
Hybrid Logical Bayesian Networks

Irma Ravkic, Jan Ramon, and Jesse Davis

Department of Computer Science
KU Leuven

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
irma.ravkic@cs.kuleuven.be

Abstract. Probabilistic logical models have proven to be very success-
ful at modelling uncertain, complex relational data. Most current models
and implementations focus on modelling domains that only have discrete
variables. Yet many real-world problems are hybrid and have both dis-
crete and continuous variables. In this paper we focus on the Logical
Bayesian Network (LBN) formalism. This paper discusses our work in
progress in developing hybrid LBNs, which offer support for continuous
variables. We provide a brief sketch for basic parameter learning and
inference algorithms for them.

1 Introduction

Real-world problems are hybrid in that they have discrete and continuous vari-
ables. Additionally, it is necessary to model the uncertain nature and complex
structure inherent in these problems. Most existing formalisms cannot cope with
all these challenges. Hybrid Bayesian networks [1] can model uncertainty about
both discrete and continuous variables, but not relationships between objects in
the domain. On the other hand, probabilistic logical models (PLM) [2–4] can
model uncertainty in relational domains, but many formalisms restricted them-
selves to discrete data. More recently, several approaches have been proposed
that augment PLMs in order to model hybrid relational domains. These include
Adaptive Bayesian Logic Programs [5], ProbLog with continuous variables [6],
and Hybrid Markov Logic Networks [7].

In this paper, we focus on upgrading another PLM framework called Logical
Bayesian Networks [8] such that they can model continuous variables. From
our perspective, LBNs have several important advantages. One, they clearly
distinguish the different components (i.e., the random variables, dependencies
among the variables, and the CPDs of each variable) of a relational probabilistic
model. Two, the CPDs are easily interpretable by humans, which is not the case
in other formalisms, such as those based on Markov random fields. This paper
reports on our preliminary work in progress on developing hybrid LBNs. We
show how LBNs can naturally represent continuous variables. We also discuss
a basic parameter learning algorithm and how Gibbs sampling can be used for
inference.



2 Background

We briefly provide background on Logical Bayesian Networks, and Gibbs sam-
pling.

2.1 Logical Bayesian Networks

A propositional Bayesian network (BN) compactly represents a probability dis-
tribution over a set of random variables X = {X1, . . . , Xn}. A BN is a directed,
acyclic graph that contains a node for each variable Xi ∈ X. Each node in the
graph has a conditional probability distribution θXi|Parents(Xi) that gives the
probability distribution over the values that a variable can take for each possible
setting of its parents. A BN encodes the following probability distribution:

PB(X1, . . . Xn) =

i=n∏
i=1

P (Xi|Parents(Xi)) (1)

Logical Bayesian Networks upgrade propositional BNs to work with rela-
tional data [8]. LBNs contain four components: random variable declarations,
conditional dependencies, Conditional Probability Distributions (CPDs) and a
logic program. Semantically, an LBN induces a Bayesian network. Given a set
of constants, the first two components of the LBN define the structure of the
Bayesian network. The random variable declarations define which random vari-
ables appear in the network whereas conditional dependency relationships define
the arcs that connect the nodes. Finally, the conditional probability functions
determine the conditional probability distribution associated with each node in
the network. We will illustrate each of these components using the well-known
university example [9]. The logical predicates in this problem are student/1,
course/1, and takes/2. Random variables start with capital letters and con-
stants with lower-case letters. The logical predicates can then be used to define
random variables as follows:

random(intelligence(S)):- student(S).

random(difficulty(C)):- course(C).

random(grade(S,C)):- takes(S,C).

random(ranking(S)):- student(S).

Conditional dependencies are represented by a set of clauses. The clauses
state which variables depend on each other and determine which edges are in-
cluded in a ground LBN. They take the following form:

grade(S,C) | intelligence(S),difficulty(C).

ranking(S) | grade(S,C) :- takes(S,C).

A CPD is associated with each conditional dependency in a LBN. In princi-
ple, any CPD is possible. However, LBNs typically make use of logical probability



trees. A logical probability tree is a binary tree where each internal node con-
tains a logical test (conjunction of literals) and each leaf contains a probability
distribution for a particular attribute. Examples are sorted down the tree based
on whether they satisfy the logical test at an internal node.

The logic program component contains a set of facts and clauses that de-
scribes the background knowledge for a specific problem. It generates the ground
Bayesian network. In the university example it may contain facts such as:

student(mary).

student(peter).

course(math).

takes(mary,math).

takes(peter,math).

The LBN specified in the running example induces a Bayesian network shown
in Figure 1.

Fig. 1. Bayesian network induced by the simple university example

Notice that the logic program defines which random variables appear in the
model, i.e., different interpretations of a logical program represent a different set
of random variables.

2.2 Gibbs Sampling

Gibbs sampling is an instance of a Markov Chain Monte Carlo (MCMC) algo-
rithm. It estimates a joint probability distribution over a set of random variables
by simulating a sequence of draws from the distribution. It is commonly used
in practice when joint distributions over variables are not known or are compli-
cated, but local dependency distributions are given and are simple. To sample a
value for a particular variable it is sufficient to take into account only its Markov
blanket. The time needed for Gibbs sampling to converge to a stationary distri-
bution is dependent on the starting point and therefore in practice some number
of examples are ignored (burn-in period). For more details see [10].



3 Our Approach

We now describe how we augment LBNs to model continuous variables.

3.1 Representation

It is relatively natural to incorporate continuous random variables in the LBNs.
We do so by adding a new random variable declaration that indicates whether a
variable is continuous and what its distribution is. For example, we could make
the following declaration:

randomGaussian(numHours(C)):- course(C).

This states that numHours(C) is a Gaussian distributed continuous random vari-
able if C is a course. Currently, we only allow Gaussian continuous variables, but
it is straightforward to incorporate other distributions.

After being declared, continuous random variables can appear in conditional de-
pendency clauses. For example:

numHours(C) | difficulty(C).

This clause states that the number of hours spent studying for a course C depends
on the difficulty of the course. Currently, we add a restriction that a discrete
random variable cannot have continuous parents. This is a common restriction
in hybrid BNs as well.

Logical CPDs can easily accommodate continuous variables by adding a
Gaussian distribution in an appropriate leaf as in Figure 2. A Gaussian dis-
tribution with mean µ and standard deviation σ is:

N(µ, σ2) =
1

σ
√

2π
e−(x−µ)

2/2σ2

(2)

3.2 Parameter Learning and Inference

When learning parameters we assume a known structure, that is, the structure
of the probability tree is given. The examples are sets of interpretations where
each interpretation refers to a particular instantiation of all random variables. We
estimate the maximum likelihood of parameters. In the discrete case, this corre-
sponds to a frequency of a specific variable value in a dataset. In the continuous
case, this corresponds to computing the sample mean and standard deviation.

For estimating the mean and standard deviation we used a two-pass algo-
rithm. It first computes the sample mean:

µ =

∑n
i=1 yi
n

(3)



Fig. 2. Logical probability tree for numHours(C)

The standard deviation is calculated in the second pass through data by
using:

σ =

√∑n
i=1(yi − µ)2

n− 1
(4)

For inference, we have implemented Gibbs sampling which allows us to esti-
mate the posterior probability of some variables given (a possibly empty) set of
evidence variables. When querying continuous variables, we can answer several
types of queries. We can estimate its mean value. Alternatively, we can estimate
the probability that its value falls into some interval (i.e., estimate its cumula-
tive distribution). We sample a continuous variable given its Markov blanket by
generating a value from a Gaussian distribution given the appropriate mean and
standard deviation coming from the CPD defined by its associated conditional
dependency clause. A discrete variable having a continuous node as its child is
sampled by using its Markov blanket, and the probability of a continuous child
given its parents is computed using Equation (2).

4 Experiments

Currently, we have an implementation that works for small datasets. We have
done preliminary experiments using synthetically generated data from the uni-
versity domain that we have used as a running example in the paper. We aug-
mented the task description with two continuous variables: numHours/1 and
attendance/1. The first one represents the number of hours a student spends
studying for a particular course, and the second one denotes the number of hours
students spent in class. We added two conditional dependency clauses making
use of these variables:

numHours(C) | difficulty(C).

attendance(C) | satisfaction(S,C):-takes(S,C)

The first clause was described in Subsection 3.1 and the second clause states
that a student is more likely to attend a class if (s)he enjoys the lectures.

To test the parameter learning, we generated synthetic datasets based of
varying size. Unsurprisingly, we found that we could learn accurate estimates



of the parameters. In terms of inference, we randomly selected some atoms as
queries and some as evidence. On small examples, we were able to check that
the Gibbs sampler converged to the correct value after a reasonable number of
iterations.

5 Conclusions

In this paper we presented a preliminary work on representation, learning and
querying of hybrid logical Bayesian networks. Building on this preliminary work,
in the future we will study other conditional probability models (e.g., using
Poisson distributions), learning and inference in large-scale networks, and the
application of hybrid LBNs in bio-medical applications.

Acknowledgements

This work is supported by the Research Fund K.U.Leuven (OT/11/051),

References

1. Murphy, K.: Inference and learning in hybrid Bayesian networks. University of
California, Berkeley, Computer Science Division (1998)

2. Kersting, K., De Raedt, L.: 1 bayesian logic programming: Theory and tool. Sta-
tistical Relational Learning (2007) 291

3. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and
its application in link discovery. In: Proceedings of the 20th international joint
conference on Artifical intelligence. (2007) 2468–2473

4. Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1)
(2006) 107–136

5. Kersting, K., De Raedt, L.: Adaptive bayesian logic programs. Inductive Logic
Programming (2001) 104–117

6. Gutmann, B., Jaeger, M., De Raedt, L.: Extending problog with continuous dis-
tributions. Inductive Logic Programming (2011) 76–91

7. Wang, J., Domingos, P.: Hybrid markov logic networks. In: Proceedings of the
23rd national conference on Artificial intelligence. Volume 2. (2008) 1106–1111

8. Fierens, D., Blockeel, H., Bruynooghe, M., Ramon, J.: Logical bayesian networks
and their relation to other probabilistic logical models. Inductive Logic Program-
ming (2005) 121–135

9. Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational
models. In: International Joint Conference on Artificial Intelligence. Volume 16.
(1999) 1300–1309

10. Casella, G., George, E.: Explaining the gibbs sampler. American Statistician (1992)
167–174


