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Abstract. For many tasks in fields like computer vision, computational
biology and information extraction, popular probabilistic inference meth-
ods have been devised mainly for propositional models comprising of
unary and pairwise clique potentials. In contrast, statistical relational
approaches typically do not restrict a model’s representational power
and use high-order potentials to capture the rich statistics of relational
domains. This paper aims to bring both worlds closer together. We in-
troduce pairwise Markov Logic, a subset of Markov Logic where each
formula contains at most two atoms. We show that every non-pairwise
Markov Logic Network (MLN) can be transformed or ‘reduced’ to a pair-
wise MLN. Thus, existing, highly efficient probabilistic inference meth-
ods can be employed for pairwise MLNs without the overhead of devis-
ing or implementing high-order variants. Experiments on two relational
datasets confirm the usefulness of this reduction approach.

1 Introduction

Low-order models represent one of the most popular ways to model many prob-
abilistic inference tasks in domains like computer vision, computational biology,
and information extraction. The order of a factor graph is the maximum number
of arguments of a factor; the order of a Markov network is the size of the largest
clique [1]. A model is called pairwise if its order is (at most) two. Based on a
connection with statistical physics, it is common to write a pairwise model with
unary and pairwise clique potentials, understand the Bayesian priors it incorpo-
rates, and then perform inference. Therefore, most state-of-the-art methods for
probabilistic inference were mainly developed for such pairwise models. High-
order variants of such inference methods often do not exist and if they do, they
are typically more complex and lack implementations. This is particularly true
for MAP/MPE inference methods based on Linear Programming [2], graph cuts,
etc. While most of these methods can in principle work on non-pairwise models,
pairwise models receive the most attention because this facilitates implemen-
tation and theoretical analysis (e.g., convergence analysis for iterative methods
like Belief Propagation [2]).

For Markov Logic Networks (MLNs) [3], the notion of pairwise Markov Logic
has not yet been explored.1 Following the propositional case, we define the order

1 Pairwise variants of other statistical relational models have not been studied either.



of an MLN as the maximum number of atoms in a formula, i.e., the maximum
‘length’ of a formula in the MLN. We call an MLN (or a single MLN formula)
pairwise if its order is two. For instance, the formula Smokes(x) ⇒ Asthma(x)
is pairwise, but Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) is not. We call the
latter a triplewise formula since it has length three.

Pairwise MLNs have advantages for both ground and lifted inference. Ground
inference typically applies methods from the graphical models literature, many
of which focus on pairwise models. A similar argument holds for lifted inference,
where recent work [4, 5] uses graph-theoretical notions that assume that the
network is pairwise (as it can then be represented as a simple graph rather than a
hypergraph). However, despite the advantages of pairwise MLNs, one should not
discard non-pairwise MLNs. It is difficult, if not practically impossible, to capture
many of the rich statistics of relational domains using a pairwise model. For
example, when performing structure learning, restricting the hypothesis space
to pairwise formulas would simply ignore too many relevant patterns in relational
datasets. Many typical relational patterns require triplewise formulas. Common
examples are found in collective classification (e.g., Class(x, c) ∧ Link(x, y) ⇒
Class(y, c)), link prediction (e.g., Property(x)∧Property(y)⇒ Link(x, y)), social
networks (e.g., the above Smokes formula), etc.

Therefore, it is common to work with a non-pairwise model during modelling
and learning but to transform or to reduce the model to an equivalent pairwise
model for inference. This paper shows that this can be done for Markov Logic.
Specifically, we show that any triplewise MLN (containing formulas of at most
length three) can be reduced to a pairwise MLN. While our approach naturally
extends beyond triplewise MLNs, we only consider this case as it is sufficient for
many relational domains (cf. the above example formulas) and it simplifies the
presentation. Experiments on two common relational datasets demonstrate the
usefulness of the reduction approach.

Section 2 explains the reduction for propositional MLNs and Section 3 for
first-order MLNs. Section 4 presents our experimental results.

2 Reduction for Propositional MLNs

A propositional MLN is a set of pairs (Fi, wi) where Fi is a propositional logic
formula (using connectives ¬, ∧, ∨,⇒ and⇔) and wi is a real-valued weight. A
propositional MLN defines a probability distribution on the set of possible worlds
(interpretations): the probability of a world ω is P (ω) = 1

Z exp(
∑

i wiδi(ω)), with
Z a normalization constant and δi(ω) the indicator function being 1 if formula
Fi is true in world ω and 0 otherwise. Since we only consider triplewise MLNs
here, every formula Fi has length at most three.

Below we show how to reduce a triplewise MLN to a pairwise MLN. In
graphical models, reduction is typically done by converting the model (or its
energy function) to a pseudo-Boolean function or multi-linear polynomial [1].
While our reduction can also be phrased in this terminology, we instead chose
for a more self-contained formulation, referring only to Markov Logic. We achieve



reduction by means of a rewriting process that operates on the MLN knowledge
base (the set of weighted formulas). This is a two-step process, the first step is
an enabling step, the second step does the actual reduction to a pairwise MLN.

Step 1: Rewrite triplewise formulas to positive normal form

We first rewrite every triplewise formula in the MLN to a set of formulas in
what we call positive normal form. A formula is in positive normal form if it
is a conjunction of atoms (not involving negation). For example, consider the
propositional MLN formula P ∧Q⇒ R with weight w. Rewriting it to positive
normal form yields three formulas: P ∧Q∧R with weight w, P ∧Q with weight
−w, and true with weight w. The equivalence of these three formulas to the
original formula can be shown by constructing the table of 23 = 8 possible
worlds of the three involved atoms and comparing the resulting distributions.
The formula true does not change the distribution and can be dropped.

More generally, a triplewise propositional formula Forig with weight w can
be rewritten in positive normal form by replacing it by a set of at most seven
new formulas: (a) the triplewise formula P ∧Q ∧R; (b)-(d) the three pairwise
formulas P ∧Q, P ∧R, and Q∧R; (e)-(g) the three unary formulas P , Q, and
R. The weights that we need to assign to each of these seven formulas in order to
be equivalent to Forig can be calculated from the truth table of Forig. Let αpqr

be the Boolean truth value (1 or 0) of formula Forig under the interpretation
P = p, Q = q and R = r (e.g. αttf is the truth value of Forig when P and Q
are true and R is false). The weights of the seven formulas should be set to: (a)
w(αttt − αttf − αtft + αtff − αftt + αftf + αfft − αfff ), (b) w(αttf − αtff −
αftf +αfff ), (c) w(αtft−αtff −αfft +αfff ), (d) w(αftt−αftf −αfft +αfff ),
(e) w(αtff − αfff ), (f) w(αftf − αfff ), (g) w(αfft − αfff ). The fact that the
result is equivalent to the original formula can again be proven by enumerating
the 8 possible worlds of P , Q and R and comparing the distributions. Applying
these equations on our earlier example (P ∧ Q ⇒ R) indeed gives the result
mentioned earlier (P ∧Q∧R gets weight w, P ∧Q gets weight −w, and the five
other formulas get weight 0 and are dropped). This rewriting process is carried
out for each triplewise formula in the MLN consecutively.

Step 2: Reduce triplewise formulas to sets of pairwise formulas

After the previous step, the MLN still contains triplewise formulas, but each
one is guaranteed to be in positive normal form: P ∧Q∧R. Such a formula can
then be rewritten or ‘reduced’ to a set of pairwise formulas by introducing new,
auxiliary, propositions.

Rewriting a triplewise formula P ∧Q ∧R with weight w to a set of pairwise
formulas requires one auxiliary proposition, denoted A below. The set of pairwise
formulas produced by the reduction depends on the sign of w. If w > 0, we need
four formulas: (a)-(c) the pairwise formulas A∧P , A∧Q and A∧R, each with
weight w, (d) the unary formula A, with weight −2w. If w < 0, we need seven
formulas: (a)-(c) the pairwise formulas P ∧ Q, P ∧ R and Q ∧ R, each with



weight w, (d)-(f) the pairwise formulas A ∧ P , A ∧ Q and A ∧ R, each with
weight −w, (g) the unary formula A, with weight w. This rewriting process
is carried out for each triplewise formula separately, each time with a different
auxiliary proposition (i.e., each auxiliary proposition is given a different name
to ensure that the reductions of two different triplewise formulas do not become
dependent).

The set of pairwise formulas that results from reducing a triplewise formula
P ∧Q∧R is max-equivalent to the original formula. The original formula defines
a distribution Porig(P,Q,R) on the set of possible worlds of the three involved
atoms, while the new set of formulas defines a distribution Pnew(A,P,Q,R) since
it includes the auxiliary proposition A. Max-equivalence means Porig(P,Q,R) =
maxAPnew(A,P,Q,R). In other words: ‘maxing-out’ the auxiliary atom from
the new distribution yields the original distribution.2 Again, the equivalence can
be proven by enumerating the possible worlds and comparing the distributions.
This local equivalence also carries over globally: if we reduce an entire triplewise
MLN to a pairwise MLN in this way, the pairwise MLN will be max-equivalent
to the original MLN, if we max-out all auxiliary atoms.

3 Reduction for First-Order MLNs

So far, we have only considered propositional MLNs. A first-order MLN is a
set of pairs (Fi, wi) where each Fi is a formula in first-order logic (we do not
allow existential quantifiers since they often require special treatment in Markov
Logic). The resulting probability distribution is: P (ω) = 1

Z exp(
∑

i wini(ω)),
with ni(ω) the number of true groundings of formula Fi in world ω.

Reducing a first-order MLN can be done at the ground level or at the first-
order / lifted level. Reducing at the ground level simply consists of using existing
methods to ground the MLN and then carrying out the reduction as in the pre-
vious section, treating each ground atom as a separate proposition (this requires
using a separate auxiliary proposition for each grounding of a triplewise formula).

The reduction can also be done at the lifted level. Because of space restric-
tions we explain this by example.3 Consider the triplewise formula Class(x, c1)∧
Link(x, y) ⇒ Class(y, c2) with weight w > 0. We use the MLN convention of
writing logical variables (‘logvars’) such as x in lowercase. Step 1 rewrites this
formula to positive normal form, yielding two formulas Class(x, c1)∧Link(x, y)∧
Class(y, c2) with weight w, and Class(x, c1)∧Link(x, y) with weight −wNc, see
below. Step 2 reduces the first of these two formulas to the following four for-
mulas: (a)-(c) A(x, y, c1, c2) ∧ Class(x, c1) and A(x, y, c1, c2) ∧ Link(x, y) and
A(x, y, c1, c2) ∧ Class(y, c2), each with weight w, and (d) A(x, y, c1, c2), with
weight −2w. Note the resemblance with our earlier propositional example (P ∧
Q ⇒ R), but with two complications due to working at the first-order level.
First, in Step 1, the weight of the second formula needs to be −wNc instead of
simply −w, with Nc the number of classes (the domain size of the type ‘class’).

2 Maxing-out is the counterpart of summing-out (marginalization).
3 Note to reviewers: we plan to expand this part if invited for a 12-page submission.



This is because this formula does not have the logvar c2 that appears in the
original formula (i.e., we ‘lost’ the logvar c2). Second, the auxiliary predicate A
needs as arguments all logvars that appear in the triplewise formula (x, y, c1 and
c2), to ensure that the reductions for the different groundings are independent.

4 Experimental Evaluation

To evaluate the usefulness of our reduction, we investigate MAP inference tasks.
(also called MPE) [3]. That is, we observe the truth value of a subset of all
ground atoms and need to find the most likely state of all other ground atoms.4

Datasets. We considered two first-order MLNs, each containing one triple-
wise first-order formula and several pairwise and unary formulas. The first MLN
is for the synthetic Smokers domain (the triplewise formula is given in Section 1),
the second MLN is for the real-world WebKB dataset (the triplewise formula is
the one given in Section 3). For both MLNs, we considered 6 different domain
sizes (number of people, respectively webpages). For each domain size, we gener-
ated 20 different MAP task instances by randomly selecting the required number
of entities in the domain (people/webpages) and then randomly selecting 80% of
all resulting ground atoms as evidence, leaving the remaining 20% to be maxed-
out. Hence, in total we obtained 120 MAP tasks for each MLN.

Algorithms. We compared two MAP algorithms. The first is MaxWalkSAT
[3], which works in the same way irrespective of whether the MLN is pairwise or
not. The second is MPLP [2] (a Max Product variant based on Linear Program-
ming), which is most easily formulated for pairwise models. To run MPLP, we
reduced the triplewise MLN to a pairwise MLN using the ground-level approach,
converted the result to a Markov net, and fed this to MPLP. We refer to this
as MPLP-p (‘p’ for pairwise). We also ran MaxWalkSAT (MWS) both on the
original triplewise MLN (MWS-t) and on the reduced pairwise MLN (MWS-p).
For each considered MAP task, we first ran MPLP-p and measured the runtime.
Since MWS is an anytime algorithm, we then run both MWS-p and MWS-t with
five different time-budgets: 0.5, 1, 2, 5 and 10 times the runtime of MPLP-p.
We evaluated the quality of the MAP assignment returned by an algorithm by
computing the sum of weights of satisfied formulas in the triplewise MLN un-
der this assignment, as this sum is proportional to the probability of the MAP
assignment [3].

Summary of results. We found that MPLP-p is far superior to both MWS-t
and MWS-p. If we give MPLP-p and MWS-t the same runtime and compare the
quality of the returned MAP assignment, the wins/ties/losses on Smokers are
24/90/6, meaning that on 24 tasks MPLP-p is better, on 90 tasks there is a
tie, and on 6 tasks MWS-t is better. On WebKB, the results are quite extreme:
119/1/0, so MPLP-p is almost always strictly better than MWS-t. Also when
comparing MPLP-p against MWS-p (instead of MWS-t), MPLP-p is superior:

4 MAP inference maxes-out all unobserved variables. MAP on a pairwise MLN re-
sulting from a reduction of a triplewise MLN hence maxes-out all auxiliary atoms,
which is exactly what is needed for having max-equivalence.



with the same amount of runtime, wins/ties/losses are 120/0/0 on Smokers and
again 119/1/0 on WebKB. On WebKB, MPLP-p is better than both MWS-t
and MWS-p even if we give the latter two 10 times the runtime of MPLP-p.

We conclude that MPLP on the reduced pairwise MLN is superior to MWS
on the original triplewise MLN or the reduced pairwise MLN. While MPLP can
work with triplewise MLNs, it is significantly easier to formulate and implement
on pairwise MLNs. The same applies to other MAP algorithms, like those based
on linear programming and graph cuts. Hence, by reducing to a pairwise MLN,
we gain easier access to a broader range of algorithms. As our experiments with
MPLP show, this can yield significantly better results compared to algorithms,
like MWS, that work in the same way regardless of whether the MLN is pairwise.
This shows the usefulness of our reduction approach.

5 Conclusion

We introduced Pairwise Markov Logic as a subset of Markov Logic that is of
special interest. We have shown how to reduce a non-pairwise MLN to an equiv-
alent pairwise MLN. Working with pairwise MLNs is advantageous because many
ground and lifted probabilistic inference method focus on this case. Our exper-
iments with MAP/MPE inference confirm this. While we focussed on inference
here, also learning will benefit from this work, as MAP/MPE inference is a sub-
procedure in many learning tasks (e.g., discriminative weight learning for MLNs
[3]). Using pairwise MLNs for lifted inference is interesting future work.
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