admitted if there is not enough training examples in its favour. This is very suit-
able in the case of domain knowledge [1,19,16]. The hypothesis may be defined
as a set of feature interactions, which shows valid (or not) in a certain domain
context. Nonetheless, the hypothesis imposed may be defined uninformedly too,
merely by restraining the hypothesis space geometrically as in the case of margin
classifiers, or purely as restrained hypothesis space as in the case of DT pruning.

As mentioned above, one of the ways to make base classifiers diverse, is to
manipulate their learning hypotheses. Here we can see how regularization meets
ensemble learning, that regularizing each of base classifiers should make them
diverse and potentially more powerful altogether. This was a motivation for our
recent ensemble method [1], where the base trees are induced only from the
genes lying close to each other in omics, namely protein-interaction, network.
In the other words, as genes whose corresponding proteins bind or interact are
assumed to be correlated in their mRNA expression, we assume that trees built
on the interacting features shall be decorrelated in their prediction. Disagreement
between the base prediction is fundamental for the ensemble diversity, being the
key quantity in its measuring [15,6]. In this paper we investigate possibilities to
gain this diversity through the domain knowledge about protein interactions.

3 Methods

In this chapter we briefly describe the measures commonly used for quantify-
ing the ensemble diversity. Next, we discuss our recently proposed ensemble
method, which we here further generalize and investigate as to its diversity in-
duced by domain knowledge. There are two main approaches of measuring the
diversity, pairwise and non-pairwise [15,6]. The non-pairwise measures mostly
compare the output of base classifiers with the averaged output of the whole
ensemble or are based on the idea of entropy. The pairwise measures calculate
the average of a particular measure of all possible pairings of ensemble mem-
bers [6]. For this research, four diversity measures were chosen — entropy [15]
and Kohavi-Wolpert measure (KW) [15,13] represent non-pairwise measures, av-
erage Q statistics (Qave) [15,28] and double-fault measure (DF) [15,10] fall into
pairwise measures.
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3.1 Network-constrained Forest (NCF)

NCF algorithm [1] combines two approaches to solving the n� p problem com-
mon in the omics field, it utilises prior knowledge for creation of an ensemble of
decision trees. Unlike RF, the NCF biases “the feature sampling process towards
the genes and loci in general, which have been previously reported as candidates
for causing the phenomenon being studied (. . . ) and consequently the omics fea-
tures which directly or indirectly interact with those candidate genes” [1]. This
sampling process is driven by a random walk on the biological interaction net-
work integrating both mRNA and miRNA prior knowledge, the process starts
from the candidate causal genes called seeds. When candidates causal genes are
unknown, seeds are randomly sampled from the entire set and the probability of
a gene being sampled as a seed is proportional to its out degree in the network.
Further implementation details and pseudo-code are available in [1,2].

The crucial assumption behind the NCF is that gene that are close in the
biological feature network are also correlated in their expression, therefore it
is suitable to create weak classifiers grouping these features because it leads
to decorrelating the individual weak classifiers and therefore better ensemble
diversity. The biological background behind this method is discussed in [1] and
the conclusion presented is that the weak “DTs may vaguely correspond to
the individual disease factors and their network-local manifestations” [1]. The
individual trees are constructed using the features in the network neighbourhood
of a particular seed gene that was chosen for the tree. The neighbourhood is
represented by a distribution function using which the feature set is sampled.
This distribution is defined as a random walk of length k from the seed gene —
it is more dense when closer to the seed gene and also it is not possible to reach
genes that are further in the network than k. Therefore, the NCF is parametrized
by the walk length k whose optimal value may be different for different tasks as
it strongly influences the feature sampling [1]. A heuristic based on incidence of
underfitted trees for setting the parameter k was proposed in [2]. The influence
of k on the accuracy and diversity of weak learners and the overall accuracy of
the ensemble is further analyzed in Sect. 4.

3.2 The Novel Method of Network-constrained Random Subspaces

In this section, we propose a generalization of the NCF algorithm called network-
constrained random subspaces (NCRS) which applies the idea of biased sampling
of the feature set to the general ensemble random subspace method (see Sect. 2).
The idea of NCF is not strictly related to ensembles of DTs and it is easily exten-
sible to ensembles of other weak learners. Even though DTs as weak classifiers of
forest have many advantages as, for example, direct interpretability and possible
use of such forest for feature selection, other classifiers such as logistic regression
(LR) or näıve Bayes (NB) might be used as well. Moreover, turning RF and
NCF into a tree independent ensemble method is allowed by a simple modifica-
tion of the algorithm, feature sampling performed independently in tree nodes
changes into sampling performed before construction of a whole weak learner.



Increasing Weak Classifiers Diversity by Omics Networks 5

The relationship between RF, RS, NCF, and NCRS is depicted in Fig. 1 — the
RF and the NCF both sample the feature space in each node of each tree, how-
ever, the RS and the NCRS both sample the feature space only for each weak
learner. The sampling in the NCF and the NCRS is network-constrained, i.e., its
sampling procedure generates samples using random walks over the interaction
network, while the sampling procedure in the RF and the RS is random.

RF NCF

RS NCRS

trees, node sampling
network driven

network driven

trees, node sampling

Fig. 1: The relationship between RF, RS, NCF and NCRS.

4 Experiments

Further described experiments had several objectives. First of all, the goal was
to verify the accuracy of the newly proposed NCRS method, namely the gen-
eralization from DTs used in [2,1] towards LR and NB as weak classifiers. The
second objective was to analyze the impact of different values of the parameter
k defining the length of a random walk on the accuracy of both the whole en-
semble and also of the individual weak classifiers. Moreover, [2,1] implies that
the diversity of weak classifiers should be strongly influenced by the parameter k
and in most cases, a longer walk should lead to smaller diversity among the weak
classifiers in the ensemble as they become less specialized. The parameter k was
analysed for similar values as used in [2,1] but also for more extreme values —
e.g., for a random walk of length 100.

Another objective was to experimentally validate the convergence of both
NCRS and NCF as k → ∞. The NCF does not converge to RF, rather it con-

verges to the stationary distribution of random walk π∞(v) = deg(v)
|I| , where I is

the the set of edges in the biological network [1]. However, the NCF converges
to the stationary distribution only if there are no miRNA interactions present
because such interactions are handled in a special way — when encountering the
miRNA node in the walk, the walk always ends there, details are again available
in [1]. The convergence was not experimentally validated in [1].

4.1 Domain and Data

Data related to myelodysplastic syndrome (MDS) were used for most of the
experiments. It is the same data that was used in the original experiment with
NCF [2,1]. The data were provided by a collaborative laboratory at the Institute
of Hematology and Blood Transfusion in Prague. The data were obtained for
analysis of lenaledomide treatment of patients with myelodysplastic syndrome.

The data consist of two datasets — mRNA with 16,666 attributes measur-
ing the gene expression level and miRNA with 1,146 attributes measuring the
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expression level of particular miRNAs [1]. The samples were obtained from bone
marrow (BM) CD34+ progenitor cells and from peripheral blood (PB) CD14+
monocytes and were obtained either before the treatment (BE) or during the
treatment (DU). Moreover, the data can be further categorized by the partial
deletion of the chromosome 5 (5q or non-5q). Using these categories, the data
consisting of 75 samples were divided into 10 related datasets.

Again, for the coherence of experiments with [2,1], the same prior knowledge
in the form of gene networks and candidates causal genes was used. The prior
knowledge is publicly available — in vitro validated miRNA-mRNA interactions
are from TarBase 6.0 [24], in silico predicted interactions are from miRWalk
database [9], experimentally validated protein-protein interactions are from Hu-
man Protein Reference Database [18], predicted protein-protein interactions are
from [3] and MDS causal genes are from [27], according to [1].

4.2 Experimental Protocol

The NCRS ensemble classifier was implemented in Python 3 as a modification of
both the original NCF [1] and general Bagging classifier from machine learning
library Scikit-learn [17] version 0.16.1. 10 times repeated stratified m-fold cross-
validation was used for MDS experiments, where m := min{10, c}, where c
is the number of samples in the smallest class. This setting of m maximizes
the number of stratified folds in tasks with small sample sets and keeps the
common number of folds for the rest of tasks. All ensembles were built from 1000
weak classifiers using the RS method, each weak classifier accessed 100 features.
Both the parameters were set in advance with no tuning. The number of weak
classifiers was strongly limited by computational costs of both learning period
and calculating pairwise diversity measures. The number of accessed features
roughly followed the rule of thumb

√
p implemented in [17].

Matthew’s correlation coefficient (MCC) was chosen as a measure of classifi-
cation quality insensitive to classes with different sizes. The MCC was calculated
for predictions for the whole dataset, not for individual folds, and then averaged
over repetitions — in contrast to [1], where median was used instead of averaging.
The random walk length k was set to k ∈ {1, 2, . . . , 15} for most experiments,
for the rest it is explicitly noted which set of k was used.

5 Results

The results split into several parts — the comparison of NCRS with the unbiased
RS method, the analysis of diversity, and the analysis of convergence of NCRS.

NCRS and Unbiased Random Subspace Method. In the original study [2],
the NCF was compared to the random subspace forest of DTs, however, our
NCRS generalization allows the use of different weak classifiers in the ensemble.
For this part of experiment, we have used NCRS with DTs (CART), LR and
NB classifiers. In most tasks, the NCRS was better in terms of MCC for some
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values of k than the unbiased RS with the same type of weak classifiers. For each
datasets, there are three possible results — NCRS better for some vales of the
parameter k (win), NCRS with exactly the same performance as RS for some
values of k and worse for the rest (tie) and NCRS worse than RS for all k (loss).

Tab. 1 displays results for different types of weak classifiers in the NCRS
compared with the unbiased RS. However, this comparison is optimistically bi-
ased because NCRS was considered to be the winner if it was better for any value
of k — in real case scenario, the parameter k could be either determined using
internal cross-validation or by heuristic proposed in [2]. On the other hand, the
NCRS was better in terms of MCC for any k ∈ {1, 2, . . . , 15} for many tasks —
the k independent results are displayed in column Pessimistic Tab. 1 — there-
fore, the optimistic bias is not present in those experiments as this table only
contains results that hold for any value of k ∈ {1, 2, . . . , 15}.

Table 1: Performance of three different types of weak classifiers in terms of wins,
ties, and losses, which were consistent for any k ∈ {1, 2, . . . , 15}

Classifier Type
k-dependent k-independent

wins ties losses wins ties losses

Decision Tree 8 1 1 5 1 1
Logistic Regression 5 4 1 3 1 1
Näıve Bayes 7 1 2 6 1 2

The results displayed in Tab. 1 compare whether the NCRS with the par-
ticular type of weak classifiers is better than RS with the same type of weak
classifiers, they do not compare the suitability of used weak classifiers for the
task as they do not show the absolute accuracy over the datasets. From this
point of view, the NCRS with logistic regression performs best as depicted in
Tab. 2. However, the original NCRS with decision trees is also very close to the
NCRS LR — both in the rank and the average MCC.

Table 2: Comparison of performance of different types of weak classifiers for both
NCRS and RS ensembles. The MCC values are taken as the maximum MCC for
k ∈ {1, 2, . . . , 15} for given classifier
Task #samples NCRS DT NCRS LR NCRS NB RS DT RS LR RS NB

BMBE DU5q 16 0.76 0.36 0.38 0.34 0.46 0.10
BMH ABE5q 21 1.00 1.00 1.00 1.00 1.00 1.00
BMH ABEnon-5q 16 1.00 1.00 1.00 0.87 0.90 0.87
BMH ADU5q 15 0.72 0.79 0.81 0.75 0.66 0.71
BMnon-5q 5qBT 17 1.00 1.00 0.75 0.66 0.79 0.62
PBBE DU5q 22 0.57 0.79 0.33 0.57 0.62 0.14
PBH ABE5q 19 0.99 1.00 0.82 1.00 1.00 0.84
PBH ABEnon-5q 14 0.83 1.00 0.84 0.81 1.00 0.65
PBH ADU5q 23 1.00 0.93 0.56 0.92 1.00 0.66
PBnon-5q 5qBE 13 0.96 1.00 0.82 0.86 1.00 0.64

Average MCC 0.88 0.89 0.73 0.79 0.84 0.62
Average rank 2.85 2.20 3.85 4.00 2.70 5.40
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However, these experiments were biased because the best value of k based on
the performance on the test set was chosen, better approach would be use internal
cross-validation for determining the optimal value of k and then use this value
on the test set. However, the datasets are very small, from 13 to 23 samples, and
internal cross-validation would reduce the training or testing set even further.
Even though it would still be possible, for example using leave-one-out cross-
validation, the experiments would be computationally costly, moreover, the k
is to be set using the heuristic proposed in [2,1], therefore the cross-validation
would not simulate the real use of the method. The heuristic also cannot be used
for comparison as it is tree specific, modification of the heuristic for other learners
is part of possible future work. Furthermore, the purpose of this experiment was
to show that other weak classifiers are also suitable alternative to DT.

The conclusion arising from this part of experiments is clear — the NCRS
method is suitable also for other types of weak classifiers than just the DT. The
NCRS method outperformed the RS method in most tasks for any of the three
tested types of weak classifiers. In terms of absolute performance, the NCRS with
LR outperformed other ensemble classifiers both in ranks and average MCCs.

Analysis of Diversity. The analysis of the relationship between the walk
length k and the diversity among classifiers in the ensemble is difficult because
there are two main characteristics that are dependent on the parameter k —
diversity and weak classifiers accuracy — and they cannot be analysed individ-
ually. For this reason, four different diversity measures were chosen to understand
the dependency between diversity and accuracy in more depth.

As proposed in [2,1], the diversity indeed seems to decrease with the length
of random walk k as the weak classifiers become less and less specialized. On the
other hand, the average MCC of weak classifiers is increasing with the length k
in most cases. Therefore, the overall MCC of the ensemble is based on the pro-
portion between the diversity growth and the weak classifiers accuracy growth.

The overall MCC of the ensemble is the result of proportion of its weak clas-
sifiers accuracy and diversity. This is nicely shown in Fig. 2 where the ensemble
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Fig. 2: The trade-off between the weak classifiers’ diversity and the accuracy.
The graph represents task BMH ABE5q classified using NCRS with Logistic
Regression weak classifiers.

starts with diverse weak classifiers with lower accuracy for k = 1, then the diver-
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sity is decreasing, however, the weak classifiers’ accuracy is steeply increasing,
therefore the overall MCC of the ensemble reaches 1.0 and holds there while the
diversity is still decreasing and the weak classifiers’ accuracy slowly increasing.
However, even though the weak classifiers accuracy is increasing, they tend more
and more to have correlated errors — these errors have bigger influence than
the increasing accuracy and DF measure starts to decrease. At some point the
accuracy of weak classifiers begins to slowly decrease but since the ensemble di-
versity is very low at this point, the ensemble MCC plummets — the decrease in
MCC is not proportional to the decrease in the average MCC of weak classifiers
(AWMCC) — roughly 1.5 % for the AWMCC while about 9 % for the MCC.

As a whole, the NCRS algorithm manages the diversity nicely, in most cases,
it starts with specialized and diverse weak classifiers and with increasing value
of the parameter k, the diversity usually decreases and the average accuracy
of weak classifiers increases. Tuning the random walk length k may allow to
find the optimal trade-off between the diversity and the AWMCC resulting in
high MCC of the whole ensemble. Only in several cases, the NCRS ends up with
unexpected distribution of weak classifiers with higher AWMCC than the overall
MCC. This phenomenon requires further analysis. However, it occurs only for
particular combination of the dataset and the type of weak classifier, moreover
it appears for particular values of k only.

Analysis of The Convergence of NCRS. As described in Sect. 4, the
NCRS converges to a stationary distribution of a random walk for k → ∞
where no miRNA nodes are present in the network. The goal of this experiment
was to empirically validate the convergence, therefore this experiments utilises
only candidate causal genes and mRNA interactions as prior knowledge. Pa-
rameter k was chosen from {2, 4, 6, 8, 10, 15, 20, 30, 40, 60, 80, 100, 150, 200}. The
NCRS algorithm was also modified to sample the features with a probability

π∞(v) = deg(v)
|I| — i.e., the probability of a feature being sampled is proportional

to its degree in the biological network. Some results of this experiment are de-
picted in Fig. 3, where the dotted lines represent the values of measures for the k
independent degree proportional sampling NCRS, while the full lines represent
the k dependent random walk sampling NCRS. In contrast to other plots, the
scale of y-axes is very important in the convergence analysis — e.g., seemingly
unconverging lines might be just caused by small fluctuations caused by the
stochastic nature of the classifier as, for example, in Fig. 3a, where the values
seemingly do not converge for increasing values of k, however, the scales of axes
are very small, therefore the observed chaotic behavior is just small fluctuations
around the desirable values.

On the other hand, the convergence is ideally depicted in Fig. 3b, where all
the measures nicely converge to the values obtained by the modified NCRS for
higher values of k. The convergence manifests in other tasks too, albeit not as
nicely. It seems that the values converge to different values in several tasks or
that the convergence is biased a bit for some reason. Besides the bias, there are
also other two possible explanations for such phenomenon. Firstly, it might be
just a fluctuation of the stochastic-based original NCRS. Secondly and more im-
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Fig. 3: Empirical validation of proposed convergence

portantly, it might be caused by the stochastic nature of the modified NCRS as
well. When there are changes due to the stochastic nature of the original NCRS,
random fluctuation are expected as we fit the classifiers for different values of k
and these fluctuations show in the smoothness of the measured points, however
when dealing with stochastic nature of the modified NCRS, only one value is
obtained and in spite of 10 repeated n-fold cross-validation, the obtained aver-
aged values might still be significantly different from the hidden true expected
values of the modified NCRS.

This experiment strongly suggests that the proposed convergence of NCRS
(NCF) holds, even though there are still several tasks which would need further
analysis as the values seem to converge to a slightly biased point.

6 Conclusion

Ensemble methods have been widely applied to problems showing high dimen-
sionality, small sample size and complex structure. The omics high-throughput
data often have all the above-mentioned characteristics and ensemble methods
represent a popular alternative in their classification [26]. In this paper, we focus
on the omics data where the complex structure is partially known or assumed.
In particular, we suppose that a feature interaction network exists and the in-
teractions imply feature dependencies. Note that the dependencies can hardly
be reliably identified from the data itself for the sake of small sample size. By
contrast, the interaction network can be composed from the relationships and
regulation formerly described in literature.

We stem from our recently proposed NCF that modifies the well-known ran-
dom forest for domains with known interaction networks. We have proposed
its further simple generalization called network-constrained random subspace
method which goes beyond DTs used in the original NCF. NCRS was empir-
ically validated using the same datasets as in the original study [2,1]. It was
conclusively shown that NCRS is suitable for different types of weak classi-
fiers. To exemplify, the NCRS with logistic regression weak classifiers proved to
outperform the originally proposed NCF (NCRS DT) on most MDS datasets.
Importantly, both nave Bayes and logistic regression classifiers provide insight
into the problem as they allow to easily analyze feature importance.
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Furthermore, the role of diversity in NCRS was studied using popular diver-
sity measures. As the feature sampling process in NCRS is parametrized by the
length of random walk k, we have analysed its influence on the diversity and
accuracy of the ensemble. We have empirically shown that the diversity usually
decreases with increasing the length k as was hinted, but not tested, in [2,1]. The
last experiments for the MDS datasets were validating the convergence NCRS
for k → ∞ proposed in [1]. After that, we have tested the behavior of NCRS
on benchmark datasets from [14], which, in contrast with MDS datasets, do not
have miRNA data and candidate causal genes. The NCRS performed similarly
as RS on most of these datasets but it slightly outperformed the RS on several
datasets and was outperformed by the RS method on only one datasets.

There is a lot of future work. First, with assumed increasing availability of
omics data, the experiments will be replicated with more data. We expect in-
creased statistical relevance and the possibility to analyse the influence of the
size of the training set on the performance of NCRS compared to the unbiased
RS. With more data, the prior knowledge is expected to become less important,
however, the sample sizes where prior knowledge is superfluous are not realistic
yet. Second, we plan to integrate other types of data and prior knowledge into
NCRS (e.g.,DNA methylation arrays). The datasets with a large scale of mea-
surements (GE, miRNA, DNA methylation) are still rare and small-sized, but
their importance will increase. Third, a modified heuristic for finding the optimal
length of random walk k that applies for ensembles of general weak classifiers,
not just the NCF, shall be proposed. Last but not least, biology is not the only
domain where the prior knowledge in the form of networks is available. The other
tasks could be, e.g., document topic prediction or click prediction.
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