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Abstract. In multi-relational data mining, data are represented in a
relational form where the individuals of the target table are potentially
related to several records in secondary tables in one-to-many relationship.
In this paper, we suggest an itemset based framework for constructing
variables from secondary tables and evaluate their conditional informa-
tion for the supervised classification task. We introduce a space of itemset
based models in the secondary table and conditional density estimation
of the related constructed variables. A prior distribution is defined on
this model space, thereby obtaining a parameter-free criterion to assess
the relevance of the constructed variables.
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1 Introduction

Learning from relational data has recently received increasing attention in the lit-
erature. Multi-Relational Data Mining (MRDM) was introduced in [6] to address
knowledge discovery techniques from multiple relational tables. The common
point between MRDM techniques is that they need to transform the relational
representation. In Inductive Logic Programming ILP [3], data is recoded as logic
formulas. Other methods, known as propositionalisation [7], try to flatten the
relational data by creating new variables. To the best of our knowledge, few stud-
ies have treated the variable preprocessing problem in the MRDM context with
one-to-many relationship. Some works in ILP operate by selecting predicates in
order to reduce the search space during the learning step [1, 4].

The purpose of this paper is to construct new variables from a secondary
table having a one-to-many relation with the target table and to evaluate their
relevance for the task of supervised classification. In order to take into account
the risk of overfitting, which dramatically increases with the number of poten-
tial constructed variables, we introduce a space of itemset based models in the
secondary table and conditional density estimation of the resulting constructed
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Fig. 1. Relational schema of a CRM database

variable. Then a prior distribution is defined on this model space. As a result,
we obtain a parameter-free relevance criterion for the constructed variables. We
illustrate our approach through the following example.

Example 1. Figure 1 shows an extract of a Customer Relationship Management
(CRM) relational database schema. The table Customer is the target table,
where each customer (or individual) data is stored in a single row. On the other
hand, Call detail record (CDR) is a secondary table linked to Customer through
the foreign key CID. Thus, in the CDR table, several rows are related to a single
customer from the Customer table. In our example, the problem is to identify
the customers likely to be interested in a particular product. This problem turns
into a classification problem where the target variable is the boolean variable
Appetency, which denotes whether the customer is likely to order that product.

To do so, we consider itemsets defined as a conjunction of expressions of
the form (x ∈ Sx) where x is a variable of the CDR table and Sx is either an
interval (if x is a numerical variable) or a set of values (if x is a categorical vari-
able). Assuming that WeekDay and Destination are categorical variables and
Time is a numerical variable, π: (WeekDay ∈ {Saturday, Sunday}) ∧ (Time ∈
(10:00:00 ; 11:30:00])∧(Destination ∈ {International}) is an itemset. This item-
set π allows constructing a new binary variable Aπ, according to whether the
secondary records are covered or not by the itemset.

Our relevance criterion is the sum of two criteria: (i) an evaluation criterion
assessing the relevance of Aπ w.r.t. the target variable (as defined in [8]), and
(ii) a construction criterion assessing the encoding cost of the itemset π.

The rest of this paper is organized as follows. Section 2 recalls the method
[8] dealing with the case of a binary secondary variable. Section 3 introduces
the space of constructed itemset based secondary variables and presents their
evaluation criterion. Section 4 gives a summary and discusses future work.

2 Evaluation of Binary Secondary Variables

The method introduced in [8] is able to evaluate the relevance of a binary sec-
ondary variable A with values a and b. In this case, each individual is described
by a bag of secondary values a and b, and summarized without loss of informa-
tion by the numbers na of a and nb of b in this bag. Thus, the whole information
about A can be captured by considering jointly the pair (na, nb) of primary
variables. We emphasize that na and nb are considered jointly so as to preserve
information, as illustrated in Figure 2 in the context of Example 1.
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Fig. 2. Evaluation of the secondary variable Destination for the prediction of the target
variable Appetency. Here, customers with a small number of national CDR and a large
number of international CDR are likely to have the value Yes of Appetency.

In this setting, P (Y | A) is equivalent to P (Y | na, nb). Bivariate data grid
models [2] are used to qualify the information contained in the variable pair
(na, nb). The values of na and nb are partitioned jointly into intervals, thus
giving a partitioning of the data into a grid whose cells are defined by intervals
pairs. The target variable distribution is defined locally in each cell. Therefore,
the purpose is to find the optimal bivariate discretization which maximizes the
class distribution, in other words, we look for the optimal grid with homogeneous
cells according to the class values. To do so, we introduce the following notation:

– N : number of individuals (number of target table records)
– J : number of target values (classes),
– Ia,Ib : number of discretization intervals respectively for na and nb
– Nia.. : number of individuals in the interval ia (1 ≤ ia ≤ Ia) for variable na
– N.ib. : number of individuals in the interval ib (1 ≤ ib ≤ Ib) for variable nb
– Niaib. : number of individuals in the cell (ia, ib)
– Niaibj : number of individuals in the cell (ia, ib) for the target value j

Applying a Bayesian model selection approach, our evaluation criterion ce(A) to
assess the relevance of a secondary binary variable is defined as follows.

ce(A) = logN + logN + log
(
N + Ia − 1
Ia − 1

)
+ log

(
N + Ib − 1
Ib − 1

)
(1)

+
Ia∑
ia=1

Ib∑
ib=1

log
(
Niaib. + J − 1

J − 1

)
+

Ia∑
ia=1

Ib∑
ib=1

log
Niaib.!

Niaib1!Niaib2! . . . NiaibJ !

Details about this criterion and the optimization algorithm can be found in [2].
Beyond the evaluation of binary secondary variables, our goal is to extend the
method to numerical and categorical secondary variables to capture the potential
correlations that may exist between them. In the next section, we introduce a
similar criterion for itemset-based models defined over secondary variables, in
order to take into account this multivariate correlation and to benefit from the
potential of itemset-based classification rules [5].



3 Itemset Based Variable Construction

Itemset Based Construction Model. Based on the classification model of
[5], an itemset is a conjunction of terms of the form (x ∈ Sx) where x is a variable
from the secondary table, and Sx is either an interval if x is numerical, or a set
of values if x is categorical.

Every itemset π is associated with a boolean variable Aπ, which is true for
secondary records that are covered by π, and false otherwise. Aπ is called an
Itemset Based Construction Model variable, or ibcm variable, for short.

Our working model space is thus the space of all itemsets. To apply the
Bayesian approach, we first define a prior distribution on the set of all possi-
ble itemsets. To this end, we introduce the following notation, where for every
secondary variable x, dom(x) denotes the set of all possible values over x.

– Ns : number of records in the secondary table
– m : number of (categorical or numerical) variables in the secondary table
– X = {x1, . . . , xk} : set of k variables occurring in the itemset (k ≤ m)
– Xcat (resp. Xnum) : set of categorical (resp. numerical) variables occurring

in the itemset (X = Xcat ∪Xnum)
– Vx : number of values of a categorical variable x (Vx = |dom(x)|)
– Ix : number of intervals or groups of a variable x
– {i(vx)}vx∈dom(x) : set of indexes of groups to which vx is affected (one index

per value, either 1 or 2 for inside or outside of the itemset)
– {Ni(x).}1≤i≤Ix

: number of records in interval ix of numerical variable x
– ix1 , . . . , ixk

: indexes of groups of categorical variables (or intervals of numer-
ical variables) occurring in the itemset

MODL hierarchical prior. We use the following distribution prior on itemsets,
called the MODL hierarchical prior. Notice that a uniform distribution is used
at each stage3 of the parameters hierarchy of the models:

1. the number of variables k in the itemset is uniformly distributed in [0;m]
2. for a number k of variables, every set of k constituent variables of the itemset

is equiprobable (given a drawing with replacement)
3. for a categorical variable x in the itemset, the number of groups is 2 (Ix = 2)
4. for a numerical variable x in the itemset, the number of intervals Ix is either

2 or 3 (with equiprobability)
5. for a categorical (or numerical) variable x and a number of groups (or inter-

vals), every partition of x into Ix groups (or intervals) is equiprobable (cf.
{i(vx)}vx∈dom(x) for groups and {Ni(x).}1≤i≤Ix

for intervals)
6. for a categorical variable x, for a value group ix of this variable, belonging

to the itemset or not is equiprobable
7. for a numerical variable x with 2 intervals, for an interval ix of this variable,

belonging to the itemset or not is equiprobable. In the case of 3 intervals,
the itemset interval is necessarily the middle one.

3 It does not mean that the hierarchical prior is a uniform prior over the itemset space,
which would be equivalent to a maximum likelihood approach.



Using the definition of the model space and its prior distribution, we now express
the prior probabilities of our Itemset Based Variable Construction model.
Construction cost of an ibcm variable. The construction cost cc(Aπ) of an
ibcm variable Aπ associated with an itemset π is defined as follows:

cc(Aπ) = log(m+ 1) + log
(
m+ k − 1

k

)
(2)

+
∑

x∈Xcat

logS(Vx, 2) + log 2

+
∑

x∈Xnum

log 2 + log
(
Ns − 1
Ix − 1

)
+ log(1 + 1{2}(Ix))

It can be seen from Formula 2 that the cost of an ibcm variable is the negative
logarithm of probabilities, thus expressing a coding length according to Shan-
non [9]. Here, cc(Aπ) may be interpreted as a variable construction cost, that is
the coding cost of the itemset π.

In Formula 2, the first line stands for the choice of the number of variables
occurring in the itemset and for the choice of these variables among all variables
in the secondary table. The second line is related to the choice of the groups and
the values involved in the itemset for categorical variables, where the number of
partitions of Vx values into 2 groups is S(Vx, 2) (S stands for Stirling number of
the second kind). The third line deals with numerical variables, i.e., the choice of
the number of intervals, their bounds and the one involved in the itemset (1{2}
is the characteristic function of the set {2}, that is, 1{2}(Ix) = 1 if Ix = 2 and
1{2}(Ix) = 0 otherwise).

The new variable Aπ that we have built is no other than a binary secondary
variable which can be evaluated using the cost ce(Aπ) of Formula 1. Thus, in
order to evaluate the overall relevance cr(Aπ) of Aπ, we have to take into account
its construction cost cc(Aπ) as well as the evaluation cost ce(Aπ):

cr(Aπ) = cc(Aπ) + ce(Aπ) (3)

The construction cost cc(Aπ) acts as a regularization term. Constructed variables
based on complex itemsets, with multiple constituent variables in the itemset,
are penalized compared to simple constructed variables. Let π∅ be the empty
itemset, with no constituent variable, where no secondary record is covered by
the itemset. The relevance cost of the empty itemset constructed variable is

cr(Aπ∅) = log(m+ 1) + 2 logN + log
N !

N1!N2! . . . NJ !
(4)

= N.Ent(Y ) +O(logN) (5)

where Ent(Y ) is the Shannon entropy of the target variable Y , and Nj (1 ≤ j ≤
J) is the number of individuals associated with class number j over Y .

Therefore, any itemset π whose ibcm variable Aπ has a relevance cost beyond
the relevance cost of the empty itemset constructed variable can be discarded,
as being less informative than the target variable alone.



4 Conclusion

In this paper, we have proposed an approach for constructing new variables and
assessing their relevance in the context of multi-relational supervised learning.
The method consists in defining an itemset in a secondary table, leading to a new
secondary variable that collects whether secondary records are covered or not
by the itemset. The relevance of this new variable is evaluated using a bivariate
supervised data grid model [8], which provides a regularized estimator of the
conditional probability of the target variable. To avoid overfitting, we applied
a Bayesian model selection approach for the itemset based construction model
and the conditional density evaluation model. In doing so, we obtained an exact
criterion for the posterior probability of any constructed variable.

Our future work will aim at providing search heuristics to explore the space
of constructed variables and keep the most relevant ones with their estimated
conditional probability. Classifiers using a univariate preprocessing like Naive
Bayes or Decision Trees could then be extended to multi-relational data.
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