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Abstract—High-throughput genomic technologies have proved
to be useful in the search for both genetic disease markers
and more complex predictive and descriptive models. By the
same token, it became obvious that accurate and interpretable
models need to concern more than raw measurements taken
at a single phase of gene expression. In order to reach a
deeper understanding of the molecular nature of complexly
orchestrated biological processes, all the available measurements
and existing genomic knowledge need to be fused. In this paper,
we introduce a tool for machine learning from heterogeneous
gene expression data using prior knowledge. The tool is called
miXGENE, it is elaborated upon in close connection with the
biological departments that dispose of the above-mentioned data
and have a strong interest in their integration within particular
problem-oriented projects. The main idea is not merely to capture
the transcriptional phase of gene expression quantified by the
amount of messenger RNA (mRNA). The increasing availability
of microRNA (miRNA) data asks for its concurrent analysis
with the transcriptional data. Moreover, epigenetic data such
as methylation measurements can help to explain unexpected
transcriptional irregularities. miXGENE is an environment for
building workflows that enable rapid prototyping of integrative
molecular models.

I. INTRODUCTION

During the last decade, the high-throughput genomic tech-
nologies like microarrays and next-generation sequencing have
become an irreplaceable means for understanding genetically
determined diseases [1]. Early research studies exploited gene
expression (GE) data to discover sets of marker probesets
without employment of existing (prior) knowledge [2]. This
approach is not sufficient when an experiment results in too
many relevant genes, which are hard to interpret, or too
few genes, typically when an intricate interplay takes place
among moderately expressed genes. Concerning complexity
of the systems, volume of the data and the amount of noise
within them, effective analysis of the data that takes into
account existing knowledge has become a pressing need. It
is now generally agreed that the true logic of diseases and
other biological processes can only be explained by detailed
interpretation [3].

There are a plethora of algorithms and tools designed
to exploit prior knowledge (PK), typically based on the
Gene Ontology (GO) terms [4] and cellular pathways (e.g.,
KEGG [5]), which provide information about the interplay
of genes in various molecular functions, biological processes
and cellular components, in the case of the GO, or pro-
vide information about molecular interactions in metabolic,

signaling and disease-related pathways [6], [7], [8]). Still,
several fundamental challenges of the enriched analysis using
PK persist. This paper addresses the issue of moderate-only
correlation between mRNA and protein levels which is caused
by post-transcriptional and post-translational modifications [9].
These modifications not only play an important role in cell
development and many diseases (e.g., [10], [11]) but also
negatively affects the use of PK which is not directly based
on transcriptional regulation interactions (e.g., protein-protein
interaction networks) [12], [13]. This lack of correlation can
be mitigated if we take into account other data sources; partic-
ularly, miRNA expression, since the small non-coding RNAs
(miRNAs) play a role in translational and post-transcriptional
regulation of GE and often result in gene silencing, and
epigenetic data measuring level of DNA methylation and
explaining unexpected transcriptional irregularities.

There are a variety of methods available for integrative
analysis of mRNA, miRNA and methylation data and appro-
priate PK in the form of miRNA-mRNA interactions, cellular
pathways and the GO terms; not all of them are capable to use
all the data and knowledge. The most straightforward approach
designed to exploit additional information in the form of the
miRNA and methylation profiles is merging [14]; this method
does not use any PK. [15] provides a black box integration
procedure for several data sources with an immediate classifi-
cation output. [16] utilizes matrix factorization, these methods
employ PK such as miRNA-mRNA interactions and pathway
definitions for regularization of the matrix decomposition. The
methods described in [17], [10] infer miRNA and mRNA mod-
ules using miRNA-mRNA interactions based on decision rules
and maximal bi-clusters, respectively. [18] uses GO terms and
miRNA-mRNA relations to create ensemble classifiers based
on tree-like modules. [19] proposes an integration method
for mRNA and miRNA expressions directly motivated by the
inhibition/degradation models of GE regulation.

This paper presents the web tool miXGENE freely avail-
able at http://mixgene.felk.cvut.cz/. It is de-
signed mainly for joint enrichment analysis of mRNA, miRNA
and DNA methylation data. miXGENE also contains an inter-
face to the database repository of high throughput GE data
(GEO) [20] and some other PK related databases (the GO [4],
KEGG [5], MSigDB [21], miRWalk [22], miRBase [23]).
miXGENE allows the user to create their own analytic pipeline
using an interactive workflow editor and offers a spectrum of
methods designed for data visualisation and analysis of mRNA,
miRNA and DNA methylation profiles.



II. SYSTEM DESCRIPTION

miXGENE is representative of the mashup technology
that fuses data from several publicly available sources (NCBI
raw profiles and platform annotations, R Bioconductor li-
braries [24] and MSigDB [21]). The tool can be split into three
parts: (i) graphical user interface (task definition, presentation
of results), (ii) workflow management (task decomposition and
its global planning in terms of the individual plugins) and (iii)
computational plugins (implementation of the individual ana-
lytical methods such as data normalization, feature extraction,
learning of classifiers, etc.). Web interface and storage man-
agement are implemented in the web application framework
Django, workflow management is implemented in JavaScript
and the computational plugins are mainly implemented in
Python and R [25].

A. miXGENE as a workflow management system

miXGENE as a workflow management system are a grow-
ing area of research [26]. The main reasons for deployment
of WMSs are: (i) an effort to make computational biology
accessible to researchers who are not expert programmers, (ii)
to enable tracking of experimental history and offer an easy-to-
use tool for testing different settings, and (iii) the possibility to
exchange the scientific workflows [26]. All these reasons are
motivated by a goal to improve reproducibility, transparency
and, therefore, mitigating experimental mistakes. There are
many general frameworks or tools (both stand-alone and web-
based) designed to represent bioinformatic or data-analytic
workflows; e.g., BioBike [27], Taverna [28], Galaxy [29]
and Anduril [30]. miXGENE can be seen as a specialized
bioinformatics workflow management system. Despite the fact
the mentioned WMSs (mainly the Galaxy) already implement
some tools (several statistical test) and interfaces (GEO) we
require, the WMSs are too general for our purposes. Therefore,
in order to facilitate maintenance (e.g., keeping our system up-
to-date and as specific for the joint analysis as possible), we
implemented our own WMS.

With miXGENE, all experiments are built from compo-
nents called blocks using interactive workspace. Each block
represents one meaningful step in the experiment e.g., pro-
viding a source dataset, creating a ML model, visualisation.
Nevertheless, each block usually contains—in contrast to the
more general systems mentioned above—a few atomic ac-
tivities such as downloading input data, preprocessing and
diagnostic visualization in the source dataset providing block.
The execution order is inferred from the data flow defined
by binding the corresponding output and input ports of the
consecutive blocks. miXGENE enables the block structured
pattern [31] and it does not allow cycle dependency and
conditional execution.

B. miXGENE building blocks and types

miXGENE defines two types of blocks: ”basic“ blocks and
meta-blocks where the latter serve as containers of other blocks
or meta-blocks. The meta-blocks generate their own scope of
possible input variables and, therefore, improve simplicity and
clarity of workflows. This structure allows powerful and clear
representation of ML workflows. Currently miXGENE enables
blocks with the following functionality: (i) data input (access

to GE data and knowledge from local user files or to selected
public repositories), (ii) data preprocessing (tools for working
with missing data and normalisation), (iii) data manipulation
(simple data concatenation in case of compatible datasets;
integrating different datasets, e.g., from different platforms
measuring mRNA expression and joint analysis for data from
mRNA, miRNA and methylation platforms; see Section III
for details), (iv) analysis (various ML and statistical methods;
see Section III for details), (v) visualization (results in human
readable form, e.g., graphs, tables, textual descriptions of mod-
els, (vi) performance evaluation (meta-block) (evaluation
schemes like k-fold cross validation or leave-one-out cross-
validation), (vii) multiple datasets evaluation (meta-block)
(for performing the same experiment on two or more datasets).

miXGENE operates with predefined complex data types
rather than with a combination of atomic types like integer,
string and array. Such an approach allows a required combi-
nation of data and meta-data for the desired level of workflow
abstraction. E.g., the Expression set type contains GE data
defined by a matrix dataset, phenotype description and plat-
form annotation. Meta-data contains useful information about
object content like data provider, used data type, properties
of source tissue, etc. Data content is an object stored in fixed
structure. Since data content may consume a great amount of
memory, the complex data types allow serialization into the
storage system.

List of implemented complex data types: (i) expression set
(represents gene-expression data from a micro-array experi-
ment including all necessary information), (ii) gene set (struc-
ture for representation of sets of genes, e.g. GO terms), (iii)
ML model (learned model/classifier for the given data), (iv)
result table (generic table in which each row represents
features analysed during an experiment and each column
represents different properties, metadata section contains a
description of the column properties and working units), (v)
array container (array of objects with the same structure, the
cell structure description is stored in the metadata section).

C. Workflow construction

The main point of interaction between a user and the
system is an experiment workspace with a block toolbox where
the user defines an experimental workflow and executes it. The
user constructs the new experiment from the empty workspace
by adding appropriate blocks from the toolbox. To define data-
flow, the user assigns input ports to outputs of the appropriate
blocks. Then (if needed) the user sets mandatory or optional
block parameters. When all the blocks in the experiment are
configured correctly, the user can either execute each block
by hand or run an automatic execution of the all blocks at
the same time. The user will be notified about experiment’s
successful completion or will be pointed to occurred errors.
The interactive nature of the experiment workspace allows the
user to add more blocks anytime and continue the experiment
with all the acquired results. Depiction of a machine-learning
experiment based on a comparison of two alternative methods
for analysis of mRNA and miRNA data is available via
the miXGENE webpage. The shown workflow produces an
estimate of accuracy of both methods and also final models
based on the mentioned methods.



III. METHODS

This section describes the methodological elements of our
approach. The implemented WMS is primarily designed to
support analysis using attribute-value machine-learning meth-
ods. These methods take input in the form of matrix where
samples are in columns and features (e.g., probesets or genes)
are in rows; each column contains a GE profile from one
sample. In the case of supervised learning methods there is
another vector with an assignment of each sample to a class
of samples (e.g. healthy or cancerous tissue). The unsupervised
learning methods do not include such a vector; instead, it
makes its own classification using data properties. As input
data, miXGENE currently supports a few human and mouse
mRNA and miRNA platforms provided by Affymetrix and
Illumina GoldenGate methylation assays. A complete list of
the supported platforms is available on the miXGENE web.

A. Aggregating methods for knowledge enrichment

The aggregating methods (alternatively set-statistics meth-
ods) can incorporate PK in the form of gene-sets using a direct
transformation which also produces matrix data representation.
For example, there is the pathway p which is represented as a
set of genes g1, g2, . . . , gn and matrix with GE profiles where
each row contains GEs for a gene gj for the all samples.
The aggregating methods transform the gene-expression matrix
induced by the genes in the pathway p into a row vector which
represents aggregated expressions for all the samples; such a
vector is typically denoted by the name of the geneset p. The
current miXGENE version supports the following methods:
simple statistics as mean, median, PCA based transforma-
tion, and SetSig [7]. Thanks the flexible representation of
workflows, the miXGENE does not impose any restriction on
the gene-sets’ definition; therefore, it is possible to use these
aggregation functions anytime there are appropriate gene-sets
which can define the transformation from the former to the
new representation.

B. Data integration approaches

1) Integrated analysis of GE from different platforms and
organisms: The integration is based on an assumption that it
is generally possible to transform different data on the same
common scale. For the integration of different MA platforms
it can be mapping to the same genes and for different species
it can be in evolutionary conserved elements like orthologous
proteins. Generally, any common functionality describing gene
sets like pathways or the GO terms can be used [32].

2) Joint analysis of mRNA miRNA and methylation profiles:
Presently, miXGENE supports two joint-analysis approaches.
The first one is the “naive” approach proposed in [14] which
is implicitly accessible due to the flexibility of the workflow
designer tool and power of the machine learning methods.
It joins all of the types of datasets by columns; from the
three datasets with mRNA, miRNA and methylation profiles
which are represented by three matrices with features FmiRNA,
FmiRNA and Fmethyl the new “joint” dataset contains the
set of features Fjoin = FmiRNA ∪ FmiRNA ∪ Fmethyl. The
second approach is based on a correction of mRNA expressions
using miRNA expression profiles and known miRNA targets
which describe the regulatory effect of miRNAs on mRNAs.

miXGENE implements two versions of this approach; the
substractive and the SVD-based method, which are suitable
only for mRNA and miRNA data [19].

C. Other methods

miXGENE also implements other well established and
state-of-the-art methods for analysis on single data with and
without PK and on joint mRNA and miRNA datasets as refer-
ential standards. Different analytical approaches typically offer
definite different solution due to the presence of alternative so-
lutions (e.g., marker genes can point not on to disease causing
genes but erroneously to genes related to a consequence of
the disease) or unstable nature of the methods [33]. Moreover,
the lack of gold standard data makes it impossible to compare
alternative methods thoroughly; therefore, there is a need for
the referential methods in order to problem being scrutinized to
the depths necessary. For the PK-enriched analysis of mRNA
expression, miXGENE integrates the global test [34]. As an
alternative to the joint analysis methods we have implemented
the algorithm based on generation context specific miRNA
regulation modules based on GO terms [18].

IV. CASE STUDIES

Here we demonstrate miXGENE functionality in two bio-
logical case studies. A concise overview of results is available
via the miXGENE webpage. The complete studies can be
found in [13] and [19], respectively.

The first experiment focused on an evaluation of the
hypothesis “gene set aggregation methods improve predictive
accuracy if we use gene sets based on the structure of tran-
scription regulation networks and on the operon structure of
bacterial genomes” and was conducted solely on mRNA GE
data. Recent studies reject this hypothesis for gene sets based
on the GO terms and KEGG pathways [7], [12]. We evaluated
this hypothesis on 71 small microarray GE datasets measured
in the bacteria. The results on the bacterial data indicate that
methods based on aggregation of gene sets are able to improve
predictive accuracy when provided with suitable gene sets.
When inappropriate gene sets are used, e.g., when one uses
GO terms or KEGG pathways, then the accuracy may actually
drop significantly.

In the second case study, we evaluated our novel feature
extraction and data integration method for the accurate and
interpretable classification of biological samples based on their
mRNA and miRNA expression profiles. The main idea was to
use the knowledge of miRNA targets and better approximate
the actual protein amount synthesized in the sample. The raw
mRNA and miRNA expression features become enriched or
replaced by new aggregated features that model the mRNA-
miRNA regulation instead. The underlying hypothesis is that
“the sample profile presumably gets closer to the phenotype
being predicted”. The proposed subtractive aggregation method
(SubAgg) directly implements a simple mRNA-miRNA inter-
action model in which mRNA expression is modified using the
expression of its targeting miRNAs. This method works with
the simplifying assumption of the equal weight of the indi-
vidual miRNAs suitable for small sample sizes where learning
of their proper weights may lead to overfiting. Its SVD-based
modification (SVDAgg) enables different subtractive weights



for different miRNAs learned by SVD. The two proposed
knowledge-based subtractive methods were compared with
their straightforward counterparts for obtaining the integrated
mRNA and miRNA data through concatenating two respective
datasets. We classified myelodysplastic syndrome patients un-
der various experimental settings and compared the concate-
nation with SubAgg and SVDAgg. The results suggest that
the knowledge-based approaches dominate the concatenation
benchmark, and the features resulting from the mRNA-miRNA
target relation can improve classification performance.

V. CONCLUSION

This paper presents a web tool for automated learning from
heterogeneous genomic measurements that makes use of PK.
The resulting models and markers match the actual measure-
ments as well as the relationships among biological entities
recorded in curated biological databases. The contribution of
this tool is at least twofold. First, it provides the principal
means for the user-friendly discovery of dedicated models in
particular domains. Second, it is the platform for assembly,
development, comparison and eventual dissemination of the
methods for joint analysis of omics data. When compared with
the traditional learning and statistical tools such as WEKA,
RapidMiner, Orange or R/Bioconductor, it offers web interface
with possibility to easily fetch NCBI data and implements
specific learning methods, currently SubAgg and SVDAgg
proposed in [19]. When compared with the bioinformatics
WMSs such as Galaxy, it is focused on the specific task of
learning from heterogeneous expression data. In particular,
it facilitates the access both to the expression data and PK
on their interaction, it provides specific learning methods and
suggests sample workflows relevant to the given task.

Future work lies in further development and implementa-
tion of dedicated integration tools. We plan to continue with
the development of our own methods as well as to employ
the existing state-of-the-art algorithms. At the moment, there
are no integration methods available for methylation and other
epigenetic data available in miXGENE. We intend to improve
miXGENE tool itself too, namely its graphical user interface
and visualisation tools that serve for the presentation of results.
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