
Creative Problem Solving by Concept
Generation Using Relation Structure

Katsutoshi Kanamori and Hayato Ohwada

Tokyo University of Science, Chiba, Japan
{katsu, ohwada}@rs.tus.ac.jp

Abstract. The purpose of our work is to achieve creative knowledge
processing. In this paper, we focus on the formulation of concept gener-
ation and its use in problem solving. We propose a method for solving a
problem by generating new concepts that have never appeared in exist-
ing knowledge. We propose Creative Problem Solving, which can derive
a goal state by using a creative leap invoked by concept generation.

1 Introduction

Our work seeks to achieve creative knowledge processing. Although some studies
have been conducted on creativity via computer, the intention of this paper is to
formulate concept generation based on logic, and to investigate problem solving
with concept generation. Only a few attempts have been made at such a study.
There are studies Predicate Invention in ILP,[1, 2] but our focus was not only
on induction, but rather on developing a general method of concept generation.
This concept generation constitutes a new approach to problem solving, address-
ing problems that induction cannot solve. An early study described an AM[3]
concept generation system cannot be considered a general concept generation.

This paper proposes a method for solving problems by generating new con-
cepts that have never appeared in existing knowledge, and we confirm that such
knowledge processing is implementable. We call this kind of processing Creative
Problem Solving, and consider it a part of creative knowledge processing.

2 Preliminaries

2.1 Knowledge and Relation Structures

We are concerned with first-order logic as representing Knowledge. Any logical
formulae can be transformed to the formulae include no functions and no indi-
vidual constants. We may regard concept generation as predicate generation.

In this paper, knowledge is defined as a set of logical formulae with no func-
tions and no individual constants. A relation structure is defined as a logical
formula that has at least one predicate variable. A relation structure also has no
functions and no individual constants.

For exmaple, Let S1 = {∀x, y : ¬P1(x) ∨ P2(x, y)} , S2 = {∀x, y : ¬X1(x) ∨
P2(x, y)}. When P1, P2 are predicate constants and X1 is a predicate variable,
S1 is knowledge, and S2 is a relation structure.

2

2.2 Simple Substitution

We define the substitution replace predicate variables with predicate constants.
Let Pvn be a universal set of free predicate variables of arity n, and let

Pcn be a universal set of invariable predicate of arity n. If Θ satisfies Θ ⊂
Pv1 × Pc1 ∪ · · · ∪ Pvi × Pci , and each variable and constant that occurs in Θ
is distinct, then we say Θ is a simple substitution．The element of Θ is written
in a manner similar to the style of the general substitution, v/c. Here, v is the
variable and c is the constant.

For example, relation structure S1 = {∀x : X1(x, y) ∧ X2(x)} and simple
substitution Θ1 = {X1/A,X2/B} are given, then S1Θ1 = {∀x : A(x, y)∧B(x)}.

3 Concept Generation

3.1 Predicate Generation

When knowledge Σ, relation structure RS, and a predicate variable X (which
occurs in RS) are given, we define new knowledge SNEW that holds a new
predicate. If a simple substitution Θ has all predicate variables that occur in RS
except X, then SNEW is defined as follows : SNEW = RS(Θ ∪ {X/NEW}).

The new Predicate NEW is obtained by generating new knowledge SNEW .
Here, the generated SNEW is determined uniquely by Σ, RS, X, Θ, and new
symbol NEW . Therefore we can regard predicate generation in terms of sets of
these five values (Σ,RS,X,Θ,NEW).

3.2 Characteristics of New Knowledge

Novelty Novelty is a property representing whether new knowledge is obtained
as a logical conclusion based on existing knowledge or not. If SNEW satisfies the
condition that : for all s such that SNEW |= s and s includes NEW and Σ ̸|= s,
then the predicate generation is said to possess novelty.

Consistency Consistency is the property by which new knowledge and existing
knowledge are not in contradiction. With consistent predicate generation, we can
take on Σ ∪ SNEW as new knowledge instead of SNEW .

Soundness To be sound means that Σ ∪ SNEW is consistent with all logical
formulae which are consistent with Σ and has no new predicates. If this condition
is true, then we say that the predicate generation is sound or SNEW is sound.

3.3 Example of Predicate Generation

Let Σ be knowledge and RS be a relation structure as follows:

3

Σ = {∀x : ¬bird(x) ∨ ab(x) ∨ fly(x)} , RS =

∀x : ¬X0(x) ∨X1(x) ∨X2(x)
∀x : ¬X3(x) ∨X0(x)
∀x : ¬X3(x) ∨ ¬X2(x)


knowledge Σ describes that birds fly if not ab. See predicate variable X3, and

consider two simple substitutions for predicate generation.
Θ1 = {X0/bird,X1/ab,X2/fly}, Θ2 = {X0/fly,X1/bird,X2/ab}
Predicate generations (Σ,RS,X3, Θ1, NEW1), (Σ,RS,X3, Θ2, NEW2) then

generate new knowledge SN1 , SN2 as follows:

SN1 =

∀x : ¬bird(x) ∨ ab(x) ∨ fly(x)
∀x : ¬New1(x) ∨ bird(x)
∀x : ¬New1(x) ∨ ¬fly(x)

SN2 =

∀x : ¬fly(x) ∨ bird(x) ∨ ab(x)
∀x : ¬New2(x) ∨ fly(x)
∀x : ¬New2(x) ∨ ¬ab(x)


NEW1 is a new concept means such as ”flightless bird”, NEW2 means ”not

ab and fly”. SN1 has novelty and are consistent and sound. SN2 has novelty and
is consistent but not sound. In fact, if l = ¬(∀x : ¬fly(x)∨bird(x)∨ab(x)), then
Σ ∧ l is consistent, but (Σ ∪ SN2) ∧ l is not.

4 Expand Dimension

Even if the predicate generation is inconsistent, it can be useful in expanding the
knowledge dimension. For example, consider adding a concept describing imag-
inary numbers to real-number knowledge. The rule ”the square of any number
greater than or equal to 0” is inconsistent with the new knowledge, but serves to
expand the dimension of real numbers to complex numbers, making it possible to
regard new knowledge as consistent knowledge. This is a method for expanding
the knowledge dimension naturally by predicate generation

Now, if CΣ ⊆ Σ and (Σ − CΣ) ∪ SNEW is consistent and CΣ ∪ SNEW is
inconsistent, consider C ′

Σ as follows.

C ′
Σ =


¬inD(x11) ∨ · · · ∨ ¬inD(x1l1) ∨ s′1
...
¬inD(xn1) ∨ · · · ∨ ¬inD(xnln) ∨ s′n


inD is a new predicate prepared here, and s1, · · · , sn are elements of CΣ . xj1, · · · , xjlj

are all bind variables occuring in sj . s
′
1, · · · , s′n are formulae obtained by trans-

forming s1, · · · , sn to prenex normal form and cutting out the head part. Each
formula for C ′

Σ has a head part qj1xj1 · · · qjl1xjl1 that is the head part of the
corresponding sj , although these are omitted here. qjk is ∃ or ∀, equal to a qual-
ifier of sj . We can imagine that inD(x) means x is in a dimension of former
knowledge. (Σ − CΣ) ∪ C ′

Σ ∪ SNEW is then consistent.

Theorem 1. For predicate generation (Σ,RS,X,Θ,NEW), if Σ and RS are
consistent then Σ′ = (Σ − CΣ) ∪ C ′

Σ ∪ SNEW is consistent.

4

Proof. We assume that Σ′ is inconsistent. According to the premise, Σ and RS
are consistent, so (Σ − CΣ) and SNEW are consistent. Also, C ′

Σ is consistent
because if CΣ |= C ′

Σ , (Σ −CΣ) ∪C ′
Σ is consistent. Due to the definition of CΣ ,

(Σ − CΣ) ∪ SNEW is consistent. For the reasons above, if we assume that Σ′

is inconsistent, then C ′
Σ ∪ SNEW is inconsistent. Here, let φ be a set of logical

formulae. We will describe the Skolem normal form of φ, SNF (φ). If C ′
Σ∪SNEW

is inconsistent, then the empty clause might be derived by resolution. Thus if
predicate inD does not occur in SNF (SNEW), there exists a set of clauses C
has no inD derived by resolution, and C ∧ SNF (SNEW) is inconsistent. All of
the clauses in SNF (C ′

Σ) have negative inD literals and no positive inD literals,
so it is impossible to obtain a clause with no inD from SNF (C ′

Σ) by resolution.
Therefore this is inconsistent with the assumption, Σ′ is consistent. ⊓⊔

5 Creative Leap

For predicate generation, it is important to consider whether the new knowledge
represents a leap or not. The leap enable us to achieve our creative goal.

In defining a creative leap, it is important to consider whether new predi-
cates occur in generated consequence from the conjunction of new knowledge
and existing knowledge. Formulae that have new predicates, cannot belong to
unknown facts, so they are not appropriate as leap conclusions, because a new
predicate is made by the system on its own.

Therefore, we define a Creative Leap as the case where there exist logical
formulae not having NEW , such that Σ ∪ SNEW |= s and Σ ̸|= s. We then, say
the predicate generation leaps.

Theorem 2. If predicate generation is not sound, then it leaps.

Proof. Due to the definition of soundness, if predicate generation (Σ,RS,X,Θ,NEW)
is not sound, then there exists logical formula l such that Σ ∧ l is consistent and
(Σ ∪ SNEW) ∧ l is inconsistent. Because NEW does not occur in l, there exists
logical formula l− such that Σ ∪ SNEW |= l− and l ∧ l− is inconsistent. Thus
Σ ∧ l is consistent and Σ ̸|= l−. Σ ̸|= l− and Σ ∪ SNEW |= l− and NEW not
occurring in l−, fulfill the definition of a creative leap. For the reasons above, if
predicate generation is not sound, then leaps. ⊓⊔

6 Creative Problem Solving

When a goal state, which is not derived from existing knowledge and it’s negation
is not derived either, is given, predicate generation with a creative leap can
lead to the goal state as a consequence. Even if existing knowledge derives the
negation of the goal state, expanding of dimensions enable to lead to the goal
state. We call such problem solving Creative Problem Solving.

For example, human kind had wanted to fly like a bird. And known that
birds can fly and the wing enables them, so create new concept like a wing.

5

Example 1.

Σf =


∀x∃y : Bird(x) → Has(x, y) ∧Wing(y)
∀x : Human(x) → ¬(∃y : Has(x, y) ∧Wing(y))
∀x, y : Has(x, y) ∧WingBehavior(y) → Fly(x)
∀x : Wing(x) → WingBehavior(x)


is given, and goal Gf = ∀x : Human(x) → Fly(x). Then Σf cannot lead to Gf

as a consequence. Then we consider RS as follows:

RSf =

∀x∃y : X1(x) → X2(x, y) ∧X3(y)
∀x, y : X2(x, y) ∧X4(y) → X5(x)
∀x : X3(x) → X4(x)


The simple substitutionΘf = {X1/Human,X2/Has,X4/WingBehavior,X5/F ly}.
Predicate generation (Σf , RSf , X3, Θf , NEWf) then generates SNEWf

as fol-
lows :

SNEWf
=

∀x∃y : Human(x) → Has(x, y) ∧NEWf (y)
∀x, y : Has(x, y) ∧WingBehavior(y) → Fly(x)
∀x : NEWf (x) → WingBehavior(x)


SNEWf

possesses novelty and is consistent but not sound.
SNEWf

derives Gf . Gf was not obtained by Σf , therefore, a new predicate
is generated to derive the goal state by using a creative leap. NEWf was not
generated randomly, and may fulfill WingBehavior like a bird’s wing.

6.1 Practical Method of Predicate Generation

When a goal state is given, what prepared for generation is Σf only. The impor-
tant topic is how to prepare a relation structure and which simple substitutions
and predicate variables to choose. The problem of what predicate should be gen-
erated and what relation structure should be prepared is differs for each purpose
and each case. We show a general method of extracting relation structures from
knowledge, and present one of the methods for preparing RS, Θ, and X.

The relation structure can be gained by generalizing knowledge. Concretely,
replacing all or some predicate constants occurring in knowledge (or a subset)
with free predicate variables.

Next, the point is which RS, Θ, and X are chosen. The destination is to
derive G from Σ ∪SNEW . We propose a method of extracting relation structure
from an explanation structure inherent in existing knowledge.

Now, for a knowledge σ, let RS(σ) be a relation structure obtained by replac-
ing all of the predicate constants in σ with each independent predicate variables.

If there exists Σ∗ such that Σ∗ ⊂ Σ : ∃Θ : RS(Σ∗)Θ |= RS(G)Θ, then
we can consider predicate generation using RS(Σ∗) as a relation structure. This
RS(Σ∗) is an explanation structure that derives a result with the same structure
as G. New knowledge possossing the same explanation structure may be obtained
by using another simple substitution to derive G. It can be thought this method
is based on analogy as common structure.

6

Example 2. Only knowledge Σf and goal state Gf are given. Here, RS(Gf) =
{∀x : X1(x) → X2(x)}, and Σ∗

f including RS(Gf), can be taken :

Σ∗
f =

∀x∃y : Bird(x) → Has(x, y) ∧Wing(y)
∀x, y : Has(x, y) ∧WingBehavior(y) → Fly(x)
∀x : Wing(x) → WingBehavior(x)


so we can obtain RS(Σ∗

f) in concert with RS(Gf) as : RS(Σ∗
f) = RSf .

Let Θ = {X1/Bird,X2/F ly,X3/Has,X4/Wing,X5/WingBehavior}, then
RS(Σ∗

f)Θ |= RS(Gf)Θ. Define simple substitution Θ′ as follows : Θ′ = Θf .
Then, predicate generation (Σf , RS(Σ∗

f), Θ
′, X4, NEWf) produces S

′
NEW : S′

NEW =
SNEWf

. A leap result with goal state Gf is derived from S′
NEW .

7 Conclusion

This paper proposed a method of concept generation, and an approach to cre-
ative problem solving. A creative leap shows the new predicate is not a mere
paraphrase but achieves a new result.

We may note here that creative problem solving is similar to abduction in the
sense that it is a method of deriving a goal by generating new knowledge. If the
goal state is observed facts, we can regard creative problem solving as abduction
accompanied by concept generation. However, creative problem solving is a more
general method.

Our example of creative problem solving was the simulation of the invention
of something like an airplane. Though not every invention can be described using
this frame, it is very interesting that creative problem solving can simulate a
part of human’s creative knowledge processing and invention. However, many
problems need to be solved to develop a practical system with creative problem
solving. The problem of calculating of new-knowledge consistency, determining
which structures and predicate variables are important, and selecting simple
substitutions, among other factors, are important for practical systems. Some of
these problems (perhaps most of them) are depend on specific systems.

We showed logically that concept generation may achieve creative knowledge
processing. We expect to achieve a fully creative system in future work.

References

1. S.H. Muggleton., and Buntime, R.: Machine Invention of first-order Predicates by
Inverting Resolution. the 5th Intl. Workshop on Machine Learning, ANN Arbor,
MI. (1988) 339–352

2. S.H. Muggleton.: Predicate invention and utilisation. Journal of Experimental and
Theoretical Artificial Intelligence, 6(1). (1994) 127–130

3. Davis, R., Lenat, D .B.: Knowledge-Based System in Artificial Intelligence. McGraw-
Hill, NewYork (1982)

