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Aim

• An account of the phenomenon of mind which is
‣ mechanistic

‣ empirically supported

‣ credible from an evolutionary perspective

• Uniform generalist approach
‣ cf. approaches that focus on specific problems in isolation

• Account for 
‣ reasoning

‣ imagination

‣ creativity
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Evolution of predictive cognition

• In the cognitive context, we must be able to tell a story of how 
something could evolve

• Prediction and Learning are the central concepts here
‣ an organism which can predict is better able to manage a dynamic world 

than one that cannot

‣ an organism which can learn is better able to predict a dynamic world than 
one that cannot

• Consequence:  extreme Ockham!
‣ always choose simplest mechanism to account for an effect, unless there is a 

reason not to
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Requirements for predictive success

• Learning
‣ perceptual inputs

‣ memory
๏ representations

• Generation
‣ predictions

๏ selection mechanism

• Validation/feedback
‣ determine whether predictions were useful

๏ NB. death or serious damage is not helpful as a negative example
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Requirements for predictive success

• Concomitant requirements (hypothetical)
‣ optimisation of memory vs. representation

‣ episodic segmentation of input

‣ regulation of attention (= processing power)
๏ limited, expensive (in energetic and evolutionary terms)
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Expectation

• Consider an organism that has evolved 
‣ to predict the next state of the world

‣ to compare the current state of the world with its expectation

• Emotional response to unresolved expectation
‣ unexpected stimulus leads to enhanced arousal

• More generally, tension and, in extremis, anxiety, fear
‣ Anxious organism = cautious organism = safe(r) organism

‣ Anxious organism = organism ready for f(l)ight = safe(r) organism
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Expectation in music

• Emotional response to unresolved expectation
‣ musical tension

3
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Predictive cognition in music:  IDyOM

• Middle layer of cognitive model of 
conscious musical experience

• Designed by Marcus Pearce (2005)

• Unsupervised, implicit learning

• Inputs are sequences of basic percepts
‣ notes, with pitch & time features

‣ derived percepts, e.g.,
๏ interval; tonal centre

• Outputs are
‣ distributions of predicted pitches

‣ information-theoretic derivatives of 
distributions

Learning system
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Conscious experience

Figure 1: An abstract layered map, locating our model in a larger cognitive system, showing processes in squared
boxes, observable phenomena in round boxes, and information flow as arrows. Solid lines indicate those parts
which are part of our enquiry; dotted ones are ancillary, for the purposes of the present discussion.
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Background:  information theory

• I use two versions of Shannon’s entropy measure (MacKay, 2003)
๏ the number of bits required to transmit data between a hearer and a listener given a 

shared data model

‣ information content:  estimated number of bits required to transmit a given 
symbol as it is received:

h = –log2 ps

๏ models unexpectedness

‣ entropy:  expected value of the number of bits required to transmit a symbol 
from a given distribution, prior to sending/receipt:  

H = –∑i pi log2 pi

๏ models uncertainty

‣ ps, pi are probabilities of symbols;  i ranges over all symbols in the alphabet
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Information Dynamics of Music

• Efficient 
implementation of 
simple Markov chains
‣ but with multi-

dimensional symbols

‣ select feature 
sequences (viewpoints)
๏ basic

๏ derived

‣ calculus of viewpoints
๏ differentiation (delta)

๏ cross-product (pairing)

๏ thread (sub-sequence 
selection)
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Information Dynamics of Music

• Predictions made by
‣ matching current 

context with strings in 
memory

‣ all orders between 0 
and maximum available

‣ all contribute to final 
distribution

‣ Feature predictions 
combined as linear sum 
weighted by entropy
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Information Dynamics of Music

• Combined outputs of 
two models
‣ one exposed to corpus 

of “enculturation” data

‣ one exposed only to 
current melody

‣ Combination is by 
entropic weighting, as 
before

• Model is “optimised”
‣ inefficient viewpoints 

are discarded

‣ model with lowest 
average information 
content is used
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Information Dynamics of Music

• IDyOM predicts
‣ listener’s expectations 

of next note in melody 
๏ 4 studies;  up to r=.91 

correlation

๏ 1 study;  very high 
correlation with 
musicologists’ 
predictions

‣ melodic segmentation
๏ 2 studies;  κ = 0.58

๏ vs musicologist 
judgements
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Information Dynamics of Music

• IDyOM predicts
‣ listener’s expectations 

of next note in melody 
๏ 4 studies;  up to r=.91 

correlation

๏ 1 study;  very high 
correlation with 
musicologists’ 
predictions

‣ melodic segmentation
๏ 2 studies;  κ = 0.58

๏ vs musicologist 
judgements

‣ neural activation with 
unexpectedness
๏ centro-parietal region

๏ strong sync. in beta-band

Expected Pitch

Unexpected Pitch Unexpected – Expected
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Information Dynamics of Language

• Replace pitch/time representation with
‣ phonetic symbols (quasi IPA)

‣ stress symbols (none, weak, strong)

‣ try sentence segmentation – expect morphemes or syllables

• Expose model to TIMIT meta-data
‣ intended for audio-speech recognition, but just use comparison data

‣ compare results with syllable segmentation supplied with TIMIT
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Speech segmentation
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Predictive cognition in general

• Information theoretic properties of data 
determine perceptual segmentation
‣ future work:  exactly how?

• Information theoretic properties of data 
determine cognitive representation
‣ future work:  exactly how?

• Need a mechanism by which predictions 
are made and regulated
‣ Global Workspace Theory

‣ cf Hippolyte Taine (1871!!)
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Figure 1: An abstract layered map, locating our model in a larger cognitive system, showing processes in squared
boxes, observable phenomena in round boxes, and information flow as arrows. Solid lines indicate those parts
which are part of our enquiry; dotted ones are ancillary, for the purposes of the present discussion.
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Baars’ (1988) Global Workspace Theory
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• Compare:
‣ Multiple-agent system communicating via blackboard

‣ Genetic algorithm (breeding replaces blackboard)

‣ Minsky-type Society of Mind (hierarchical management replaced blackboard)

‣ others...

• Neuroscientific evidence for multiple-generator idea
‣ “idling noise” in brain

‣ freewheeling generation when consciousness disengaged
๏ sleeping = dreams

๏ high/pathological = hallucinations

Baars’ (1988) Global Workspace Theory
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Likelihood/Information Content

P
re

fe
re

n
ce

• Agents produce (musical) structure representations

• Probability of structure (in learned model) increases priority
‣ likely structures are generated more often

‣ multiple identical predictions are “additive”

‣ avoid “recruitment” question in model
๏ need fewer agents?

• Unexpectedness increases priority
‣ information content predicts unexpectedness

• Uncertainty decreases priority
‣ entropy predicts uncertainty

Selecting agent outputs
Competitive access to Global Workspace
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Likelihood/Information Content
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• Agents produce (musical) structure representations

• Probability of structure (in learned model) increases priority
‣ likely structures are generated more often

‣ multiple identical predictions are “additive”

‣ avoid “recruitment” question in model
๏ need fewer agents?

• Unexpectedness increases priority
‣ information content predicts unexpectedness

• Uncertainty decreases priority
‣ entropy predicts uncertainty

• Predictions matched with sensory input, but can compete without it

Selecting agent outputs
Competitive access to Global Workspace

v ~ 
ph

v ~ 
H
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Creativity by default

• In the absence of distracting perceptual input, generators freewheel

• Predictions are produced from memory, spontaneously

• Some may be prioritised enough to enter consciousness as “ideas”
‣ cf.  Wallas (1926) “illumination”

‣ the “Aha!” moment

• Such ideas can be selected...
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Mozart’s explanation (Holmes, 2009)

When I am, as it were, completely myself, entirely alone, and of good cheer – 
say traveling in a carriage, or walking after a good meal, or during the night 
when I cannot sleep;  it is on such occasions that my ideas flow best and most 
abundantly.   Whence and how they come, I know not;  nor can I force them. 
Those ideas that please me I retain in memory, and am accustomed, as I have 
been told, to hum them to myself.

All this fires my soul, and provided I am not disturbed, my subject enlarges 
itself, becomes methodized and defined, and the whole, though it be long, 
stands almost completed and finished in my mind, so that I can survey it, like a 
fine picture or a beautiful statue, at a glance.   Nor do I hear in my imagination 
the parts successively, but I hear them, as it were, all at once.   What a delight 
this is I cannot tell!   All this inventing, this producing takes place in a pleasing 
lively dream.   Still the actual hearing of the toutensemble is after all the best. 
What has been thus produced I do not easily forget, and this is perhaps the 
best gift I have my Divine Maker to thank for.
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Evaluation

• Creativity is a slippery concept in humans
‣ how can we evaluate the model?

• Doing this with music is in a sense easier than with language or other 
kinds of knowledge
‣ no real-world inference necessary 

• Build the beast and see what it does!
‣ does it produce novel and interesting (musical) ideas?

‣ does its behaviour match human behaviours,
๏ directly?

๏ tangentially?

‣ use Amabile’s (1999) Consensual Assessment Technique to assess creativity and 
quality of outputs
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Where to find more

• Full (long) paper published this week:
‣ Wiggins, G. A. (2012) The Mind’s Chorus: Creativity before Consciousness. 

Cognitive Computation, 4(3), 306–319.
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ICCC ’13

• International Conference on Computational Creativity

• Sydney, Australia

• 12-14 June 2013

• computationalcreativity.net
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