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Abstract- We use Inductive Logic Programming (ILP) to learn classifiers for 

generic object recognition from point clouds, as generated by 3D cameras, such 

as the Kinect. Each point cloud is segmented into planar surfaces. Each subset 

of planes that represents an object is labelled and predicates describing those 

planes and their relationships are used for learning. Our claim is that a relational 

description for classes of 3D objects can be built for robust object categoriza-

tion in real robotic application. To test the hypothesis, labelled sets of planes 

from 3D point clouds gathered during the RoboCup Rescue Robot competition 

are used as positive and negative examples for an ILP system. The robustness 

of the result is evaluated by 10-fold cross validation. The results show that ILP 

can be successfully applied to recognise objects encountered by a robot in an 

urban search and rescue environment. 

Keywords- object classification, inductive logic programming, ALEPH, cross 

validation, urban search and rescue, point cloud, machine learning, range data. 

1 Introduction 

The goal of this work is to use machine learning to build an object classifier for an 

autonomous robot in an urban search and rescue operation. The primitive input to the 

classifier is a 3D range image, representing a partial view of the environment. Generic 

object recognition requires representations of classes of objects and a classification 

method to recognise new objects. Object features may be visual, structural, functional, 

etc. 

3D depth cameras, such as the Microsoft Xbox Kinect, are now becoming widely 

used because they provide both range and video images and their cost is much re-

duced compared with previous generations of such cameras. In a range image, each 

pixel's value represents the distance of the sensor to the surface of an object in a scene 

from a specific viewpoint [1, 2]. This can be used to infer the shape of the object [3]. 

The Kinect, also incorporates a colour video camera but in this paper, we only use the 

depth information for object recognition as colour calibration under different lighting 

conditions is problematic [4]. A range image can be transformed into a set of 3D co-



ordinates for each pixel, producing a point cloud. Fig. 1 shows a range image of a 

staircase with four steps, taken by a robot positioned in front of the staircase. The 

figure includes front and top views for the same point cloud. The point cloud has been 

segmented into planes that are identified by unique colours. A range image only pro-

vides a partial view of a scene, since it is taken from one viewpoint. Constructing a 

complete 3D point cloud for an object requires multiple views. 

In our current experiments, we extract planes from the 3D point cloud and use 

them as primitives for object recognition. Planes are useful in built environments, 

including urban search and rescue for identifying floors, walls, staircases, ramps and 

other terrain that the robot is likely to encounter. An ILP system is then used to dis-

cover the properties and relationships between the planes that form an object. In the 

following sections, we describe the plane extraction method, the learning algorithm 

and the experimental results that demonstrate the utility of this approach. 

 

 

Fig. 1. Range image and its correspondent point cloud (coloured) from front and top view 

2 Background and Related Work 

A considerable amount of research has been devoted to generic object recognition [4-

7], which is required by robots in many tasks. For example in service robotics appli-

cations, such as a catering or a domestic robot [6], the robot must recognise specific 

kinds of tableware. In industrial applications, the robot has to distinguish a set of 

products [7]. We are mostly interested in urban search and rescue (USAR); where a 

team of robots are sent to a post-disaster environment. The robots are expected to 

search autonomously and provide valuable information especially to the human res-

cuers. The RoboCup Rescue Robot League [8] is a competition which provides the 

environment for testing and motivating the related research in USAR [9]. 

In recent years, statistical methods such as SIFT [10] have become popular meth-

ods for object recognition. However, these are limited to recognising individual ob-

jects that have been previously seen and stored in the vision system‟s database. In 

generic object recognition (GOR) [11], the system learns to recognise an object as 

belonging to a generic class [12], as one would expect in concept learning. Relational 

learning is well suited to learning object classes, provided that the primitive features 

needed for recognition can be reliably extracted from the image. 

Our approach is most closely related to Shanahan [13, 14] who uses a logic program 

as a relational representation for 3D objects in 2D line drawings, and abduction is 

used in object recognition. We have extended this representation, replacing the 2D 

lines with 3D planes. Furthermore, we use ALEPH [15] to learn the logic programs 



from instances obtained by a robot equipped with a depth camera. Originally this was 

a SwissRanger SR-3000 camera [16], which has now been replaced by a Kinect. The 

robot is shown in Fig. 2. It was designed to participate in the RoboCup Rescue Robot 

competition [8], held annually. The competition area uses elements designed by the 

US National Institute of Standards and Technology (NIST) [17] to certify robots for 

emergency operation. These elements are typical of hazards that might be expected in 

buildings damaged by a disaster such as an earthquake. 

Robots developed for the rescue competition have been successfully deployed in 

the Fukushima nuclear reactor damaged in the earthquake and tsunami that struck 

Japan in March 2011. A portion of a typical arena is shown in Fig. 3. The task for the 

robot is to traverse the arena, searching for victims while making a map of the area. 

Rescue robots may be tele-operated or autonomous. Our rescue robot team has won 

the RoboCup award for best autonomous robot three years in succession 2009-2011. 
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Fig. 2. The rescue robot platform 

 

Fig. 3. Roll and pitch ramps in a RoboCup rescue arena 



When running autonomously, recognition of objects is essential so that the robot 

knows how to behave. For example, recognising a staircase tells a wheeled robot that 

it must avoid that object, whereas a tracked robot, such as the one in Fig. 2 is capable 

of climbing stairs but it must reconfigure the flippers to be able to climb successfully. 

A relational representation is useful in this application because we wish to recognise 

objects that are characterized by relationships between its parts, as in the steps that 

constitute a staircase, and the number of parts may not be fixed, as the number of 

steps in a staircase can vary.  

Before discussing the ILP methods used to learn to recognise objects in the arena, 

we first discuss the pre-processing that is essential for the ILP to work. 

3 Feature Extraction 

We use the plane as the primitive for describing objects, where an object is considered 

to be composed of a set of planes derived from a point cloud. To find these planes, 

each point‟s normal vector is calculated and used to segment the point cloud. That is, 

neighbouring points are clustered by the similarity of their normal vectors. Fig. 1 

shows an example of planes found using this method. Attributes of the planes are then 

calculated, including the spherical representation of the planes normal vector and the 

relationships between pairs of planes, e.g. the angle separating them. After extracting 

these features, sets of plane are labelled according to the class to which they belong. 

The ALEPH ILP system [15]  builds a classifier for each class, where objects belong-

ing to that class are considered positive examples and all other objects are treated as 

negative examples. 

In addition to the spherical representation of a plane‟s normal vector (θ and φ) [18] 

(note that θ is defined as zero for undefined situation), other attributes are derived 

from the convex hull of the plane. These are the diameter and width of the convex 

hull and the ratio between these values. The plane‟s bounding cube is used to calcu-

late the ratios between the three axes, two by two. The final plane feature is the axis 

along which the plane is most distributed. Fig. 4 shows the results of segmentation, 

convex hull creation and normal vector representation for a scene that contains a 

pitch/roll ramp and maze wall objects. 

After planes are found and their individual attributes are calculated, we then con-

struct relations between each pair of planes. The first relation is the angle between the 

normal vectors of each pair of planes. The second is a directional relationship [19, 20] 

that describes how two planes are located with respect to each other. For example, as 

shown in Fig. 5, rectangle B is located on the „east‟ side of rectangle A. To find this 

direction between two rectangles, the line that connects both centres is used as a base 

to find out which direction line is closer to the base. However, in our method, regions 

(planes) are in 3D space, not 2D space. We project the 3D view onto two 2D views 

and find spatial-directional relationships in each 2D view. A bounding cube, with 

respect to the sensor‟s coordinate frame, is generated for each set of points assigned to 

a plane. Then, two projections of this cube are used to represent the minimum bound-

ing rectangles for the region from each of the two views. The projections are on the 



XY plane (front view) and the ZX plane (top view). Having two 2D views of a 3D 

object is sufficient to represent its bounding rectangles.  

 

Fig. 4. Colour image and segmented point cloud (front view); representing convex hull and 

normal vector for each region 

 

Fig. 5. east(B,A) 

4 Learning Object Classes 

To label training and test examples, we developed a user-interface that processes each 

range image, converts it to a point cloud and then shows the result of point cloud 

segmentation to a human trainer who chooses a set of coloured regions to form a posi-

tive example of an object and a negative example for some other objects. The trainer 

labels set of planes with the class to which the object belongs, e.g. staircase, wall, and 

pitch/roll ramp. ALEPH is used to construct one classifier for each type of object. For 

example, to learn to recognise a staircase, all the objects labelled as staircases are 

treated as positive examples and all other objects are considered negative examples. 

In these experiments, the range images are obtained from a Microsoft Xbox Kinect. 

The same method has also been applied to images from a SwissRanger SR-3000. 

After labelling, the data set is ready to be used for learning. The labelled planes are 

represented as a Prolog list called as „planeset‟. Fig. 6 shows the legend for colours 

used, the point cloud segmentation result as each region‟s convex hull and normal 

vector and its correspondent colour image for a Kinect box. The red region, region 1, 



represents the wall, while the yellow region, region 4, represents the top of a desk. For 

this example, we define a positive example for box that includes regions 2, 3 and 5 in 

image, img_00, creating the predicate class(box,img_00,[pl2,pl3,pl5]). That 

is, predicates of the form class(#class,+image,+planeset) represent an unor-

dered list of planes (or „planeset‟) in an image forming an instance of the object class. 

 

 

 

Fig. 6. Colour legend (top), colour image and segmented point cloud (front view) for box 

This object is described in the learner‟s background knowledge by a set of predi-

cates, where the first set of predicates specifies the image‟s number and planes. Note 

that, to make each plane identical, we use a pair based on the image number and plane 

number.  

 image(img_00). 

 plane(pl1).  plane(pl2).  plane(pl3).  

 plane(pl4).  plane(pl5).  

The next set of predicates describes the attributes for each plane. The first attribute 

is on which axis the plane is distributed most. To calculate that, we find the difference 

between the maximum and minimum value of a region‟s point coordinates (∆x, ∆y 

and ∆z) and compare them to decide which axis should be chosen.  

 distributed_along(img_00,pl1,axisX). 

 distributed_along(img_00,pl2,axisX). 

 distributed_along(img_00,pl3,axisX). 

 distributed_along(img_00,pl4,axisX). 

 distributed_along(img_00,pl5,axisY). 

We also use the ratio between each pair of values (∆x/∆y, ∆y/∆z and ∆x/∆z) as an-

other set of features. However, instead of using the exact value, we bin them in an 

interval around a pre-defined value. For example both „1.23‟ and „1.12‟ are repre-

sented by „1±0.25‟. This method is applied for another plane feature, the ratio be-

tween the diameter and width of the convex hull. The value of the ratio may be nega-

tive. For example, for plane 5 in image_00, since ∆x<∆z, then the ratio ∆x/∆z is rep-

resented as negative value of ∆z/∆x. 

 



 ratio_yz(img_00,pl1,'-1.0±0.25'). 

 ratio_xz(img_00,pl1,'4.5±0.25'). 

 ratio_xy(img_00,pl1,'5.0±0.25'). 

 … 

 ratio_yz(img_00,pl5,'1.0±0.25'). 

 ratio_xz(img_00,pl5,'-1.5±0.25'). 

 ratio_xy(img_00,pl5,'-1.5±0.25'). 

 

 ch_ratio(img_00,pl1,'4.0±0.25'). 

 ch_ratio(img_00,pl2,'2.5±0.25'). 

 ch_ratio(img_00,pl3,'3.5±0.25'). 

 ch_ratio(img_00,pl4,'2.0±0.25'). 

 ch_ratio(img_00,pl5,'1.5±0.25'). 

The last plane attribute is the spherical representation of its normal vector. Similar 

to the ratio representation, we use an interval around an angle. For example, both 

91.35 and 87.87 are binned in the interval „90 ±15‟. 

 normal_spherical_theta(img_00,pl1,'-90±15'). 

 normal_spherical_phi(img_00,pl1,'135±15'). 

 … 

normal_spherical_theta(img_00,pl5,'-135±15'). 

 normal_spherical_phi(img_00,pl5,'112±15').     

As mentioned earlier, relations are derived from pairs of planes: the angle between 

the normal vectors of two planes and the directional relationship for two adjacent 

planes from XY and XZ views. Note that, since we use a projection of each plane on 

XY and XZ, two planes can appear adjacent in one view and not in the other. For the 

above example, these features are: 

angle(img_00,pl1,pl2,'90±15').  angle(img_00,pl1,pl3,'45±15'). 

angle(img_00,pl1,pl4,'90±15').  angle(img_00,pl1,pl5,'45±15'). 

angle(img_00,pl2,pl3,'90±15').  angle(img_00,pl2,pl4,'0±15'). 

angle(img_00,pl2,pl5,'90±15').  angle(img_00,pl3,pl4,'90±15'). 

angle(img_00,pl3,pl5,'90±15').  angle(img_00,pl4,pl5,'90±15'). 

 

dr_xz(img_00,pl1,pl2,connected).  dr_xz(img_00,pl1,pl2,west). 

dr_xz(img_00,pl2,pl1,east).     dr_xz(img_00,pl2,pl3,west). 

 … 

dr_xz(img_00,pl5,pl3,connected).  dr_xz(img_00,pl5,pl3,south). 

dr_xz(img_00,pl5,pl4,covers). 

 

dr_xy(img_00,pl1,pl2,connected).  dr_xy(img_00,pl1,pl2,north). 

dr_xy(img_00,pl1,pl3,connected).  dr_xy(img_00,pl1,pl3,north). 

 … 

dr_xy(img_00,pl4,pl5,is_covered).  dr_xy(img_00,pl5,pl2,east). 



dr_xy(img_00,pl5,pl4,covers). 

Regions 2, 3 and 5, which form a box, are perpendicular to each other and this fact 

appears in their pair-wise angle relationships.  

Consider planes 1 and 2 for example of a directional relationship. From both 

views, front and top, the regions overlap. , Thus, connected appears in both direc-

tional relationships. Also from the XY view, region 2 (green) is below region 1 (red) 

and plane1 is north of plane2 from the XY view in this image, giving, 

dr_xy(img_00,pl1,pl2,north). Similarly, projecting these planes in the XZ 

view and assuming the X-axis represents north-south and the Z-axis represents east-

west, plane1 is west of plane2 in the XZ view, given by 

dr_xz(img_00,pl1,pl2,west). 

In some cases, the number of planes that form an object may be different. For ex-

ample, by using the same colouring legend, in Fig. 7, different sets of planes from 

image img2 can form positive examples for staircase, represented by following predi-

cates: 

class(staircase,img2,[pl06,pl08,pl10,pl11]). 

class(staircase,img2,[pl05,pl06,pl08,pl10]). 

class(staircase,img2,[pl04,pl05,pl06,pl08]). 

class(staircase,img2,[pl01,pl03,pl04,pl05]). 

class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08]). 

class(staircase,img2,[pl03,pl04,pl05,pl06]). 

class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08,pl10]). 

class(staircase,img2,[pl04,pl05,pl06,pl08,pl10,pl11]). 

class(staircase,img2,[pl01,pl03,pl04,pl05,pl06,pl08,pl11]). 

5 Evaluation 

To evaluate the learning system, we use 10-fold cross-validation. The performance of 

the learning algorithm is measured by the accuracy, error rate, precision and recall 

[21] as shown in Table 1.  

 

 

 

Fig. 7. Stairs with different number of planes 



Table 1. Results for 10-fold cross validation 

 

The classifiers achieve high accuracy because we have ensured that the training 

data include images taken from several viewpoints. For example, a box, depending on 

the viewpoint, may appear to have two or three sides. The longest side of the box may 

be horizontal, vertical or diagonal. By including examples of all these variations, we 

can train the classifiers to handle different perspectives. The features used in describ-

ing objects also affect the generality of the classifier. We construct features as much 

as possible, which are invariant to transforms and thus, enable the learning algorithm 

to find general descriptions.  
An example of the output from learning to recognise a staircase is: 

class(staircase, IMAGE_A, PLANESET_B) :- 

 member(C, PLANESET_B),     member(D, PLANESET_B), 

 angle(IMAGE_A, D, C, '0±15’),  member(E, PLANESET_B),  

 angle(IMAGE_A, E, D, '90±15'), angle(IMAGE_A, E, C, '90±15'),  

 distributed_along(IMAGE_A, E, axisX). 

 

class(staircase, IMAGE_A, PLANESET_B) :- 

 member(C, PLANESET_B),      member(D, PLANESET_B),  

 angle(IMAGE_A, D, C, '0±15’),  

 member(E, PLANESET_B),      member(F, PLANESET_B),  

 angle(IMAGE_A, F, D, '0±15’), angle(IMAGE_A, F, C, '0±15’), 

 dr_xy(IMAGE_A, E, F, south). 

 

class(staircase, IMAGE_A, PLANESET_B) :- 

 n_of_parts(IMAGE_A, PLANESET_B, 4), 

 member(C, PLANESET_B), distributed_along(IMAGE_A, C, axisX). 

The first rule defines PLANESET_B as a staircase in IMAGE_A if PLANESET_B 

has two planes C and D that are approximately parallel. PLANESET_B also contains 

plane E, which is distributed along the X-axis and is approximately perpendicular to 

planes C and D. The second rule covers plane sets that have planes C and D parallel 

to each other, E and F parallel to each other, with C and F also parallel and the direc-

tional relationship between E and F from the front view is south.  Finally, the third 

rule represents plane sets having four planes distributed along axis X. 

One of the most useful attributes of ILP is that learned concepts can become back-

ground knowledge for later training, thus allowing the system to build complex hier-

archical representations. For example, a „staircase‟ may be described as a set of planes 

Object No. positive No. negative 
Accuracy 

=(TP+TN)/N 

Error rate 

=(FP+FN)/N 

Precision 

=TP/(TP+FP) 

Recall 

=TP/(TP+FN) 

Step 199 731 0.9645 0.0355 0.9368 0.8945 

Staircase 241 665 0.9956 0.0044 0.9917 0.9917 

Wall 105 819 0.9881 0.0119 0.9608 0.9333 

Box 144 780 0.9741 0.0259 0.9618 0.8690 

Pitch/roll ramp 131 205 0.9464 0.0536 0.9520 0.9084 



but a more general description might consider it to be an ordered set of steps, where 

the concept of “step” has been previously learned. We investigated this idea to see 

how relational representations can be used to accumulate knowledge. To do that, we 

added the previously learned description of class step to the background knowledge 

while learning staircase. The learned description of staircase now includes the step: 

 class(staircase, IMAGE_A, B) :- 

   member(C, B), ratio_xz(IMAGE_A, C, '5.0±0.25'), 

  has_class(step, IMAGE_A, D, B),  

  has_class(step, IMAGE_A, E, B),  

  intersect(D, E). 

This rule says that planeset, B, in image IMAGE_A is staircase if B has a plane, C, 

where the ratio between its distribution along the X-axis and the Z-axis is 5.0±0.25 

and B contains planesets, D and E, which are both steps and they intersect each other, 

meaning that they have at least one plane in common.    

6 Conclusion 

This paper demonstrates the ability of ILP to learn relational representations of object 

classes from 3D point clouds. By using the plane as a primitive component, a point 

cloud is segmented using point–based surface normal vectors. Plane features and 

plane-pair relationships, such as the angle between planes and their directional rela-

tionships, are used to convert the input data into training examples for ALEPH, an 

ILP learning system. 10-fold cross validation indicates that this approach is capable of 

producing highly accurate classifiers. 

The region growing algorithm can benefit from a noise reduced point cloud, since 

the normal vector calculation and the region growing algorithm are sensitive to the 

noise and might produce incorrectly merged regions. Noise reduction algorithms such 

as jump edge filtering [22] may be suitable, especially for finding better boundaries 

[23-25] for each region.  

 We would like to learn to recognise a greater variety of objects, common in Ro-

boCup Rescue such as barrels and ramps, as well as objects in a home and office envi-

ronments, extending the method to more domains. 

More experiments are needed to demonstrate that the learned concepts are robust to 

variations in scale and rotation. Some modifications of the features could be useful in 

this regard. For example, the feature ch_ratio(image, plane, ratiobin), 

gives the ratio between diameter and width of a region‟s convex hull.  This feature 

might appear in some rules with different ratiobin values for the same object 

class, e.g.  „1±0.25‟, „1.5±0.25‟ and „2±0.25‟.  If we introduce an interval for ra-

tiobin, the three values can be represented as [1-0.25,2+0.25].  

The system can be modified to operate in an unsupervised learning mode, where 

the user does not need to label plane sets. Instead, we use CAD models to extract 

features for each object class as suggested by Böhm et al. in [26]. 



We have tested our algorithm using Microsoft Xbox Kinect range camera. How-

ever, the algorithm is parameterised so that it can be used on other range data (e.g. 

obtained with the SwissRanger-SR3000). These parameters, threshold values and bin 

sizes can be learned, rather than having them defined by the user. 

In this work, we have chosen to build one binary classifier for each class. We 

would like to compare this against building a single multi-class classifier and how this 

affects the performance [27] .  
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