
A refinement operator for inducing
Description Logics

Angelos Charalambidis and Stasinos Konstantopoulos

Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Ag. Paraskevi 153 10, Athens, Greece

{acharal,konstant}@iit.demokritos.gr

Abstract. We present a new refinement operator that guides an ILP
search through a lattice of a Horn clause representation of Description
Logic (DL) clauses. Our operator dramatically narrows the search space
by being aware of syntactic restrictions on the Horn representation stem-
ming from both the syntax and semantics of DLs as well as from axioms
present in the specific background of each experiment.

1 Introduction

Description logics (DL) are a family of logics that has found many applications
in conceptual and semantic modelling, and is one of the key technologies behind
Semantic Web applications. Despite, however, the rapid progress in inference
methods for many-valued DL, there has been very limited success in applying
machine learning methodologies to this family of logics, and especially to its
more expressive members (such as those covering OWL and OWL 2) that are
routinely used in web intelligence applications.

In this paper we first discuss previous work on applying ILP to learning
DL (Section 2), and then present our formulation of the syntactic and semantic
constraints that Horn clauses must comply to in order to constitute the Horn
formulation of a valid DL clause (Section 3). Building on these results, we propose
and experimentally validate a new ILP refinement operator more suitable for
learning DL clauses (Section 4) and close the paper by drawing conclusions and
outlining future research directions (Section 5).

2 Background

DL axioms are built using descriptions of classes (unary predicates), complex
class expressions that can be recursively combined to build complex class de-
scriptions. These descriptions might also involve relations (binary predicates),
but relations themselves cannot be fully defined and described, as there is only
limited support for relation descriptions and axioms.

Since ILP typically targets the domain of definite Horn clause programs,
which is a different first-order fragment than that of DLs, applying ILP to learn
DL descriptions is not straight-forward. In fact, many successful approaches

target utilizing DL background when constructing Horn clauses or other rules,
rather than synthesising DL clauses [5, 9].

When it comes to synthesising DL clauses, the most obvious approach is to
modify the ILP refinement operator so that a space of DL hypotheses is explored
instead of a Horn space. Badea and Nienhuys-Cheng [2] propose such a top-down
refinement operator. Although it addresses the over-specificity of the clauses
learnt by previous bottom-up approaches [3], it is restricted to a simple DL
without negation, numerical quantification, and relation composition. Lehmann
& Hitzler Lehmann and Hitzler [8] and Ianone et al. Iannone et al. [4] address
negation, but do not learn all descriptions possible in the more expressive DLs
that cover the widely used OWL languages.

Coming from the opposite direction, one can also express DL constructs
within Logic Programming, rather than adapting ILP systems to cover DL con-
structs that fall outside Logic Programming [6]. This approach uses Prolog meta-
predicates to define DL constructs that fall outside the expressivity of pure LP.
In other words, the full Prolog language (including meta-predicates) is used
within the definitions of background predicates that implement DL semantics.
In this manner the ILP algorithm has the building blocks needed to construct
and evaluate DL statements without being given unrestricted access to meta-
predicates for constructing clauses so that no fundamental assumption about
the ILP setting is violated

3 Establishing Priors

At the core of ILP is a search through the hypotheses space, defined by the
refinement operator and other pieces of prior knowledge such as the syntactic
and semantic constraints that valid hypotheses must satisfy. Prior knowledge
guides the search away from solutions that are known to be unsatisfiable or
otherwise unwarranted, providing mechanisms for optimization and for enforcing
conformance with a prior theoretical framework.

In our approach, there are two sources of prior knowledge: (a) DL syntax and
semantics, so that all constructed hypotheses correspond to valid DL proposi-
tions, and (b) the axiomatization of the domain within which a theory is to be
constructed, providing semantic restrictions that can optimize the search.

3.1 Constructing syntactically valid DL clauses

Description Logics are mainly characterized as the dyadic fragment of first-order
logic (FOL), that is the fragment that only includes one and two-place predi-
cates.1 DL syntax has clauses connect a number of elementary constructs that all
share a universally quantified variable. Some of these constructs may use a sec-
ond (universally or existentially quantified) variable, but this variable is locally

1 With some further restrictions that guarantee the efficiency of inference over the
formalism, and that are not directly relevant to the current discussion.

scoped within the construct. Consider, for example, this statement equivalently
formulated in DL, FOL, and our Horn notation [6]:

∃hasLocomotive u ∀hasCar.Green v GreenTrain

∀x. (∃y.hasLocomotive(x, y) ∧ ∀y. (hasCar(x, y) → Green(y)) → GreenTrain(x))

concept_select(X,’GreenTrain’,Y) :-

atleast_select(X,1,hasLocomotive,thing,Z),

forall_select(Z,hasCar,’Green’,Y).

As one can immediately see by comparing the three notations, the variable-free
DL syntax provides a very natural way of restricting what can be written in it
to the dyadic fragment of FOL, whereas extra checks are necessary in both FOL
and our Horn syntax.

In the case of our Horn syntax, in particular, it must be checked that the first
and last arguments of the body literals form a single in/out thread. Although
threading can be achieved by mode declarations using the standard refinement
operator, the requirement of a single thread can be encoded in mode declara-
tions and needs to be implemented by pruning after invalid clauses have been
constructed.

3.2 Consistency with background semantics

Besides learning hypotheses that can be cast into DL statements, it is also desired
that the refinement operator constructs clauses that are consistent with the
relations that hold between the domain-specific background predicates.

Background predicates in ILP are typically seen as the building blocks for
constructing hypotheses, as they define the literals that are used in the bodies
of the constructed clauses. Our approach partially departs from this tradition,
as clauses are made up of the *_select predicates that define the framework
or meta-theory within which theories are constructed. The first-order predicates
of the theory itself (the concepts and relations of the DL-expressed domain) are
reified into arguments for these predicates, and are treated as instances.

As such, the background theory is simultaneously represented as a first-order
theory and as relations between the (reified) classes and relations of the theory.
As an example, asserting that C is a sub-class of D asserts that all members of
C are also members of D, but is also asserts a ground clause in the extension of
the concept_sub/2 predicate that keeps the class hierarchy:

concept_select(X,’Train’,Y) :- concept_select(X,’GreenTrain’,Y).

concept_sub(’GreenTrain’, ’Train’).

Although not strictly necessary, concept_sub/2 and related predicates af-
fords our refinement operation direct access to the DL axioms that define the
domain without having to parse the clauses of the concept_select/3 predicate.

The refinement operator exploits this information to restrict the generated
clauses to those that are consistent with these axioms. To make this more con-
crete, consider the existence of the classes Locomotive, Car, and Train in our
domain and the knowledge that these are all disjoint as well as the knowledge
that our target class, GreenTrain, is a sub-class of Train and the class Green is a
sub-class of Car. Also consider that there are relations hasCar and hasLocomotive
with domain Train and range Car and Thing respectively. In that case, the re-
finement operator will generate clauses with literals that respect the background
constraints. For example, the clause

concept_select(A, ’GreenTrain’, B) :-

forall_select(A, ’hasCar’, ’Green’, B).

is a valid generated clause. On the other hand, the literal forall_select(A,
’hasCar’, Train, B) must be avoided by the refinement operator because has-
Car has a range that is disjointed to the class Train.

4 Implementation and Results

We have implemented a refinement operator that only generates clauses that
observe the syntactic and semantic restrictions stated above.2 The operator ap-
plies a top-to-bottom breadth-first search, ensuring that all body literals satisfy
the single-thread constraint that produces clauses that map to variable-free DL
syntax. The reified concept and relation names used in these literals are cho-
sen after proving them against relation domain and range axioms, the concept
hierarchy, and disjointness axioms.

Using the aleph [12] implementation of the progol algorithm [11] and our
implementation of DL inference described above, we tested our approach on a
variation [6] of the famous trainspotting machine-learning problem [7] and on
the Iris dataset [1]. On the Iris dataset the experiment was organized as three
different learning tasks, one for each of the three targets of the classification
task. The induction run statistics are collected in Table 1.

It is straightforward to observe from the results that in all experiments the
custom refinement operator constructs a dramatically smaller number of clauses:
the standard operator generates a large number of clauses that either do not com-
ply with the syntactic restrictions (Section 3.1) and are pruned after construction
or do not comply with the semantic restrictions of the domain (Section 3.2) and
are known in advance to not cover any positive examples.

In terms of execution time, the total execution time is also reduced in the
same amount as the reduction of the visited nodes. We have derived the average
time of a single reduction from the total visited nodes and the total execution

2 Please cf. http://sourceforge.net/projects/yadlr The instance-based engine
described here is pl/prodlr.pl. The refinement operator described is in
pl/dllearn.pl along with the standard refinement setup and pruning. The back-
ground and datafiles for the experiments described here are under examples/

http://sourceforge.net/projects/yadlr

Table 1. The number of nodes visited before constructing identical theories
using the refinement operator described here and our previous pruning-based
implementation [6]. In pruning, we show the number constructed clauses and
the number of those that has been pruned.

Nodes visited Avg. Time per reduction (ms)
Priors enforced Pruning Refinement Gain Pruning Refinement

Trains 41/23 11 73.17% 4.19 1.45
Iris Setosa 200/145 9 95.50% 2.10 4.00
Iris Versicolour 24698/20180 742 96.99% 1.28 2.81
Iris Virginica 11202/9118 351 96.86% 1.32 2.62

time. The reduction time includes the construction of a new refinement, the eval-
uation of the clause and the application of the clause to the positive and negative
examples. Notice that in the results presented in Table 1 we have also a better
performance in average times on the trains dataset. On the other hand, the aver-
age times when we are using the custom operator are higher on the Iris datasets.
The reason for this is that in the Iris dataset the priors only involve syntactic
constraints and there are no prior semantic grounds for rejecting a syntactically
valid clause. For this reason, the more complex calculations in the custom re-
finement clause make each refinement step more expensive, although the overall
induction time is greatly improved using the custom refinement operator due to
the smaller number of constructed and evaluated nodes.

The learning task and experimental setup is as described previously by Kon-
stantopoulos and Charalambidis [6], the only difference being the application of
the refinement operator introduced here. In that work, conformance to DL syn-
tax and semantics was only partially achieved via mode declarations and had to
be complemented pruning, whereas here we are able to altogether avoid refining
into ill-formed clauses.

5 Conclusions

In this paper we pursue a line of research on expressing DL class descriptions
within the Logic programming framework, allowing for the direct application
of well-tried and highly-optimized ILP systems to the task of synthesising class
descriptions. More specifically, we investigate a principled way of extracting more
ILP bias from DL models in order to increase the efficiency of ILP runs.

This investigation led to the definition and implementation of a new refine-
ment operator that is empirically shown to dramatically narrow the search space
by being aware of restrictions on the Horn representation stemming from both
the syntax and semantics of DLs as well as from axioms present in the specific
background of each experiment.

Future plans include the extension of the DL-expressed domain axioms that
contribute to ILP prior bias, in order to further restrict the search space as well
as the investigation of appropriate evaluation functions, in the vein of recent
research by Lisi and Straccia [10].

References

[1] Asuncion, A., Newman, D.J.: UCI machine learning repository. University
of California, Irvine, School of Information and Computer Sciences (2007)

[2] Badea, L., Nienhuys-Cheng, S.H.: A refinement operator for description
logics. In: Cussens, J., Frisch, A.M. (eds.) Proceedings of ILP 2000, LNCS
1866, pp. 40–59. Springer Verlag, Berlin/Heidelberg (2000)

[3] Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theo-
retical and experimental results. In: Proc 4th Intl Conf on Principles of
Knowledge Representation and Reasoning. pp. 121–133 (1994)

[4] Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactu-
als for concept learning in the Semantic Web. Journal of Applied Intelligence
26(2), 139–159 (Apr 2007)

[5] Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into
an ontology-based inductive logic programming framework. In: Proc. of the
11th International Conference on Intelligent Systems Design and Applica-
tions ISDA, 2011 (2011)

[6] Konstantopoulos, S., Charalambidis, A.: Formulating description logic
learning as an inductive logic programming task. In: Proceedings of 2010
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2010), July
18–23, Barcelona. IEEE (Jul 2010)

[7] Larson, J., Michalski, R.S.: Inductive inference of VL decision rules. ACM
SIGART Bulletin 63, 38–44 (Jun 1977)

[8] Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm
for the ALC description logic. In: Proceedings of ILP 2007, LNCS 4894, pp.
147–160. Springer Verlag, Berlin/Heidelberg (Feb 2008)

[9] Lisi, F.A., Malerba, D.: Bridging the gap between horn clausal logic and
description logics in inductive learning. In: Proc. 8th Congress of the Italian
Association for Artificial Intelligence, Pisa, Italy, 23-26 Sep, 2003. LNCS
2829, pp. 53–64. Springer-Verlag, Berlin/Heidelberg (2003)

[10] Lisi, F.A., Straccia, U.: Can ilp deal with incomplete and vague structured
knowledge? In: Proceedings of ILP 2011, short papers (2011)

[11] Muggleton, S.: Inverse entailment and Progol. New Generation Computing
13, 245–286 (1995)

[12] Srinivasan, A.: The Aleph Manual. http://www.comlab.ox.ac.uk/

activities/machinelearning/Aleph/ (Last update: 13 Mar 2007)

http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/
http://www.comlab.ox.ac.uk/activities/machinelearning/Aleph/

	A refinement operator for inducing Description Logics
	Angelos Charalambidis and Stasinos Konstantopoulos

