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Abstract: The goal of our work is to integrate conventional mRNA expression profiles with miRNA expressions using
the knowledge of their validated or predicted interactions in order to improve class prediction in genetically
determined diseases. The raw mRNA and miRNA expression features become enriched or replaced by new
aggregated features that model the mRNA-miRNA interaction. The proposed subtractive integration method is
directly motivated by the inhibition/degradation models of gene expression regulation. The method aggregates
mRNA and miRNA expressions by subtracting a proportion of miRNA expression values from their respective
target mRNAs. The method is used to model the outcome or development of myelodysplastic syndrome, a
blood cell production disease often progressing to leukemia. The reached results demonstrate that the inte-
gration improves classification performance when dealing with mRNA and miRNA profiles of comparable
predictive power.

1 INTRODUCTION

Onset and progression of myelodysplastic syndrome,
like other genetically determined diseases, depend
on the overall activity of copious genes during their
expression process. Current progress in microarray
technologies (Brewster et al., 2004) and RNA se-
quencing (Morin et al., 2008) enables affordable mea-
surement of wide-scale gene activity, but only on the
transcriptome level. Further levels of the gene ex-
pression (GE) process which prove disease, whether
proteome or even phenome, are still difficult to cap-
ture. Henceforth, many natural learning tasks, such as
disease diagnosis or classification, become non-trivial
within current generation GE data. However, GE is a
complex process with multiple phases, components,
and regulatory mechanisms. Sensing GE at certain
points of these phases and integrating the measure-
ments with the aid of recent knowledge about sub-
duing mechanisms may show the GE process in a
broader, systematic view, and make the analysis com-
prehensible, robust and potentially more accurate.

The goal of our work is to integrate conven-
tional GE data sources as mRNA profiles with mi-
croRNA measurements and to experimentally eval-
uate the merit of using the integrated data for class
prediction. MicroRNAs (miRNAs) (Lee et al., 1993)

serve as one component of complex machinery which
eukaryotic organisms use to regulate gene expres-
sion and protein synthesis. Since their discovery,
miRNA have shown to play crucial role in develop-
ment and various pathologies (Croce, 2009; Sayed
and Abdellatif, 2011). They are short ( 21 nu-
cleotides) noncoding RNA sequences which mediate
post-transcriptional repression of mRNA via multi-
protein complex called RISC complex (RNA-induced
silencing complex) where miRNA serve as a template
for recognizing complementary mRNA. The comple-
mentarity of miRNA-mRNA binding initiates one of
the two possible mechanisms: the complete homol-
ogy triggers degradation of target mRNA, whereas a
partial complementarity leads to inhibition of transla-
tion of target mRNA. However, despite the progress
in understanding the underlying mechanisms in re-
cent years, the effects of miRNA on gene expres-
sion is still a developing field and many important
facts about mechanism of action and possible inter-
actions remain still unclear (Fabian and Sonenberg,
2012). The level of expression of particular miR-
NAs can be measured by (e.g.) miRNA microarrays,
analogically to well-known mRNA profiling. The re-
sulting dataset, called the miRNA expression profile,
contains, similarly to mRNA profiles, tissue samples
as data instances; only this time the attributes are in-



dividual miRNA sequences. Integrating mRNA and
miRNA data sources may provide a better picture
about the true protein amount synthesized according
to respective genes, regarding the mechanisms of dis-
ease occurrence.

We propose integration stemming from the knowl-
edge which miRNA targets which mRNA. Target pre-
diction is a topic of active research (Tan Gana et al.,
2012). The most reliable form of target prediction
is experimental in vitro validation. Complementary
in silico target prediction offers more miRNA tar-
gets with a higher false detection rate. The predictive
algorithms either work based directly on molecular
biological theory, building the relationship based on
miRNA/mRNA structure and properties (Lewis et al.,
2003; Dweep et al., 2011), or be data-driven; i.e., de-
termining targets empirically using statistical or ma-
chine learning methods on as much data as possible
(Wang and Naqa, 2008; Krek et al., 2005). As an ex-
ample of algorithms of the first class we should men-
tion miRanda, as an extension of the Smith-Waterman
algorithm (Smith and Waterman, 1981), miRWalk
(Dweep et al., 2011) and TargetScan (Lewis et al.,
2003); as to those of the second class refer to miRTar-
get2 (Wang and Naqa, 2008) or PicTar 5 (Krek et al.,
2005). Target prediction algorithms usually output a
score, which for a particular mRNA and a particular
miRNA quantifies the strength of the belief that the
two are truly related. While there is no guarantee that
the results are truly correct, employing prediction al-
gorithms on already existing gene/miRNA expression
profiles is cheap and, with the possibility of thresh-
olding the score, one can express confidence in the
results, possibly eliminating fluke results.

Despite the above-mentioned problems in target
prediction, the main challenge in mRNA and miRNA
data integration is different. The relationship between
miRNAs and mRNAs is many-to-many, a miRNA
binds to different mRNAs, while an mRNA molecule
hosts binding sites for different miRNAs. Moreover,
the binding can be, and often is, imperfect; with a
miRNA binding only partly to its target site. One
miRNA can, in addition, potentially bind to multiple
locations on one mRNA. Due to all of these aspects
and the fact that the mRNA-miRNA interaction itself
is far from being fully understood, mRNA-miRNA
data integration is a non-trivial task. Simply merg-
ing mRNA and miRNA probesets (Lanza et al., 2007)
may increase current difficulties in GE classification,
such as overfitting caused by the immense number of
features. Hence, a smart method of reasonable inte-
grating miRNA and mRNA features is desired.

The authors of (Huang et al., 2011) present an in-
teresting tool for inferring a disease specific miRNA-

gene regulatory network based on prior knowledge
and user data (miRNA and mRNA profiles). How-
ever, this approach does not address the method of
breaking down the large inferred network into smaller
regulatory units, which are essential for subsequent
classification. The method of data specific identifica-
tion of miRNA-gene regulatory modules is proposed
in (Peng et al., 2009) and (Tran et al., 2008), where
the modules are searched as maximal bi-cliques or
induced as decision rules respectively. But none of
these methods offer an intuitive way to express the
identified modules within the sample set. Contrari-
wise, (Kim et al., 2012) provides a black box integra-
tion procedure for several data sources like mRNAs,
miRNAs, methylation data etc., with an immediate
classification output. Nevertheless, this method con-
tains no natural interpretation of the learned predictive
models, which is unsuitable for an expert decision-
making tool.

In this work, we propose a novel feature extraction
and data integration method for the accurate and in-
terpretable classification of biological samples based
on their mRNA and miRNA expression profiles. The
main idea is to use the knowledge of miRNA tar-
gets and better approximate the actual protein amount
synthesized in the sample. The raw mRNA and
miRNA expression features become enriched or re-
placed by new aggregated features that model the
mRNA-miRNA regulation instead. The sample pro-
file presumably gets closer to the phenotype be-
ing predicted. The proposed subtractive aggregation
method directly implements a simple mRNA-miRNA
interaction model in which mRNA expression is mod-
ified using the expression of its targeting miRNAs.
A similar approach has already been demonstrated in
(Anděl et al., 2013), where we employ matrix factor-
ization proposed in (Zhang et al., 2011) instead. In
comparison to the subtractive method under study, the
matrix-factorization approach leaves room for devel-
oping features corresponding to larger functional co-
modules, but it could overfit training data when deal-
ing with a small number of samples.

The method widely used for analyzing associa-
tions between two heterogeneous genome-wide mea-
surements acquired on the same cohort is canoni-
cal correlation analysis (CCA) (Pollack et al., 2002;
Stranger et al., 2007; Witten and Tibshirani, 2009).
CCA is applicable for mRNA and miRNA expres-
sion integration. However, CCA is based purely on
mutual correlation between distinct feature sets and
disregards prior knowledge of their interaction. It
rather aims to describe or simplify the underlying
data, while we focus on prediction of the decrease of
respective protein level due to inhibition that does not



primarily manifest in correlation. In (Li et al., 2012)
the authors model heterogeneous genomic data by the
means of sparse regression. The method explains
mRNA matrix through decomposition into miRNA
expression, copy number value and DNA methylation
matrices. It follows similar descriptive goals as CCA.

Incentive for our method design comes from probe
sessions performed on patients with myelodysplastic
syndrome (MDS). MDS is a heterogeneous group of
clonal hematological diseases characterized by inef-
fective hematopoiesis originating from hematopoietic
stem cells (Vašı́ková et al., 2010). Patients with MDS
usually develop severe anemia (or other cytopenias)
and require frequent blood transfusion. MDS is also
characterized by a high risk of transformation into
secondary acute myeloid leukemia, and thus could
serve as a model for the research of leukemic trans-
formation.

Of the different cytogenetic abnormalities found
in MDS, deletion of the long arm of chromosome 5
(del(5q)) is the most common aberration. MDS with
isolated del(5q) exhibits a distinct clinical profile and
a favorable outcome. Lenalidomide is a relatively new
and potent immunomodulatory drug for the treatment
of patients with transfusion-dependent MDS with
del(5q). It has pleiotropic biologic effects, including a
selective cytotoxic effect on del(5q) myelodysplastic
clones. As miRNAs serve as key regulators of many
cellular processes including hematopoiesis, a number
of miRNAs have been also implicated in the patho-
physiology of MDS (Rhyasen and Starczynowski,
2012; Dostalova Merkerova et al., 2011).

The paper is organized as follows. Section 2 de-
scribes the proposed subtractive method (SubAgg) in-
cluding its SVD-based modification (SVDAgg) that
enables different subtractive weights for different
miRNAs. Section 3 describes the MDS domain, de-
fines the learning tasks and summarizes the experi-
mental protocol. Section 4 provides experimental re-
sults. Section 5 concludes the paper.

2 MATERIALS AND METHODS

This section covers the procedures proposed for the
integration of mRNA and miRNA data. First, inputs
required for correct functionality of the methods are
defined in Section 2.1. Then dataset merge, a simple
integration technique serving as a benchmark, is pre-
sented in Section 2.2. The new integration method,
subtractive aggregation is presented in Section 2.3.

2.1 Inputs

The integration method requires two datasets; one
containing mRNA measurements, and one containing
miRNA measurements. Those two datasets must be
matched; i.e., both must contain samples taken from
the same patients and the same tissue types.

Let G = {g1, ...,gn} be the genes, R = {r1, ...,rm}
be the miRNAs and S = {S1, ...,Ss} be the interro-
gated samples (tissues, patients, experiments). Then
xG : G × S → R is the amount of respective mRNA
measured by mRNA chip in particular samples, and
xµ : R × S → R is the expression profile of known
miRNA sequences; i.e., the amount of respective
molecules measured by the miRNA chip within the
samples.

For further reference, the mRNA dataset will be
denoted as an s× n matrix XG, with s samples and
n genes. Similarly, the miRNA dataset will be re-
ferred to as an s×m matrix Xµ, with m miRNAs.
Henceforth, column vectors of the two data matrices,{

xG
i
}n

i=1 and
{

xµ
i
}m

i=1, represent measured expression
of particular genes and miRNAs, respectively.

The integration method requires information per-
taining to which miRNA targets which mRNA. The
known miRNA-gene control system is represented by
binary relation T ⊂ R ×G .

2.2 Dataset merge

The most straightforward method of obtaining inte-
grated mRNA and miRNA data is merging the two re-
spective datasets. This method, as mentioned above,
was presented by (Lanza et al., 2007) and is in-
cluded in our experimental evaluation as a bench-
mark. The resulting merged dataset simply contains
column-wise concatenated mRNA and miRNA data
matrices. The advantages of this integration approach
are no required prior knowledge of targets and com-
putational efficiency. Excluding prior knowledge of
targets, however, means that the target relationships
are to be induced empirically by the classifier itself.
The question remains as to whether the classifier is
capable of doing that. Also, this approach increases
the already-high number of features.

2.3 Subtractive aggregation (SubAgg)

Due to the fact, that many aspects of miRNA-mRNA
interactions are not yet fully understood and remain
unclear, we were forced to involve several simplifying
assumptions as follows: 1) miRNA effect is strictly
subtractive, 2) the measured miRNA amount is pro-
portionally distributed among its targets, and 3) the



mRNA inhibition rate is proportional to the amount
of available targeting miRNA.

The method aggregates mRNA and miRNA values
by subtracting a proportion of miRNA expression val-
ues from their respective target mRNAs. At the same
time, it minimizes the number of parameters needed
to be learned to 1. This characteristic complies with
the inconvenient sample set size and the feature set
size rate.

Each gene, or rather its mRNA transcript, g ∈ G
has a defined set of miRNAs which target it, Rg ⊂ R .
Conversely, each miRNA r ∈ R has a defined set of
mRNAs which it targets, Gr ⊂ G . Let, xG

g be the
amount of mRNA measured for respective gene g in
an arbitrary tissue sample and xµ

r be the amount of
particular miRNA r measured in an arbitrary sample.
Let pr be the proportion of the amount of r ∈ Rg used
to regulate the expression of gene g and σ be a co-
efficient representing the strength of the inhibition of
mRNA by miRNAs. Since the process is considered
to be strictly subtractive, the aggregated value repre-
senting the inhibited mRNA of gene g, denoted xsub

g
would be obtained by subtracting as follows:

xsub
g = xG

g −σ ∑
r∈Rg

prxµ
r . (1)

This equation takes an above-mentioned simpli-
fied view of inhibition of the gene by all targeting
miRNAs. Hence, proportion pr is defined as a ratio
of xG

g to the sum of levels of all targeted mRNAs. The
inhibition equation is then expanded:

xsub
g = xG

g −
c
|Rg| ∑

r∈Rg

xG
g

∑
t∈Gr

xG
t

xµ
r . (2)

Further, the parameter σ has been expanded in
Equation (2). The strength of inhibition is an un-
known value, but needs to be somehow represented
nonetheless. In this method, it is modeled as the prod-
uct of a real parameter c and a normalizer defined
as 1/|Rg|. The real parameter c represents the un-
known strength of the relationship and its values are
subject to experimentation. Intuitively, the larger c
is, the more prominent the miRNA data are (larger c
amplifies the inhibition). The c parameter can be set
uniformly for all genes, or alternatively, different c
values may be employed for different mRNAs. Con-
cerning the limited sample sets and the risk of over-
fitting, we worked with the uniform c for all mRNAs.
Its setting is further discussed in the experimental part
of the paper.

It is possible to obtain the overall data matrix Xsub

of inhibited mRNA by iteratively updating the subma-
trix XG

1...s,Gr
, thus calculating all xsub

g in Equation (2)

pertaining to one miRNA and all samples in one step.
Henceforth, the implementation of Equation (2) is it-
erated over particular miRNAs, as there are far fewer
miRNAs than mRNAs:

X sub
1...s,Gr

= XG
1...s,Gr

− c∆(u)∆(xr)∆(s)−1XG
1...s,Gr

, (3)

where ∆(v) denotes a diagonal matrix, whose (i, i)-
th item is equal to the i-th value of a vector v; u is
a vector containing the number of targeting miRNAs
for each mRNA and s = XG

1...s,Gr
1|Gr | is a vector of

mRNA value sums pertaining to miRNA targets in all
samples.

2.4 SVD-based aggregation (SVDAgg)

The aim of an integration method in general, is to re-
duce the mRNA vectors and their respective target-
ing miRNAs into one aggregated feature. A com-
mon known method which reduces data, preserving
as much useful information contained in the non-
reduced vectors as possible, is Singular value decom-
position (SVD) (Eckart and Young, 1936).

The second method we propose, SVD-based ag-
gregation, is based on the idea that targeting miRNAs
of each gene can be represented in one dimensional
basis space. So, for each gene g, the expression data
submatrix Xµ

1...s,Rg
, referring to the respective target-

ing miRNAs, is projected into its first singular vector:

xµ,svd = Xµ
1...s,Rg

V1...|Rg|,1, (4)

where V is the singular vector matrix of targeting
miRNAs. Vector xµ,svd, the new representative of
targeting miRNAs, is then joined to the respective
mRNA vector, and reduced into one dimensional
space again:

xG,svd
g =

[
xG

g ,x
µ,svd

]
U1...2,1, (5)

where U1...2,1 is the first singular vector of the two
concatenated vectors.

The new feature xG,svd
g , a virtual profile compris-

ing the gene and its miRNAs, is computed in two
steps. The reason for not aggregating the mRNA
vector and respective miRNA vectors together at the
same time follows. Such an alternative approach
gives almost all the power to the miRNAs, and since
they would constitute a majority of vectors, SVD
would have a tendency to disregard the information
contained in the mRNA, which is necessary to avoid.
Moreover, this effect would increase with the increas-
ing number of targeting miRNAs.



3 EXPERIMENTS

This section describes the MDS domain, defines
the learning tasks, and summarizes the experimental
protocol.

3.1 Datasets

The data were acquired in collaboration with the Insti-
tute of Hematology and Blood Transfusion in Prague.
Illumina miRNA (Human v2 MicroRNA Expression
Profiling Kit, Illumina, San Diego, USA) and mRNA
(HumanRef-8 v3 and HumanHT-12 v4 Expression
BeadChips, Illumina) expression profiling were used
to investigate the effect of lenalidomide treatment on
miRNA and mRNA expression in bone marrow (BM)
CD34+ progenitor cells and peripheral blood (PB)
CD14+ monocytes. Quantile normalization was per-
formed independently for both the expression sets, the
datasets were scaled to have the identical median of 1
then. The mRNA dataset has 16,666 attributes rep-
resenting the GE level through the amount of corre-
sponding mRNA measured, while the miRNA dataset
has 1,146 attributes representing the expression level
of particular miRNAs. The measurements were con-
ducted on 75 tissue samples categorized according to
the following conditions: 1) tissue type: peripheral
blood monocytes vs. bone marrow cells, 2) presence
of MDS and del(5q), 3) lenalidomide treatment stage:
before treatment (BT) vs. during treatment (DT).
Henceforth, the samples can be broken into 10 cat-
egories. The categories, along with the actual number
of samples, are shown in Table 1:

Table 1: The overview of MDS classes.

PB

Healthy 10

5q- BT 9
DT 13

non 5q- BT 4
DT 5

BM

Healthy 10

5q- BT 11
DT 5

non 5q- BT 6
DT 2

The domain experts defined 16 binary classifica-
tion tasks with a clear diagnostic and therapeutic mo-
tivation. There are 8 tasks for each tissue type, the
tissue types are encoded in the task names, while the
numbers of samples are shown in parentheses. The
afflicted group comprises all MDS patients regardless
their treatment status.
1. PB1: healthy (10) × afflicted (31),

2. BM1: healthy (10) × afflicted (24),

3. PB2: healthy (10) × BT (13),

4. BM2: healthy (10) × BT (17),

5. PB3: healthy (10) × BT with del(5q) (9),

6. BM3: healthy (10) × BT with del(5q) (11),

7. PB4: healthy (10) × DT (18),

8. BM4: healthy (10) × DT (7),

9. PB5: afflicted: del(5q) (9) × non del(5q) (22),

10. BM5: afflicted: del(5q) (8) × non del(5q) (16).

11. PB6: healthy (10) × DT del(5q) (13),

12. BM6: healthy (10) × DT del(5q) (5),

13. PB7: healthy (10) × BT non del(5q) (4),

14. BM7: healthy (10) × BT non del(5q)(6),

15. PB8: del(5q): BT (9) × DT (13),

16. BM8: del(5q): BT (11) × DT (5).

3.2 Prior knowledge

Considering prior knowledge, we downloaded the
interactions between genes and miRNAs from pub-
licly available databases. TarBase 6.0, strives to en-
compass as many miRNA-mRNA validated target-
ing relations scattered in literature as possible. The
database, maintained by DIANA Lab, was built uti-
lizing text-mining-assisted literature curation – litera-
ture covering the discovery of new target relationships
were downloaded in XML format from MedLine, pro-
cessed using text mining and the resulting candidates
for addition to the database were reviewed before the
actual entry by the curators (DIANA Lab personnel).
Its respective target matrix, filtered so as to contain
solely human data, covers 228 miRNAs, 11,996 mR-
NAs and 20,107 target relationships between them.
When selecting only the mRNAs and miRNAs avail-
able in the actual chip probesets and carefully trans-
lating and unifying miRNA identifiers using miR-
Base (Kozomara and Griffiths-Jones, 2011), the Tar-
Base covers 179 miRNAs, 8,188 mRNAs and con-
tains 14,404 target relationships.

The miRWalk database (Dweep et al., 2011), com-
prises both validated and predicted targets. In our ex-
periments, only the predicted target database is used;
the entries in the validated target database are already
included in TarBase 6.0. Since, according to the
authors, no target prediction algorithm consistently
achieves better results than the others, the predicted
target database includes not only targets obtained us-
ing the eponymous miRWalk algorithm, but also tar-
gets provided by other prediction algorithms. Our
experiments use five of them, which are outlined in
Section 1. The predicted targets dataset used in the



experiments was obtained from miRWalk by merging
the results of multiple queries on the mRNA targets
of canonically-named miRNAs present in the exper-
imental miRNA dataset. Each query consisted of up
to 20 miRNAs (limit imposed by the miRWalk site),
each query was restricted to targets in the 3’ UTR re-
gion with p-value less or equal to 0.01. The result-
ing dataset obtained contains 392 miRNAs, 14,550
mRNAs and 89,402 unique predicted human miRNA-
mRNA target relationships. 389 miRNAs, 12,847
mRNAs and 79,014 relationships were applicable in
terms of our actual mRNA and miRNA probesets.

The merged target dataset concatenates both the
above-mentioned resources. It is further referred to as
the extended predicted database and contains 93,325
target relationships.

3.3 Experimental protocol

The main aim of the experiments is to verify whether
the features, extracted by prior knowledge, can im-
prove classification quality. Since we deal with
classes of different sizes, we use the Mathews cor-
relation coefficient as a balanced quality measure. It
returns a value between -1 and +1, +1 represents a
perfect match between annotation and prediction. We
employ three benchmarking feature sets to tackle this
issue. The first contains mRNA profiles only, the
second takes purely miRNA profiles, and the third
concatenates them as described in Section 2.2. The
knowledge-based feature sets denoted as SubAgg and
SVDAgg take the merged feature set and concate-
nate it with the aggregated features obtained in Equa-
tions (2), (3) and Equation (5) respectively.

We used 5 times repeated stratified 5-fold cross
validation to assess the performance of the proposed
methods as well as their benchmarking counterparts.
The whole learning workflow was implemented in R
environment.

SVDAgg has no parameters, SubAgg has the in-
hibition strength parameter c that needs to be opti-
mized. The most straightforward way is to set it
to 1 relying purely on mRNA and miRNA expres-
sion normalization. However, the absolute mRNA
and miRNA expression values can hardly be directly
matched. Moreover, the relative predictive power of
mRNA and miRNA feature sets varies for different
tasks. That is why we tuned the optimal value of c
in terms of internal cross-validation. The parameter
values 10k, k∈{-2,1,0,1,2} were concerned, the best
value was taken in each experimental setting and fold
uniformly for all mRNAs.

In order to keep a reasonable number of features,
to minimize overfitting, and maintain the constant

number of features across different feature sets in
terms of one learning task, we applied the well-known
feature selection method SVM-RFE (Guyon et al.,
2002). In each of the learning tasks, the size of the
reduced feature set was established as follows. We
found the number of active mRNAs and the number
of active miRNAs, and took their minimum. This
value served as the target feature set size for mRNA,
miRNA, merged and both subtractive classifiers.

We deal with 8 binary MDS tasks defined in Sec-
tion 3.1. At the same time, we have two distinct tar-
get relations (validated and extended) as described in
the previous section. These target relations have dif-
ferent domains and ranges, the domain and range of
the validated target relation make subsets of their ex-
tended counterparts. As the aggregated features con-
cern purely the domain miRNAs and the range mR-
NAs we filter out the rest of mRNA and miRNA pro-
files from the benchmarking datasets as well. This
is done in order to make the comparison of classi-
fier performance on benchmarking datasets more re-
latable and better identify the potential asset of the
target relationships. The absolute score is not impor-
tant, the main issue is the relative comparison in terms
of a single learning task. In this way, 64 different ex-
perimental settings originate (2 tissue types × 8 task
definitions × 2 target relations × 2 classification al-
gorithms). The settings are independent between tis-
sue types, however, they deal with overlapping sam-
ple and feature sets within the same tissue type.

We employed two diverse classification algo-
rithms to avoid the dependence of experimental re-
sults on a specific choice of learning method. Sup-
port Vector Machine (SVM) with a linear kernel and
the regularization parameter C = 1 was taken as the
first option. SVM prevails in predictive modeling of
gene expression data and is usually associated with
high resistance to noise in data. C setting proves
robust even when learning with many relevant fea-
tures (Joachims, 1998). Naı̈ve Bayes (NB) is a simple
and interpretable classifier.

4 RESULTS

The individual feature sets were tested and compared
under all the experimental settings defined above. The
results reached are available in Tables 2 and 3; each
table summarizes the results achieved by one of the
classification algorithms.

The following direct observations can be drawn
from the result tables. There are settings that can
be perfectly solved by either the mRNA or miRNA
profiles. Then, there are settings with incomparable



score reached with the mRNA and miRNA feature set.
Naturally, these settings are not suitable for any in-
tegration including the concatenation as this integra-
tion can hardly outperform the better of the raw fea-
ture sets. These settings can be a priori identified and
omitted from the integration procedure, or the proce-
dure can be parametrized in such a way that the in-
ferior dataset has no influence on the final feature set
(e.g., c parameter in SubAgg is set to 0).

On the other hand, when dealing with mRNA
and miRNA profiles of comparable predictive power,
the integration improves classification performance.
In general, the knowledge-based methods outperform
their concatenation benchmark. As already men-
tioned, we deal with dependent tasks and settings
while traditional hypothesis testing asks for indepen-
dence. That is why we cannot apply Wilcoxon, Fried-
man, or other classical tests. Instead, the methods are
sorted and ranked according to their pair-wise com-
parison in each of the particular settings; Figure 1
provides an overall comparison graph and the last
row of result tables gives the ranks averaged across
all the settings. The comparison suggests that the
knowledge-based feature sets dominate the rest of the
feature pool.

Another useful comparison measure is the over-
all number of occurrences, denoted as synergies, in
which the knowledge based features outperform both
raw feature sets. The presented results show 31 and
26 synergies occurred in the case of SubAgg and
SVDAgg methods respectively; only 10 synergies can
be observed in the case of the benchmark integration.
In the other words, when dealing with settings that
cannot be perfectly solved by the original features, the
knowledge based integration helps.

SVM turns out to be a better choice than naı̈ve
Bayes. Let us stress that the choice of target type (val-
idated, extended) may seem to largely affect classifi-
cation quality; however, the main reason for this dif-
ference lies in the filtering mentioned in Section 3.3.
The validated and extended runs cannot be directly
compared (validated clearly worse than extended).
The relative comparison between the merged and the
other knowledge-based methods suggests that when
including the predicted targets into the aggregation,
no clear improvement can be observed.

5 CONCLUSIONS

Molecular classification of biological samples based
on their expression profiles represents a natural task.
However, the task proved conceptually difficult due
to the inconvenient rate of the sample and feature set

Table 2: The SVM results in terms of MCC. T stands for
the tissue type, # for the task ID, R for the target relation (V
means validated and E extended), mR for mRNA, miR for
miRNA, mer for merged, Sub stands for SubAgg and SVD
for SVDAgg. The last row gives average ranking of each
feature set; the lower the rank, the better.

T # R Feature set
mR miR mer Sub SVD

PB 1 E 0.962 0.653 0.962 1.000 1.000
PB 2 E 0.983 0.881 0.983 0.983 1.000
PB 3 E 0.979 0.812 0.979 1.000 1.000
PB 4 E 1.000 0.801 1.000 1.000 0.970
PB 5 E 0.860 0.969 0.891 0.891 0.938
PB 6 E 1.000 0.823 1.000 1.000 0.983
PB 7 E 0.755 0.861 0.719 0.826 0.791
PB 8 E 0.621 0.487 0.564 0.562 0.644
BM 1 E 0.972 0.921 0.986 0.959 0.959
BM 2 E 0.911 0.954 0.911 0.939 0.925
BM 3 E 0.944 0.981 0.944 0.944 0.944
BM 4 E 0.976 0.883 0.976 0.952 0.838
BM 5 E 0.732 0.907 0.773 0.816 0.913
BM 6 E 0.882 0.853 0.882 0.911 0.853
BM 7 E 0.947 0.974 0.974 0.947 1.000
BM 8 E 0.574 0.541 0.539 0.434 0.448
PB 1 V 0.962 0.781 0.962 1.000 0.987
PB 2 V 0.983 0.827 0.983 0.983 0.916
PB 3 V 0.938 0.771 0.979 1.000 0.959
PB 4 V 1.000 0.761 1.000 1.000 0.970
PB 5 V 0.860 0.939 0.891 0.891 0.891
PB 6 V 1.000 0.895 1.000 1.000 1.000
PB 7 V 0.719 -0.156 0.645 0.791 0.607
PB 8 V 0.621 0.506 0.620 0.523 0.586
BM 1 V 0.972 0.854 0.986 0.959 0.986
BM 2 V 0.897 0.874 0.911 0.954 0.954
BM 3 V 0.963 0.909 0.963 1.000 0.981
BM 4 V 0.976 0.856 0.976 0.952 1.000
BM 5 V 0.694 0.893 0.732 0.773 0.717
BM 6 V 0.911 0.795 0.882 0.911 0.941
BM 7 V 0.921 0.896 0.974 0.974 0.947
BM 8 V 0.574 0.607 0.501 0.541 0.574
Avg. ranking 3.08 3.81 2.88 2.56 2.67

sizes and complexity and heterogeneity of the expres-
sion process. These characteristics often cause over-
fitting. Classifiers do not sufficiently generalize; in-
stead of revealing the underlying relationships, they
capture perturbations in training data. This problem
can be minimized by regularization; i.e., introduc-
tion of additional knowledge. The regularized models
should be more comprehensible and potentially more
accurate than standard models based solely on a large
amount of raw measurements.

The integration of heterogeneous measurements
and prior knowledge is non-trivial, though. In this
paper we proposed the subtractive method that aggre-
gates mRNA and miRNA values by subtracting a pro-
portion of miRNA expression values from their re-
spective target mRNAs. The method simplifies the



Table 3: The NB results in terms of MCC. The header sym-
bols have the same meaning as in Table 2.

T # R Feature set
mR miR mer Sub SVD

PB 1 E 0.840 0.732 0.840 0.840 0.799
PB 2 E 0.865 0.846 0.881 0.849 0.898
PB 3 E 0.845 0.689 0.845 0.900 0.881
PB 4 E 0.831 0.732 0.831 0.844 0.816
PB 5 E 0.794 0.984 0.858 0.875 0.860
PB 6 E 0.824 0.770 0.824 0.877 0.965
PB 7 E 0.645 0.791 0.645 0.645 0.965
PB 8 E 0.322 0.429 0.303 0.308 0.523
BM 1 E 0.929 0.915 0.944 0.930 0.943
BM 2 E 0.953 0.953 0.953 0.873 0.984
BM 3 E 0.909 0.981 0.909 0.909 0.963
BM 4 E 0.976 0.787 0.976 0.976 0.793
BM 5 E 0.593 0.871 0.732 0.713 0.753
BM 6 E 1.000 0.707 0.795 0.941 0.707
BM 7 E 0.870 0.866 0.870 0.870 0.896
BM 8 E 0.320 0.399 0.383 0.405 0.268
PB 1 V 0.853 0.551 0.853 0.880 0.880
PB 2 V 0.833 0.627 0.849 0.865 0.965
PB 3 V 0.881 0.641 0.881 1.000 1.000
PB 4 V 0.863 0.685 0.863 0.876 0.844
PB 5 V 0.842 0.937 0.842 0.875 0.860
PB 6 V 0.805 0.627 0.805 0.895 0.911
PB 7 V 0.861 0.826 0.895 0.965 0.826
PB 8 V 0.322 0.210 0.303 0.362 0.523
BM 1 V 0.886 0.887 0.915 0.930 0.929
BM 2 V 0.953 0.828 0.953 0.904 0.954
BM 3 V 0.909 0.908 0.909 0.888 0.944
BM 4 V 0.951 0.882 0.951 0.976 0.909
BM 5 V 0.578 0.815 0.694 0.733 0.694
BM 6 V 0.941 0.853 0.882 0.970 0.911
BM 7 V 0.870 0.872 0.870 0.870 0.870
BM 8 V 0.153 0.201 0.187 0.272 0.361
Avg. ranking 3.41 3.72 3.17 2.36 2.34

mRNA-miRNA interaction and minimizes the num-
ber of parameters needed to be learned to 1. We also
proposed another integration method that can be per-
ceived as an extension that enables different subtrac-
tive weights for different miRNAs; the weights are
learned by SVD.

In this work we classified myelodysplastic syn-
drome patients under 64 experimental settings. We
compared five types of feature sets. Two of them rep-
resented raw homogeneous expression measurements
(mRNa and miRNA profiles), the third implemented
their straightforward concatenation, and the last two
resulted from SubAgg and SVDAgg integration. The
comparison suggests that the knowledge-based fea-
ture sets dominate the rest of the feature pool, and
the features resulting from the mRNA-miRNA target
relation can improve classification performance.

There is still a lot of future work. More problem
domains need to be considered. The prior knowl-
edge should be extended to cover the gene regula-

Figure 1: Pair-wise classification comparison graph. The
nodes represent particular feature sets, an edge from node a
to node b, annotated as x-y-z means that method a outper-
forms method b in x experiments, in y ties and in z losses.

tory network (the protein-protein interactions, inter-
actions between genes, and their transcription fac-
tors). Another challenge is to employ epigenetic data,
namely DNA methylation. Concerning the algorith-
mic issues, we intend to develop another parameter-
free integration method where the prior knowledge
controls pseudorandom construction of weak classi-
fiers vaguely corresponding to the individual biolog-
ical processes. The weak classifiers will later be
merged into an ensemble classifier.
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