
A Link-Based Method for Propositionalization

Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

LIFO, Bat. 3IA, Université d’Orléans
Rue Léonard de Vinci, B.P. 6759, F-45067 ORLEANS Cedex 2, France
{Thang.Dinh,Matthieu.Exbrayat,Christel.Vrain}@univ-orleans.fr

http://www.univ-orleans.fr/lifo/

Abstract. Propositionalization, a popular technique in Inductive Logic
Programming, aims at converting a relational problem into an attribute-
value one. An important facet of propositionalization consists in building
a set of relevant features. To this end we propose a new method, based on
a synthetic representation of the database, modeling the links between
connected ground atoms. Comparing it to two state-of-the-art logic-
based propositionalization techniques on three benchmarks, we show that
our method leads to good accuracy in supervised classification.

1 Introduction

Propositionalization is a popular technique in ILP, that aims at converting a re-
lational problem into an attribute-value one [1–5]. Propositionalization usually
decomposes into two main steps: generating a set of useful attributes (features)
starting from relational representations and then building an attribute-value
table, which can be mono-instance (a single tuple for each example) or multi-
instance (several tuples for an example). Traditional attribute-value algorithms
can then be applied to solve the problem. Approaches for constructing automat-
ically the new set of attributes (features) can be divided into two trends [6, 7]:
methods based on logic or inspired from databases.

The first trend follows the ILP tradition which is logic-based. This trend,
as far as we know, includes the first representative LINUS system [8] and its
descendants, the latest being RSD [9], HiFi [4] and RelF [5]. For these systems,
examples are mostly represented as first-order Herbrand interpretations and fea-
tures are conjunctions of first-order function-free atoms. The search for features
is based on a template (a set of ground atoms of which all arguments fall in ex-
actly one of two categories: “input” or “output”) or mode declarations (defining
the predicates and assigning a type and mode to each of their arguments).

The second trend is inspired from databases and appeared later beginning
with systems like Polka [2], RELAGGS [10] and RollUp [7]. Those systems build
attributes, which summarize information stored in non-target tables by applying
usual database aggregate functions such as count, min, max, etc. The method
in RELAGGS is very similar to the one in Polka developed independently by
a different research group. A difference between them concerns efficiency of the
implementation. Besides the focus on aggregation functions, RELAGGS concen-
trates on the exploitation of relational database schema information, especially

2 Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

foreign key relationships as well as the use of optimization techniques such as
indices, which are frequently used in relational databases.

In this paper, we propose a new method, called Link-Based Propositional-
ization or LBP, to build features for propositionalization from a set of ground
atoms, without information on templates or mode declarations. The method was
initially designed to learn the structure of Markov logic networks [11], where it
was used as a strategy to build a boolean table and to find dependent literals.
The originality of the method is to build an abstract representation of sets of
connected ground atoms, allowing thus to represent properties between objects.

LBP differs from the classical logic-based approaches both in the semantic of
the boolean table and in the search for features. For example, the RelF system
uses a block-wise technique to construct a set of tree-like conjunctive relational
features while the others, like HiFi or RSD use the traditional level-wise ap-
proaches. The search in LBP does not rely on template or mode declarations,
but on a synthetic representation of the dataset, namely the links of the chains,
which allows to build features as well as to construct the boolean table based
on the regularities of these chains. The notion of chain is related to relational
path-finding [12] and relational cliché [13].

Our propositional method is presented in Section 2. Section 3 is devoted to
experiments and finally, Section 4 concludes this paper.

2 Link-Based Propositionalization

We suppose the reader familiar with the notions of atoms, literals, ground atoms
and clauses. Here a variable literal denotes a literal that contains only variables.
Two ground atoms are connected if they share at least one constant.

The method that we propose is based on an abstract representation of sets
of connected atoms, either ground atoms or variable atoms. This abstract repre-
sentation is learned from sets of connected ground atoms and it is used to build
sets of connected variable literals. Let us first introduce this representation.

2.1 An abstract representation

The idea underlying this method is to detect regularities in ground atoms: we
expect that many chains of connected atoms are similar, and could thus be
variabilized by a single chain and that only the set of variable literals appearing
in this chain has to be stored. The representation that we propose is based on
the notion of links, which models the relations between connected atoms.

Definition 1. Let g and s be two ground literals (resp. two variable literals). A
link between g and s is a list composed of the name of the predicates of g and s
followed by the positions of the shared constants (resp. variables). It is written
link(g, s) = {G S g0 s0 / g1 s1 / . . . } where G and S are the predicate symbols
of g and s, gi ∈ [1, arity(g)], si ∈ [1, arity(s)] and the combinations / gi si /
mean that the constants respectively at position gi in g and si in s are the same.
If g and s do not share any constant then link(g,s) is empty.

A Link-Based Method for Propositionalization 3

We are interested in representing the properties of sets of connected literals.
In order to have a sequential representation of these properties, we consider only
chains of literals defined as follows:

Definition 2. A chain of ground literals (resp. variable literals) starting from
a ground (resp. variable) literal g1 is a list of ground (resp. variable) literals
〈g1, ..., gk, ...〉 such that ∀i > 1, link(gi−1, gi) is not empty and every constant
(resp. variable) shared by gi−1 and gi is not shared by gj−1 and gj, 1 < j < i. It
is denoted by chain(g1) = 〈g1, ..., gk, ...〉. The length of the chain is the number
of atoms in it.
The link of the chain 〈g1, ..., gk, ...〉 is the ordered list of links link(gi, gi+1), i ≥ 1,
denoted by link(gc) = 〈link(g1, g2)/.../link(gi, gi+1)/...〉.

Definition 3. A link 〈g1, ..., gk〉 is said to be a prefix of another link 〈s1, ..., sn〉,
if there exists k ≤ n such that link(gi, gi+1) = link(si, si+1), ∀i, 1 ≤ i < k.

Example 1. Let G = {P(a, b), Q(b, a), R(b, c), S(b), S(c)} be a set of ground
atoms. We have: link(P(a, b), Q(b, a)) = {P Q 1 2 / 2 1}. A possible chain
starting from the ground atom P(a, b) is 〈P(a, b), R(b, c), S(c)〉.

The link of chain 〈P(a, b), R(b, c), S(c)〉 is 〈{P R 2 1 } / {R S 1 1}〉. The
link of chain 〈P(a, b), R(b, c)〉 is 〈{P R 2 1 }〉, which is a prefix of the previous
link. On the other hand, 〈P(a, b), R(b, c), S(b)〉 is not a chain as the constant
b share by R(b, c) and S(b) is already used to link P(a, b) and R(b, c).

2.2 Creation of a set of features

Let us consider a target predicate P and a training dataset DB. We aim at
building a set SL of variable literals linked to P given DB such that for each
true ground atom e built with predicate P in DB, and for each chain chain(e)
starting from e, there exists a variabilization such that var(chain(e)) ⊆ SL.

The algorithm can be sketched as follows (in practice the length of the chains
is limited by an integer k)
• for each true ground atom A of the target predicate P,

• find every chain starting from A
• build the corresponding link and check whether it is a prefix of a link

already built
• if not, variabilize it: a simple variabilization strategy is used ensuring that

different constants in this chain are replaced by different variables.

Example 2. Let DB be a database composed of 14 ground atoms as follows: ad-
visedBy(Bart, Ada), student(Bart), professor(Ada), publication(T1,Bart), publi-
cation(T2, Bart), publication(T1, Ada), publication(T2, Ada), advisedBy(Betty,
Alan), student(Betty), professor(Alan), publication(T3, Betty), publication(T3,Alan),
publication(T3, Andrew), professor(Andrew).

Figure 1 illustrates the production of chains of ground literals with the corre-
sponding links and the resulting variable literals, using advisedBy as the target
predicate, and bounding the length of chains to 4.

4 Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

advisedBy(Betty,Alan)

publication(T3,Andrew)

publication(T3,Betty) student(Betty)

professor(Andrew)

professor(Alan)

professor(Alan)

publication(T3,Andrew) professor(Andrew)

student(Betty)

publication(T3,Alan)

publication(T3,Alan)publication(T3,Betty)

publication(T2,Bart) publication(T2,Ada) publication(T1,Ada)
professor(Ada)advisedBy(Bart,Ada)

publication(T1,Ada) publication(T1,Bart)
publication(T2,Bart)
student(Bart)

professor(Ada)

publication(T2,Bart)publication(T2,Ada) publication(T1,Bart)
student(Bart)

publication(T1,Bart) publication(T1,Ada) publication(T2,Ada)
professor(Ada)

student(Bart)

Training dataset DB

advisedBy(Bart,Ada)
student(Bart)
professor(Ada)
publication(T1,Bart)
publication(T2,Bart)
publication(T1,Ada)
publication(T2,Ada)
advisedBy(Betty,Alan)

publication(T3,Betty)

student(Betty)
professor(Alan)

publication(T3,Alan)

professor(Andrew)
publication(T3,Andrew)

{advisedBy(A,B) student(A)
{advisedBy(A,B) publication(C,A) publication(C,B) publication(D,B)
{advisedBy(A,B) publication(C,A) publication(C,B) professor(B)

{advisedBy(A,B) professor(B)
{advisedBy(A,B) publication(C,B) publication(C,A) student(A)
{advisedBy(A,B) publication(C,B) publication(C,A) publication(D,A)

{advisedBy(A,B) publication(C,B) publication(C,D) professor(D)
{advisedBy(A,B) publication(C,B) publication(C,D) student(D)

{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub pub 2 2}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}
{adv stu 1 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 1 2} | {pub pub 1 1} | {pub prof 2 1}
{adv prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub prof 2 1}
{adv pub 2 2} | {pub pub 1 1} | {pub stu 2 1}

Variable litteralsLinks of chains

Chains of ground literals

Fig. 1. The variabilization process using chains and links (length ≤ 4)

2.3 Construction of a boolean table

The next step in our approach transforms information in the database into a
boolean table BT, where each column corresponds to a variable literal and each
row corresponds to a true/false ground atom of the target predicate. Let us
assume that data concerning a given ground atom qr is stored in row r. Let us also
assume that column c corresponds to a given variable literal vlc. BT[r][c] = true
means that starting from qr we can reach a literal that is variabilized as vlc.
In other words, there exists at least a variabilized chain vc ∈ SL containing
the variable literal vlc, a ground chain gcr starting from the ground atom qr,
and a variabilization of gcr such that vc ⊆ var(gcr). Let us notice that to find
information related to a variable literal we only need to consider the subset of
variable literals appearing in the set of chains starting from this literal, which is
much smaller than the complete set SL, especially when the database is large.

A Link-Based Method for Propositionalization 5

3 Experiments

Systems, Databases and Methodology

We evaluated LBP according to classification accuracy, which has been used in
most of previous research as in [4, 5, 7, 9]. We compared LBP to two state-of-the-
art logic-based systems: RelF [5] and RSD [9]. For the comparison of logic-based
and database-inspired methods, we refer to [6, 7, 14] for further reading.
We performed experiments on three domain-popular datasets:
•Mutagenesis concerns drugs : their chemical properties, their atoms and bonds.
It consists of 188 organic molecules marked according to their mutagenicity. The
learning task is to predict whether a drug is mutagenic or not.
• UW-CSE describes an academic department (15 predicates; 1323 constants;
2673 ground atoms). We have chosen to predict who is the advisor of who.
• CORA consists of citations of computer science papers (10 predicates; 3079
constants; 70367 true/false ground atoms). We learned the predicate sameBib.
We conducted a 10-fold cross-validation. Accuracy was computed using two de-
cision tree classifiers of WEKA [15]: J48 and REPTree, that received as input
the features generated by each system. We used the same feature declaration
bias for RSD and RelF and allowed cyclic features in RSD [5]. For LBP, we set
the maximal length of considered g-chains (v-chains) to k = 4.

Results

Table 1 indicates, for each dataset and propositionalization method, the number
of features generated (NoF) and the running time (T) of the method, together
with the resulting predictive accuracy with J48 and REPTree (REP).

LBP achieved the best results on Mutagenesis and UW-CSE, with both clas-
sifiers, and performed a little worse than RelF on CORA. RSD did not finish
on the largest dataset CORA. We can notice that J48 did globally perform a
little worse than REPTree on all of our experiments.

LBP RelF RSD

NoF T J48 REP NoF T J48 REP NoF T J48 REP

Mutagenesis 43 1.2 75.6 79.7 455 1.2 73.1 76.2 321 1.3 71.9 72.1
UW-CSE 102 10.5 80.2 83.9 567 10.3 80.2 81.3 491 11.2 70.7 75.7
CORA 41 31.7 83.3 85.0 347 32.5 83.4 85.7 DNF DNF DNF DNF

Table 1. Accuracy results

For all datasets, LBP did generate much less features than RelF and RSD.
Beside the impact on the classifier input, this number of features does also in-
fluence the size of the boolean table. However, considering CORA, despite the
smaller number of learned features, the size of the boolean table learned by LBP
(6.3MB) is much larger than the one learned by RelF (4.6MB). This is because
the number of rows in LBP depends on the number of ground atoms of the query

6 Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

predicate (which are numerous in CORA) whereas it depends on the number of
true combinations of variables in RelF. Yet, running-times remain similar.

Based on these results, we can conclude that our system is competitive to
the state-of-the-art propositional systems on these three benchmark datasets.

4 Conclusion and Future Work

We introduced LBP, a link-based method of propositionalization to transform
relational data into a boolean table. Experiments show that LBP can lead to a
better accuracy of classification while generating a smaller number of features
than state-of-the-art methods. LBP does currently only support binary classifi-
cation, as its boolean tables are based on the true/false ground atoms (of the
query predicate). Handling multi-class problems is thus a near future goal.

References

1. Alphonse, É., Rouveirol, C.: Selective propositionalization for relational learning.
In: PKDD’99. Volume 1704 of LNCS, Springer (1999) 271–276

2. Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In:
PKDD’01. Volume 2168 of LNCS, Springer (2001) 277–288

3. De Raedt, L.: Logical and Relational Learning. Springer (2008)
4. Kuželka, O., Železný, F.: Hifi: Tractable propositionalization through hierarchical

feature construction. In: Late Breaking Papers, ILP’08. (2008)
5. Kuželka, O., Železný, F.: Block-wise construction of tree-like relational features

with monotone reducibility and redundancy. Mach. Learn. 83(2) (2011) 163–192
6. Krogel, M.A., Rawles, S., Železný, F., Flach, P.A., Lavrac, N., Wrobel, S.: Com-

parative evaluation of approaches to propositionalization. In: ILP’03. Volume 2835
of LNCS, Springer (2003) 197–214

7. Lesbegueries, J., Lachiche, N., Braud, A.: A propositionalisation that preserves
more continuous attribute domains. In: ILP’09. (2009)

8. Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood (1994)

9. Lavrac, N., Zelezný, F., Flach, P.A.: Rsd: Relational subgroup discovery through
first-order feature construction. In: ILP’02. Volume 2583 of LNCS, Springer (2002)
149–165

10. Krogel, M.A., Wrobel, S.: Transformation-based learning using multirelational
aggregation. In: ILP’01. Volume 2157 of ILP, Springer (2001) 142–155

11. Dinh, Q.T., Exbrayat, M., Vrain, C.: Discriminative markov logic network struc-

ture learning based on propositionalization and chi
2-test. In: ADMA’10. Volume

6440 of LNCS, Springer (2010) 24–35
12. Richards, B.L., Mooney, R.J.: Learning relations by pathfinding. In: AAAI’92,

AAAI Press / The MIT Press (1992) 50–55
13. Silverstein, G., Pazzani, M.J.: Relational clichés: Constraining induction during

relational learning. In: ML’91, Morgan Kaufmann (1991) 203–207
14. Kuzelka, O., Zelezný, F.: Block-wise construction of acyclic relational features with

monotone irreducibility and relevancy properties. In: ICML’09, ACM (2009) 72
15. Machine Learning Group at University of Waikato: Data mining software in java.

http://www.cs.waikato.ac.nz/ml/weka/

