
Heuristic Inverse Subsumption
in Full-clausal Theories

Yoshitaka Yamamoto1, Katsumi Inoue2, Koji Iwanuma1

1 University of Yamanashi
4-3-11 Takeda, Kofu-shi, Yamanashi 400-8511, Japan.

2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

1 Introduction

Given a background theory B and examples E, the task of explanatory induction
[1–3, 13] is to seek for a consistent hypothesis H such that B ∧ H |= E. Based
on its equivalent relation B ∧¬E |= ¬H, H is derivable from the input theories
B and E. This approach is called inverse entailment (IE) [3, 5].

IE consists of two procedures: construction of a bridge theory F and gen-
eralization of F into H. Note that F is an intermediate theory satisfying the
condition B ∧¬E |= F and F |= ¬H. Once a bridge theory F is constructed, H
is generated via the theory F based on the generalization relation ¬F =| H.

Every IE-based method [3–5, 7–9, 12] can be divided into two kinds in accor-
dance with the generalization relation used in it. On the one hand, systems like
CF-induction [3] use the inverse relation of entailment, called anti-entailment.
They can find any hypothesis H such that ¬F =| H, but need several non-
deterministic operators like inverse resolution [6]. On the other hand, systems
like Progol [5, 12], HAIL [7, 8], Imparo [4] and Residure procedure [9] generate
H with the inverse relation of subsumption ¬F ≼ H, called anti-subsumption.
In the following, we call this restricted approach inverse subsumption (IS) [11]
to distinguish it with the general IE. IS methods focus the search space on the
subsumption lattice bounded by ¬F due to the computational efficiency, but
may fail to generate relevant hypotheses, unlike complete IE methods.

For this trade-off between IE and IS, it has been shown that anti-entailment
¬F =| H can be logically reduced to anti-subsumption F ∗ ≼ H [11]. Note that
F ∗ is an alternative theory logically equivalent to the original ¬F . This logical
reduction means that IS can become a complete explanatory procedure in full-
clausal theories only by replacing ¬F with F ∗.

This paper aims at investigating how this complete IS works well in practice.
Unfortunately, empirical evaluations have not been done yet, because the previ-
ous work [11] does not mention how to systematically search the subsumption
lattice in full-clausal theories. In this paper, we provide a heuristic IS algorithm
based on the notion of bottom generalization (BG) used in Progol-like ILP sys-
tems [5, 10, 12]. The key techniques of BG lie in the restriction of the search
space and the heuristic lattice search. First, BG uses a language bias, called a
mode declaration, which syntactically describe the target hypotheses. Next, BG

2 Yoshitaka Yamamoto, Katsumi Inoue, Koji Iwanuma

defines a heuristic function to evaluate hypotheses in accordance with their cov-
erage of examples and description length. Last, BG performs so-called A∗-like
algorithm that searches the subsumption lattice in the best-first search manner.

Those BG techniques are originally used only for finding hypotheses in Horn
clauses. In turn, they are extended so as to be applicable for finding hypotheses
in full-clausal theories. We have implemented them embedded into the complete
IS method. In this paper, we first sketch our IS system in brief, and then show
its experimental result suggesting that the complete IS method indeed generates
better hypotheses which are beyond reach for the previous IS methods.

2 Background

2.1 Notion and terminologies

Here, we review the notion and terminology in ILP [13]. A clause is a finite
disjunction of literals which is often identified with the set of its disjuncts. A
clause {A1, . . . , An,¬B1, . . . ,¬Bm}, where each Ai, Bj is an atom, is also written
as B1 ∧ · · · ∧ Bm ⊃ A1 ∨ · · · ∨ An. A Horn clause is a clause which contains at
most one positive literal; otherwise it is a non-Horn clause. It is known that
a clause is tautology if it has two complementary literals. A clausal theory is a
finite set of clauses. A clausal theory is full if it contains at least one non-Horn
clause. A clausal theory S is often identified with the conjunction of its clauses
and is said to be in Conjunctive Normal Form (CNF).

Let C and D be two clauses. C subsumes D, denoted C ≽ D, if there is a
substitution θ such that Cθ ⊆ D. C properly subsumes D if C ≽ D but D ̸≽ C.
For a clausal theory S, µS denotes the set of clauses in S not properly subsumed
by any clause in S. Let S and T be clausal theories. S (theory-) subsumes T ,
denoted by S ≽ T , if for every D ∈ T , there is a clause C ∈ S such that C ≽ D.

When S is a clausal theory, the complement of S, denoted by S, is defined as a
clausal theory obtained by translating ¬S into CNF using a standard translation
procedure [13]. (In brief, S is obtained by converting ¬S into prenex conjunctive
normal form with standard equivalence-preserving operations and Skolemizing
it.) Note that the complement S may contain redundant clauses like tautologies
or subsumed ones. Especially, we call the clausal theory consisting of the non-
tautological clauses in µS the minimal complement of S, denoted by M(S).

We give the definition of hypotheses in the logical setting of ILP as follows:

Definition 1 (Hypotheses). Let B and E be clausal theories, representing a
background theory and (positive) examples, respectively. Then H is a hypothesis
wrt B and E if and only if H is a clausal theory such that B∧H |= E and B∧H
is consistent. We simply call it a “hypothesis” if no confusion arises.

Inverse entailment (IE) is a fundamental approach to find hypotheses in Defini-
tion 1. It generates a hypothesis H via some bridge theory F , defined as follows:

Definition 2 (Bridge theories). Let B and E be a background theory and
examples. A ground clausal theory F is a bridge theory wrt B and E if B∧¬E |=
F holds. If no confusion arises, we simply call it a “bridge theory”.

Heuristic Inverse Subsumption in Full-clausal Theories 3

2.2 Inverse subsumption with minimal complements

After constructing F , IE methods generate H with anti-entailment ¬F =| H.
Here, we logically reduce IE into IS using the notion of induction fields as follows.

Definition 3 (Induction fields). An induction field, denoted by IH = 〈L〉,
where L is a finite set of literals to appear in ground hypotheses. A ground
hypothesis Hg belongs to IH if every literal in Hg is included in L. Given an
induction field IH = 〈L〉, Taut(IH) is defined as the set of tautologies {¬A ∨
A | A ∈ L and ¬A ∈ L}.

Definition 4 (Hypotheses wrt IH and F). Let H be a hypothesis. H is a
hypothesis wrt IH and F if there is a ground hypothesis Hg such that Hg consists
of instances from H, F |= ¬Hg and Hg belongs to IH.

Theorem 1. [11] Let H be any hypothesis wrt IH and F . Then, it holds that

H ≽ M(F ∪ Taut(IH)).

Theorem 1 shows that inverse subsumption (IS) can derive any hypothesis H
only by adding tautologies associated with IH to the original bridge theory F .

Example 1. Let B, E, and IH be as follows:

B = {buy(y, diaper) ∨ buy(y, beer)}, E = {shopping(y, at night)},
IH = 〈{¬buy(y, diaper), buy(y, beer), ¬buy(y, beer), shopping(y, at night)}〉.

Note here that Taut(IH) contains one tautology: buy(y, beer) ∨ ¬buy(y, beer).
The following is a hypothesis wrt IH and the bridge theory F = B ∧ ¬E.

H = {buy(X, diaper) ⊃ buy(X, beer), buy(Y, beer) ⊃ shopping(Y, at night)}.

Though H does not subsume M(F), it subsumes M(F ∪ Taut(IH)) as follows:

{ ¬buy(y, diaper) ∨ buy(y, beer) ∨ shopping(y, at night),
¬buy(y, beer) ∨ shopping(y, at night) }.

Like Example 1, the complete IS method can generate better hypotheses which
are beyond reach for the previous IS methods. On the other hand, it has not
been clarified yet how this IS actually works well in the practical point of view.

3 Heuristic inverse subsumption

For the empirical analysis, we provide a heuristic IS algorithm embedded into the
complete IS method. It is based on three key techniques of bottom generalization:
mode declarations, an evaluation function and a heuristic lattice search, which
are used in several state-of-the-art ILP systems like Progol and Aleph [5, 10, 12].

4 Yoshitaka Yamamoto, Katsumi Inoue, Koji Iwanuma

Definition 5 (Full-clausal mode language L(M)). Let M be a set of Pro-
gol’s mode declarations3. A clause {A1, . . . , An,¬B1, . . . ,¬Bm} is in the full-
clausal mode language L(M) if each Ai (resp. Bj) is an atom belonging to some
modeh (resp. modeb) declaration in M . A variable of the place-marker +type
in some Bj is complete if it corresponds to the variable either of +type in some
Ai or of -type in some Bk (k ̸= j); otherwise incomplete. A clause in L(M) is
complete if there is no incomplete variable in it.

Example 2. Let a set of mode declarations M and types T be as follows:

M = {modeh(1, buy(+man,#item)), modeh(1, shopping(+man,#date)),
modeb(1, buy(+man,#item))},

T = {man(y), item(diaper), item(beer), date(at night)}.

We recall H in Example 1. Then, both clauses of H are in L(M) and complete.
In contrast, the clause buy(X, diaper) ⊃ buy(Y, beer) is in L(M) but incomplete.

Definition 6 (Evaluation function). Let B, F , IH and M be a background
theory, a bridge theory, an induction field and a set of mode declarations. Let C
be a clause in L(M). We denote by cover(C), length(C), incvar(C) and const(C)
the number of clauses in M(F∪Taut(IH)) subsumed by C, the number of literals
in C, the number of incomplete variables in C and the consistency status of C
wrt B (if C is consistent with B, const(C) = 1; otherwise const(C) = 0),
respectively. Then, the evaluation function f(C) is defined as follows:

f(C) = p1 ∗ cover(C) − (p2 ∗ length(C) + p3 ∗ incvar(C) + p4 ∗ const(C)),

where each pi (1 ≤ i ≤ 4) is a parameter with a non-negative value (1 in default).

Usiing the notions of mode declarations and the evaluation function, we generate
each hypothesis clause one by one in the best-first search manner as follows:

Input: B, F , IH and M
Output: A consistent hypothesis H wrt IH and F in L(M)

Step 1. ⊥ := C; //C is any clause in M(F ∪ Taut(IH)).
Step 2. S := {2}; //S is the set of candidate clauses.
Step 3. T := 2; //T is the best candidate clause in S.
Step 4. H := {2}; //H is a hypothesis.
Step 5. while(!terminate(T, H, B)) do

//B ∪ H ∪ {T} is inconsistent or T is incomplete.
S := S ∪ refine(T,⊥, M); · · · (⋆)
T := best(S); //f(T) has the maximal value among S

Step 6. Remove the clauses from M(F ∪ Taut(IH)) subsumed by T ;
Step 7. If M(F ∪ Taut(IH)) is empty return H; otherwise go to Step 1;

Fig. 1. A heuristic IS algorithm

(⋆) refine(T,⊥,M) compute all the refinements each of which is of form T ∪{l}
subsuming ⊥, where l is the atom belonging to some mode declaration in M .
3 Due to space limitations, we refer to [5, 12] for their concrete definition.

Heuristic Inverse Subsumption in Full-clausal Theories 5

4 Empirical evaluation

We have implemented the heuristic IS algorithm of Fig. 1. Using our IS system,
we empirically investigate how the complete IS works well in practical examples.
Here, we show the experimental result obtained by using one material4 to learn
the concept of “addition of numbers”. We give 10 positive examples E on the sum
of two numbers, like plus(1, 1, 2) meaning that 1 + 1 = 2, as well as 16 facts in
the background theory B that contains the information on the successor relation
between numbers and the relation that 0+X = X for each number X. Given B
and E, we can consider the recursive rule that X+Y = Z if X+(Y −1) = (Z−1)
as one collect hypothesis wrt B and E. Though the problem size is very small,
it is difficult for the previous IS methods to generate the target recursive rule
only with the prior background theory B.

Using this material, we have evaluated the hypotheses obtained by our IS
system in the viewpoint of their predictive accuracies. We apply a leave-one-
out test strategy, that is, randomly leave out one example and use the rest 9
examples as training data. The predictive accuracy is evaluated by varying the
size of randomly chosen training data (9 points ranged from 20% to 100% of the
9 examples). For each training data size, we randomly generate 10 training sets
and then compute their success ratio as the predictive accuracy.

Fig. 2. Predictive accuracy [%] Fig. 3. Generalization time [msec]

Fig. 2 describes the performance of two cases: the one (thick line pointed
with squares) generating H from M(F ∪ Taut(IH)) and the other (thin line
pointed with stars) from M(F). In other words, the former (resp. latter) case is
for the complete (resp. incomplete) IS method. We then notice that the complete
IS succeeds in generating better hypotheses with high (almost 100%) predictive
accuracies. In fact, it generated the target hypothesis in more than 40% training
data size. On the other hand, its computational cost was much expensive than
the incomplete IS without adding tautologies, as shown in Fig. 3. Note that
Taut(IH) contains 10 tautologies. M(F ∪ Taut(IH)) can be blow-up in size as
increasing the size of those tautologies, which make the performance inefficient.
4 Available from: http://www.iwlab.org/our-lab/our-staff/yy/SampleData

6 Yoshitaka Yamamoto, Katsumi Inoue, Koji Iwanuma

5 Concluding remarks and future work

There are two generalization approaches for hypothesis finding: inverse entail-
ment (IE) and inverse subsumption (IS). Recently, it has been shown that IE
can be logically reduced into a new form of IS, provided that it ensures the com-
pleteness of IE. This paper aims at investigating how this complete IS method
works well in the practical point of view. For the analysis, we have provided and
implemented a heuristic IS algorithm based on the techniques of bottom general-
ization used in the state-of-the-art ILP systems. We also show one experimental
result suggesting that the complete IS method actually finds better hypotheses
than the incomplete IS one that does not add tautologies to the original F .

It is an important future work to compare our IS system with the other state-
of-the-art ILP systems like Progol using more practical data sets. However, it
may not work in case that the number of tautologies increases due to the blow-up
of M(F∪Taut(IH)) in size. It will be then fruitful to consider if M(F∪Taut(IH))
can be treated in some compact representation formalization like BDD.

References

1. De Raedt, L. (1997). Logical setting for concept-learning. Artificial Intelligence,
95, 187–201.

2. Flach, P. A. (1996). Rationality postulates for induction. Proceedings of the 6th
international conference on theoretical aspects of rationality and knowledge, 267–
281.

3. Inoue, K. (2004). Induction as consequence finding. Machine Learning, 55(2), 109–
135.

4. Kimber, T., Broda, K., & Russo, A. (2009). Induction on failure: learning connected
Horn theories. Proc. of the 10th int. conf. on logic programming and nonmonotonic
reasoning (pp. 169–181). LNCS 5753, Springer.

5. Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Comput-
ing, 13, 245–286.

6. Muggleton, S. H., & Buntine, W. L. (1988). Machine invention of first order pred-
icates by inverting resolution. Proc. of the 5th Int. Conf. on ML. pages 339–352.

7. Ray, O., Broda, K., & Russo, A. M. (2003). Hybrid abductive inductive learning.
Proc. of the 13th int. conf. on inductive logic programming (pp. 311–328). LNCS
2835, Springer.

8. Ray, O. & Inoue, K. (2008). Mode directed inverse entailment for full clausal the-
ories. Proc. of the 17th int. conf. on inductive logic programming (pp. 225–238).
LNCS 4894, Springer.

9. Yamamoto, A. (2003). Hypothesis finding based on upward refinement of residue
hypotheses. Theoretical Computer Science, 298, 5–19.

10. Srinivasan, A. (2007). The Aleph Manual. University of Oxford, Oxford.
11. Yamamoto, Y., Inoue, K., & Iwanuma, K. (2012). Inverse subsumption for complete

explanatory induction. Machine Learning, 86, 115–139.
12. Tamaddoni-Nezhad, A., & Muggleton, S. H. (2009). The lattice structure and re-

finement operators for the hypothesis space bounded by a bottom clause. Machine
Learning, 76, 37–72.

13. Nienhuys-Cheng, S., & De Wolf, R. (1997). Foundations of inductive logic program-
ming. LNCS 1228, Springer.

