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Abstract

This paper presents the web tool XGENE.ORG which fa-
cilitates the integration of gene expression measurements
with background genomic information, in particular the
gene ontology and KEGG pathways. The novelty of the
proposed data fusion is in the introduction of working units
at different levels of generality acting as sample features,
replacing the commonly used gene units, consequently al-
lowing for cross-genome (multi-platform) expression data
analysis. The integration of different microarray platforms
contributes to the robustness of knowledge extracted when
single-platform samples are rare and facilitates inference of
biological knowledge not constrained to single organisms.

1. Introduction

In the current post-genomic era, various aspects of gene
functions are being uncovered by a large number of experi-
ments producing huge amounts of heterogeneous data at an
accelerating pace. Putting all this data together, while tak-
ing into account existing knowledge has become a pressing
need for developing tools able to explore and simulate bio-
logical entities at a system level. A popular example is the
microarray (MA) technology enabling to simultaneously es-
timate the activity of tens of thousands genes (virtually the
entire genome) in a sample tissue. Early research studies
exploited gene expression data to discover sets of marker
probesets, e.g. those with elevated expression in a cancer-
ous tissue. Despite several successes in predictive diagnosis
using such obtained knowledge, it is now generally agreed
that the true logic of diseases and other biological processes
can only be explained by detailed interpretation of the mea-
surements, clarifying how and why certain genes follow cer-
tain expression patterns in certain situations. This in turn re-
quires to integrate the large volumes of raw measurements
with another huge body of available additional information
(or background knowledge, BK), such as known gene func-

tions, mutual interactions or roles in regulatory and sig-
nalling pathways.

The most popular and frequent utilization of background
knowledge is based on enrichment analysis. The state-of-
the-art tools such as DAVID [7] search for enriched apriori-
defined gene groups, rather than interpret individual dif-
ferentially expressed probesets (or genes1). The princi-
pal foundation of enrichment analysis is that if a biolog-
ical process is abnormal, the co-functioning genes should
have a higher (enriched) potential to be selected as relevant.
Such a rationale can move the analysis from an individ-
ual gene-oriented to a relevant gene group-based one. The
overview of 68 available enrichment tools is available in [8].
The biological utility of pathways was demonstrated by the
study [11] where a significantly downregulated pathway-
based gene set in a class of type 2 diabetes was discov-
ered despite no single significant gene being detected. [10]
provides a method that uses gene ontology terms and their
grouping to improve the interpretation of gene set enrich-
ment for microarray data.

This paper presents the web tool XGENE.ORG avail-
able at http://xgene.org. Similarly to enrichment
tools, XGENE.ORG tool facilitates integration of large vol-
umes of raw gene expression measurements with another
huge body of available genomic information. Contrary to
existing enrichment tools, it offers additional functional-
ity resulting from a data-fusion strategy based apriori de-
fined gene sets. In particular, the main resulting feature of
the present tool is that it enables to analyze gene expres-
sion data collected from heterogeneous platforms in an in-
tegrated manner. The heterogeneous platforms may pertain
to different organism species. The significance of this con-
tribution is at least twofold. First, microarray experiments
are costly, often resulting in numbers of samples insufficient
for reliable modeling. The possibility of systematically
integrating the experimenter’s data with numerous public
expression samples coming from heterogeneous platforms,
would obviously help the experimenter. Second, such in-

1In this paper we consider probesets and genes as closely related but
still distinct units as several probesets may interrogate the same gene.



tegrated analysis provides the principal means to discover
biological markers shared by different-genome species.

XGENE.ORG explicitly implements various working
units and determines their level of activity. The activity of
a superior (more abstract) working unit is calculated from
the known (measured) activity of a set of inferior (less gen-
eral) working units. For example, it selects all the probesets
that are annotated by the same gene identifier and computes
gene activity. Likewise, all the genes whose products act
in a single pathway are used to compute pathway activity.
A similar approach that applies a method based on singu-
lar value decomposition to calculate pathway activity was
proposed in [19]. However, XGENE.ORG takes a step for-
ward. First, it works with a various types of working units
on different levels of generality. Second, it uses them to
perform cross-genome and cross-organism analysis as there
are working units that generalize beyond individual plat-
forms and species. Third, in addition to standard statistical
analyses, it applies machine learning (ML) techniques to
develop interpretable models that distinguish among user-
defined classes.

Let us exemplify some of the currently available types of
working units. The first type that enables cross-platform
analysis aggregates measurements that share a common
gene ontology (GO) [3] term. The second type aggregates
measurement units acting in the same biological pathways
formalized by the KEGG [9] database. The third type rep-
resents a further novel contribution of our work and is based
on the notion of a fully coupled flux, which is a pattern pre-
scribing pathway partitions hypothesized by [12] to involve
strongly co-expressed genes.

To sum up, analyses and models based solely on mea-
surement units defined by the individual probesets whose
expression is immediately measured by microarrays suffer
from the inherent microarray noise and often fail to identify
subtle patterns, give a large room to overfitting and prove
hard to interpret and apply. Genomic background knowl-
edge makes it possible to introduce and analyze alternative
working units that avoid the bottlenecks mentioned above
and provide improved interpretation power and statistical
significance of analysis results. At the same time, different
platforms and/or species deal with different sets of measure-
ment units that cannot be directly matched. Consequently,
multi-platform analyses cannot be performed without work-
ing units whose meaning is general enough to be defined
in each platform and whose activity can unambiguously be
evaluated in each sample independently of its platform type.
Working units then serve as markers (or features) to distin-
guish between user-supplied sample classes.

The paper is organized as follows. In Section 2 we
synthetize the system’s functionality and describe its archi-
tecture. Section 3 describes the methodological elements
of our approach, consisting of normalization, extraction of

working units at various levels of generality, testing their
significance, and predictive classification. Section 4 briefly
exemplifies the use of the system through two case studies.
Section 5 lays out prospects for future work and concludes
the paper.

2. System Description

The main goal of the presented XGENE.ORG tool is to
analyse a wide range of publicly accessible heterogeneous
gene expression samples. The tool provides an interface to
search available measurements whose annotation is relevant
to the studied biological topic. Typically, a set of relevant
measurements straddles various microarray platforms and
organisms. There are two principal reasons to allow for
their integration. The technical reason concerns the suffi-
ciency of sample sets for reliable modeling. The more plat-
forms accessed, the larger number of samples is at hand.
The scientific reason pertains to the relevance of the out-
comes. Combining multi-platform input data contributes to
the generality of any knowledge discovered.

The tool operates in three basic phases:

1. define sample classes of interest; search and collect ex-
isting measurements representing these classes,

2. compute the activation levels of various working units
with respect to the collected samples,

3. apply statistical, machine learning and visualization
methods to obtain models distinguishing between the
defined classes, with the pre-computed activity levels
of working units acting as sample features.

XGENE.ORG implements this workflow, facilitating all
three phases above. The architecture of the tool is depicted
in Figure 1. XGENE.ORG integrates data from several pub-
licly accessible databases.

Regarding the first phase above, our tool provides an
interface to the Gene Expression Omnibus (GEO) [1].
XGENE.ORG enables a keyword-based search and filtering
of individual gene expression measurements as illustrated
in Fig 2. GEO is currently the largest public repository
archiving and freely distributing high-throughput gene ex-
pression measurement data submitted by the scientific com-
munity. GEO currently stores approximately a billion in-
dividual gene expression measurements, derived from over
100 organisms, addressing a wide range of biological is-
sues. GEO is accessible at www.ncbi.nlm.nih.gov/geo. The
interaction with GEO is supervised by the user. The mea-
surements are normalized and saved in the internal PRO-
LOG format that simplifies subsequent integration of the ex-
pression data with data capturing biological process struc-
ture (pathways) and relational information (the gene ontol-
ogy).

Secondly, XGENE.ORG accesses the databases that pro-
vide background knowledge required to define and interpret



the predefined set of working unit types (they are discussed
in detail thereunder). The individual microarray platforms
are annotated by the Bioconductor packages [4]. Biocon-
ductor packages also provide annotations by the gene on-
tology terms. The background knowledge on pathways and
fluxes is taken directly from KEGG [9] database. The back-
ground knowledge management is fully automated and car-
ried out without user interventions. The tool downloads all
the packages and datasets needed to analyse the measure-
ments currently selected by the user and stores them in the
internal PROLOG representation.

The critical step is to fuse the collected measurements
and background knowledge into unified cross-platform data
subsequently accessed by the statistical and machine learn-
ing tools. Within this fusion, working units are computed
across samples taken from various platforms and organisms.
The resulting unified representation consists of a single ma-
trix in which rows correspond to samples, columns corre-
spond to working units and the respective matrix cells ex-
press the activity of a given unit within a given sample as a
real value. Each working unit subsequently serves as a sta-
tistical variable for tasks such as fold change analysis, or a
sample feature for machine learning algorithms.

Currently, three kinds of analysis results are supported:

• a classifier that estimates the sample class given an ex-
pression sample and its platform label

• a list of working units significantly differentially ex-
pressed in classes

• a scatterplot that shows class distribution in a (trans-
formed 2D) space of working units.

The results are provided to the user in the form of hyper-
text, including links pointing to detailed descriptions work-
ing units employed in the displayed result.

The interaction with the user who starts a new experi-
ment consists of the following steps:

1. The user logs to his/her personal account. This account
stores the user’s previous experiments and their results.

2. The user creates a new experiment. The experiment
can be entirely new (the interaction proceeds by the
following step) or it can be derived from a previous ex-
periment (the experiment then inherits the classes and
datasets defined earlier and thus skips the two follow-
ing steps).

3. The user creates and entitles two or more of sample
classes. These classes contain no measurement sam-
ples at this stage.

4. The user fills each of the defined classes with a set of
relevant GEO expression samples. The samples are
preselected via keyword-based search and then finely
filtered by the user on the basis of experimental anno-
tations (see Figure 2),

Figure 1. XGENE.ORG architecture

5. The user selects (possibly repeatedly) proper working
units, platform types and algorithms and starts the ex-
periment.

6. The system collects the necessary background knowl-
edge, computes the working units defined above and
applies the selected algorithms.

7. The computation begins and the user can log out. (S)he
is informed by email as soon as the results are ready to
be shown.

8. The user views the results. A result-filter helps user’s
orientation if a large number of result types has been
requested in step 5.

3. Methods

This section describes the methodological elements of
our approach. It gives an overview of working units and
shows the way in which their activity is estinated and eval-
uated. It specifies the statistical methods serving to iden-
tify differentially expressed working units. It also gives a
summary of currently implemented machine learning meth-
ods. Their application is at least twofold. The first one
is practical. They provide means to distinguish among
sample classes when the sample annotation is unknown.
The second one is exploratory. As one of the keynotes of
XGENE.ORG is to prove applicability of cross-platform
working units, the classification accuracy of machine learn-
ing models is instrumental for relevance assessment of a
given set of working units.



Figure 2. XGENE.ORG: collecting relevant
samples from NCBI GEO. Clicking on a sam-
ple identifier (‘GSMxxxxx’) opens a detailed
description of that sample.

3.1. Working units – types and activity

Currently, we consider two principal knowledge sources
in order to define working units—the gene ontology
database [3] and the KEGG database [9]. The Bioconduc-
tor annotation packages [4] serve to translate among the
identifiers used by the microarray manufacturers (currently,
only Affymetrix is supported), and the two mentioned back-
ground knowledge databases. The widely spread EntrezIds
(gene identifiers) introduced by NCBI play the role of in-
termediate translation identifiers. The current hierarchy of
working units as implemented in XGENE.ORG is shown
in Figure 3. The ultimate working units correspond to the
measurement units, i.e., the probesets. Their activity in the
individual samples is directly reported in the GEO input
files. A single GEO file corresponds to a single microarray
sample, a whole sample is represented by a probeset activ-
ity vector. The set of measured probesets is platform depen-
dent, i.e., the vectors taken form different platforms cannot
be directly matched. The more general units are gradually
inferred from their subordinate units. For example, the list
of probesets that are annotated by the same gene identifier
makes up the gene working unit. The list of genes linked to

a pathway node makes up the pathway node working unit.
To compute the activity of a working unit, the probesets that
transitively link to that working unit are considered. For
example, the activity of a pathway is computed by aggre-
gating the activity of all probesets corresponding to genes
which in turn correspond to nodes contained in the given
pathway. Obviously, this mapping is platform dependent;
pathways have different probeset interpretations in differ-
ent platforms. At the same time, this mapping is organism
dependent and thus we have to deal with organism orthologs
of pathways.

Figure 3. The hierarchy of working units. An
arrow from X to Y denotes that unit Y refers
to a set of X units. This relation is transi-
tive and thus all units can ultimately be rep-
resented as families of probesets.

Significance testing at the level of pathways and/or GO
terms is a standard method widely implemented in enrich-
ment tools. However, these working units may prove overly
general to capture subtle biological dependencies. Many
notable biological conditions are characterized by the ac-
tivation of only certain parts of pathways; for example,
see references [16, 20, 18]. The notion of ‘pathway ac-
tivation’ implied by the notion of pathway working units
may thus violate intuition and hinder interpretation. There-
fore we also extracted all pathway partitions which com-
ply with the graph-theoretic notion of fully coupled flux
[12]. It is known that the genes coupled by their enzy-
matic fluxes not only show similar expression patterns, but
also share transcriptional regulators and frequently reside in
the same operon in prokaryotes or similar eukaryotic multi-
gene units such as the hematopoietic globin gene cluster.
FCF is a special kind of network flux that corresponds to
a pathway partition in which non-zero flux for one reac-
tion implies a non-zero flux for the other reactions and vice
versa. It is the strongest qualitative connectivity that can be
identified in a network. The notion of an FCF is explained
through an example in Fig. 4; for a detailed definition,
see reference [12]. Again, a probeset falls in a list corre-



sponding to a FCF if it is mapped to a KEGG node in some
organism-ortholog of that FCF. To conclude, XGENE.ORG
uses working units at various levels of generality. This hi-
erarchy of units allows to capture and interpret biological
issues that most strongly manifest in various kinds of exist-
ing biological models.

Figure 4. Fully coupled fluxes in a simpli-
fied network with nodes representing chem-
ical compounds and arrows as symbols for
chemical reactions among them. Each arrow
can be labeled by a protein. R3, R4 and R5
are fully coupled as a flux in any of these
reactions implies a flux in the rest of them.
Note that R1 and R3 do not constitute a FCF
as a flux in R3 does not imply a flux in R1.

The extraction of working units and computation of their
activity in biological samples was conducted in Prolog. The
process of computation of KEGG node activity in a sample
set that originates from two different platforms is shown in
Figure 5.

Currently, the aggregated activity of a unit in a sample is
computed as the mean activity of all the measurement units
that map on it in the given platform. When averaging is ap-
plied in Figure 5, it holds that kwi = (pxi + pyi)/2 = gzi

and kwj = (p′
aj + p′

bj + p′
cj)/3 = (g′

dj + 2g′
ej)/3. It

means that the weight of gene g′
e is twofold with respect

to g′
d as the former maps to two probesets while the lat-

ter to one probeset only. We are aware that averaging is
an elementary aproach that may oversimplify the relation-
ships and information transmission among units. Finding
a biologically sound way to model the activity of genomic
entities from microarray data is an open complex research
issue. First of all, the mapping between probesets and genes
is not unambiguous because the individual probesets map
to more than one transcript dependent upon the biological
condition [17]. There are efforts to refine the standard an-
notation of microarray probesets from gene level to tran-
script and protein level [22]. Secondly, it is advantageous
to take into account internal structure of the modelled enti-
ties. More profound knowledge-based approaches to gener-

alize towards more complex entities such as pathways can
be found in [13, 15, 14]. However, these works always fo-
cus at a single type of applied knowledge and do not con-
cern a universal workflow with multiple platforms on its in-
put. Moreover, the application of such more sophisticated
strategies to aggregate statistical values pertaining to sub-
units to represent analogical values of more general units
is not scalable in the framework adopted by XGENE.ORG.
In principle, this is because the simple average computa-
tion among subunits would have to be replaced by some sort
of subset selection. Here, one searches for the best subset
of subunits that best represent the parent unit, according to
some optimality criterion. Generally, searching among sub-
sets in a family of probesets S becomes quickly intractable
with the growing size of S. For example, a selection of the
best family of probesets for a given gene may be tractable
as there is typically just a few probesets mapping to a gene
in a platform. However, searching among subsets among in
the pool of 10s-100s of probesets mapping to a pathway is
generally no longer tractable.

Figure 5. KEGG node activity. The activity of
the node kw in the sample si denoted as kwi is
given by the activity of its subordinate gene
gz whose activity is in turn given by the ac-
tivity of its subordinate probesets px and py

measured in Platform 1. The activity of the
same node kw in the sample sj denoted as kwj

is given by the activity of g′
d and g′

e. The ac-
tivity of g′

d is given by the activity of p′
a while

activity of g′
e is inferred from activity of p′

b and
p′

c measured in Platform 2.

3.2. Analysis Algorithms

After the collection of all data needed for a defined ex-
periment, normalization is conducted separately for each
involved platform to consolidate same-platform samples.
Quantile normalization [2] ensures that the distribution of
expression values across such samples is identical. As a
second step, scaling provides means to consolidate the mea-
surements across multi-platform samples. We subtract the



sample mean from all sample components, and divide them
by the standard deviation within the sample. As a result, all
samples independently of the platform exhibit zero mean
and unit variance. We conduct these steps using the Bio-
conductor [4] software.

After normalization, the most basic type of analysis that
may be generated on user’s request is fold change analysis
whose goal is to rank the ability of the individual work-
ing units to distinguish among the user-defined classes. For
this sake, we apply the one-way ANOVA (analysis of vari-
ance) method. In single platform tests where ANOVA ranks
probesets, it determines if the sample distribution among
classes has a significant effect on probe-set expression be-
havior. A significant p-value resulting from a one-way
ANOVA test indicates that a probeset is differentially ex-
pressed in at least one of the classes analyzed. The lower p-
value, the higher the probeset ranking. When ranking units
of higher order, we do not proceed in a post hoc fashion
from the single p-values of probe-sets but we model the ex-
pression of working units directly. For every unit, a com-
plete list of probesets that map onto that unit is taken in-
dependently of the platform type. Their expression values
in all the samples are gathered and factorized by the user-
defined class variable2. With such prepared data, one-way
ANOVA is run. Using the distinction for gene set statistical
testing carried out in [5] we apply a self-contained test with
subject sampling. No averaging is applied.

Having a single-tabular representation in which activity
of a set of working units is computed across samples, a
wide-scale of machine learning algorithms can be applied.
The most interesting appear to be such algorithms that al-
low for direct human interpretation of the resulting mod-
els and still keep a good predictive power. Specifically,
we included the J48 decision tree learner provided by the
machine learning environment WEKA [21]. The K-nearest
neighbor (kNN) algorithm from the same environment has
also been included.

Finally, principal component analysis (PCA) is used for
the purpose of dimensionality reduction in a space of work-
ing units with subsequent visualisation of samples [6]. PCA
is known to retain those characteristics of the data set that
contribute most to its variance. In XGENE.ORG it helps
to exhibit class distribution in 2D and visually assess the
potential of a set of working units to distinguish among
classes.

4. Case studies

Here we demonstrate our methodology in two biological
case studies. We address general tasks of tissue type clas-

2In Figure 5, the significance of kw is inferred from concatenation of
the expression vectors for probesets px, pb, p′

a, p′
b and p′

c. The factoriza-
tion is given by the sample distribution which is not shown.

sification. The first experiment focuses on distinct features
of blood-forming (hematopoietic) and supportive (stromal)
cellular compartments in the bone marrow. The second as-
sesses differences in brain, liver and muscle tissues. Both
experiments are of biological significance as they tackle
novel challenges in understanding of cellular behavior: the
former in the complex functional unit termed hematopoi-
etic stem cell niche, where inter-dependent hematopoietic
and stromal cell functions synergize in the blood-forming
function of the bone marrow; the latter in comparison of
cell fate determined by the tissue origin from the sepa-
rate layers of the embryo: ectoderm (brain), endoderm
(liver) and mesoderm (muscle). While of general char-
acter, the chosen tasks are not just random biological ex-
ercises as these studies may illuminate cellular functions
determined by gene expression signatures in complex cell
system seeded by cell-type-heterogeneous undifferentiated
populations (hematopoietic and stromal stem cells in the
cell niche), and in the cell-type-homogeneous differentiated
tissues (brain, liver and muscle), respectively.

The significance tests at gene level identified elevated ex-
pression of genes canonical for the specific tissue studied,
such as myelin basic protein in brain, isocitrate dehydro-
genase in liver, tropomyosin in muscle and differential ex-
pression of integrin beta 5 inhematopoietic and stromal cell
populations of the bone marrow.

The experiments with machine learning algorithms
proved that working units applicable across platforms
clearly distinguish among classes in both studies. The re-
sulting models are compact, easy to interpret and accu-
rate. Fig. 6 exemplifies the application of the decision tree
learner J48 on the level of FCFs in the brain/liver/muscle
study. The model tested by 10-fold cross-validation reaches
the classification accuracy nearly 98%, it misclassifies 3 out
of 131 samples. The tree has only 2 internal nodes (2 activ-
ity tests that put into use two FCFs) and 3 leaves (one leaf
per class).

A similar conclusion follows from PCA visualizations
(Fig. 7). The activity of working units tends to share the
same pattern within classes as well as within the same plat-
forms or the same laboratories. However, the class pattern
is strong enough to clearly distinguish among classes inde-
pendently of platform.

The complete overview of results is available via the
XGENE.ORG webpage.

5. Discussion

XGENE.ORG is a web tool for analysis of gene expres-
sion data collected from heterogeneous (multi-platform)
microarray platforms under the presence of genomic back-
ground knowledge. The integration of multi-platform data
is conducted automatically by using the available genomic



background knowledge to define candidate working units
general enough to be quantified in any sample regardless of
the platform on which it was measured. The heterogeneous
data are transformed into a single-tabular representation
which summarizes the activity of the working units for all
the collected samples. Such a unified representation lends
itself to various types of analysis provided by XGENE.ORG
based on statistical or machine learning methods.

The contribution of this tool is at least twofold. First,
microarray experiments are costly, often resulting in num-
bers of samples insufficient for reliable modeling. The
possibility of systematically integrating the experimenter’s
data with numerous public expression samples coming from
heterogeneous platforms, would obviously help the exper-
imenter. Second, such integrated analysis provides the
principal means to discover biological markers shared by
different-genome species.
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Figure 6. The flux-based cross-platform deci-
sion tree for the brain/liver/muscle study. The
tree is very compact, the class is determined
by two activity thresholds on two fluxes, the
fluxes are visualized using KEGG pathway
maps (in bold).

Figure 7. PCA in the hematopoietic/stromal
study. The first subfigure shows cross-
platform PCA in the space of pathways, the
second subfigure uses FCFs instead. FCFs
seem to better separate the classes (which is
also confirmed by a higher classification ac-
curacy if FCFs are used).


