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Abstract. Over the last years there was been some interest in models
that combine first order logic and probabilistic graphical models to de-
scribe large scale domains, and on efficient ways to solve on this domains.
Prolog Factor Language (PFL) is a extension of the Prolog language that
allows a natural representation of this first order probabilistic models (ei-
ther directed or undirected). PFL is also capable of solving probabilis-
tic queries on this models through the implementation of four inference
algorithms: variable elimination, belief propagation, lifted variable elim-
ination and lifted belief propagation. We show how this models can be
easily represented using PFL and then we perform a comparative study
between the different inference algorithms in four artificial problems.

1 Introduction

Over the last years there was been some interest in models that combine first
order logic and probabilistic graphical models to describe large scale domains,
and on efficient ways to perform inference and learning using these models [1,
2]. A significant number of languages and systems have been proposed and
made available, such as Independent Choice Logic [3], PRISM [4, 5], Stochas-
tic Logic Programs (ICL) [6], Markov Logic Networks (MLNs) [7], CLP(BN ) [8,
9], ProbLog [10, 11], and LPADs [12], to only mention a few. These languages
differ widely, both on the formalism they use to represent structured knowledge,
on the graphical model they encode, and on how they encode it. Languages such
as ICL, Prism, or ProbLog use the distribution semantics to encode probability
distributions. MLNs encode relationships through first-order formulas, such that
the strength of a true relationship serves a parameter to a corresponding ground
markov network. Last, languages such as CLP(BN ) approach the problem in a
more straightforward way, by using the flexibility of logic programming as a way
to quickly encode graphical models.

Research in Probabilistic Logic Languages has made it very clear that it is
crucial to design models that can support efficient inference. One of the most
exciting developments toward this goal has been the notion of lifted inference [13,
14]. The idea is to take advantage of the regularities in structured models and
perform a number of operations in a fell swoop. The idea was first proposed
as an extension of variable elimination [13, 14], and has since been applied to
belief propagation [15, 16] and in the context of theorem proving and model
counting [17, 18].



Most work in probabilistic inference computes statistics from a sum of prod-
ucts representation, where each element is known as a factor. Lifted inference
approaches the problem by generalizing factors through the notion of paramet-
ric factor, commonly called parfactor. Parfactors can be seen as templates, or
classes, for the actual factors found in the inference process. Lifted inference is
based on the idea of manipulating these parfactors, thus creating intermediate
parfactors in the process, and in general delaying as much as possible the use of
fully instantiated factors.

Parfactors are a compact way to encode distributions and can be seen as
a natural way to express complex distributions. This was recognized in the
Bayesian Logic Inference Engine (BLOG) [19], and more recently has been the
basis for proposals such as Relational Continuous Models [20], and parametrized
randvars (random variables) [21]. In this same vein, and in the spirit of CLP(BN )
we propose an extension of Prolog designed to support parfactors, the Prolog
Factor Language (PFL).

The PFL aims at two goals. First. we would like to use the PFL to under-
stand the general usefulness of lifted inference and how it plays with logical and
probabilistic inference. Second, we would like to use the PFL as a tool for multi-
relational learning. In this work, we focus on the first task. The work therefore
introduces two contributions: a new language for probabilistic logical inference,
and an experimental evaluation of a number of state-of-the-art implementation
techniques.

The paper is organized as follows. First, we present the main ideas of the
PFL. Second, we discuss how the PFL is implemented. Third, we present a first
experimental evaluation of the PFL and draw some conclusions.

2 The Prolog Factor Language (PFL)

First, we briefly review parfactors. We define parfactor as a tuple of the form:

< A,C, φ >

where A is a set of (non-ground) logical atoms, C is a set of constraints, and φ
function defines a potential function on R+

0 . Intuitively, the logical atoms in A
describe a set of random variables, the constraints in the C describe the possible
instances for those random variables, and the φ describe the parameters. The
constraints in C apply over a set of logical variables L in A.

As an example, a parfactor for the MLN language could be written as:

2.33 : Smokes(X) ∧X ∈ {John, Mary, William}
in the example, A = {Smokes(X)}, and L = {X}. Each MLN factor requires a
single parameter, in this case 2.33. The constraint X ∈ {John, Mary, William}
defines the possible instances of this parfactor, in the example the three factors:

2.33 : Smokes(John) ∧ 2.33 : Smokes(Mary) ∧ 2.33 : Smokes(William)



Notice that all factors share the same parameters.
The main goal of the PFL is to enable one to use this compact representation

as an extension of a logic program. The PFL inherits from previous work in
CLP(BN ), which in turn was motivated by prior work on probabilistic relational
models (PRMs) [22]. A PRM uses a Bayesian network to represent the joint
probability distribution over fields in a relational database. Then, this Bayesian
network can be used to make inferences about missing values in the database. In
Datalog, missing values are represented by Skolem constants; more generally, in
logic programming missing values, or existentially-quantified variables, can be
represented by terms built from Skolem functors. CLP(BN ) represents the joint
probability distribution as a function over terms constructed from the Skolem
functors in a logic program. Thus, in CLP(BN ), we see random variables as a
special interpretation over a set V of function symbols, the skolem variables.

The PFL The first insight of the PFL is that CLP(BN ) skolem functions nat-
urally map to atoms in parfactor formulae. That is, in a parfactor the formula
a(X)∧b(X) can be seen as identifying two different skolem functions X → a(X)
and X → b(X). The second observation is that both the constraints and the pa-
rameters can be obtained from a logic program. Thus, an example of a parfactor
described by PFL is simply:

bayes abi(K) ; abi_table ; [professor(K)].

This factor would define the random variable abi(K), within the context of a
directed network, having the constraint K ∈ {professor(K)}, and a distribution
abi table/1.

More precisely, the PFL syntax for a factor is

Type F ; φ; C.

Thus, a PFL factor has four components:

– Type refers the type of the network over the parfactor is defined. It can be
bayes, for directed networks, or markov, for undirected ones.

– F is a sequence of Prolog terms that define sets of random variables under
the constraints in C. Each term can be seen as the signature of a skolem
function whose arguments are given by the unbound logical variables. The
set of all logical variables in F is named L.
The example includes a single term, abi(K); the only logical variable is K.

– The table φ is either a list of parameters or a call to a Prolog goal.
– The list of constraints C is a list of Prolog goals that impose bindings on

the logical variables in L. In other words, the successful substitutions for the
goals in C are the valid values for the variables in L. In the example, the
goals constrain K to match a professor.

It may be useful to define the domain of a random variable in a parfactor. To
do so, one can use:



bayes abi(K)::[h,m,l] ; abi_table ; [professor(K)].

A more complex example is a parfactor for a student’s grade in a course:

bayes grade(C,S)::[a,b,c,d], int(S), diff(C) ;

grade_table ;

[registration(_,C,S)].

In the example, the registration/3 relation is part of the extensional data-
base.

The next example shows an encoding for the competing workshops prob-
lem [23]:

markov attends(P)::[t,f] , hot(W)::[t,f] ;

[0.2, 0.8, 0.8, 0.8] ;

[c(P,W)].

markov attends(P)::[t,f], series::[t,f] ;

[0.501, 0.499, 0.499, 0.499] ;

[c(P,_)].

One can observe that the model in this case is undirected. The encoding defines
two parfactors: one connects workshop attendance with the workshop being hot,
the other with the workshop being a series.

2.1 Querying and Generating Evidence for the PFL

In our approach, each random variable in PFL is implicitly defined by a predicate
with the same name and an extra argument. More formally, the value V for a
random variable or skolem function R(A1, . . . , An), is given by the predicate
R(A1, . . . , An, V ). Thus in order to query a professor’s ability it is sufficient to
ask:

?- abi(p0, V).

This approach follows in the lines of PRISM [4] and CLP(BN ).

Evidence can be given as facts for the intentional predicates. Hence,

abi(p0,h).

can be used to indicate that we have evidence on p0’s (high) ability. Conditional
evidence can also be given as part of a query, hence:

?- abi(p0,h), pop(p0,X).

would return the marginal probability distribution for professor p0’s popularity
given he have a high ability.



3 Inference in the PFL

One of our main motivations in designing the PFL is to research on the inter-
play between logical and probabilistic inference. Indeed, how to execute a PFL
program very much depends on the probabilistic inference method used.

Solving the main inference tasks in first-order probabilistic models can be
done by first grounding the network and then applying a ground solver, such as
variable elimination or belief propagation. However, the cost of this operation
will strongly depend on the domain size (number of objects). It may be much
more efficient to solve this problem in a lifted way, that is, by exploiting the
repeated structure of the model to speed up inference by potentially several
orders of magnitude.

The PFL thus supports both lifted and grounded inference methods. In fully
grounded solving the PFL implementation creates a ground network and then
calls the solver to obtain marginals. In lifted solving the PFL implementation
first finds out a graph of parfactors that are needed to address the current query,
an then calls the lifted solver.

The fully grounded algorithm implements a transitive closure algorithm, and
is as follows. First, given a query goal Q, it obtains the marginal random variable
{V }. It also collects the set of evidence variables E. The algorithm then main-
tains two sets: an open set of variables, initially O ← E ∪ {V }, and an explored
set of variables X, initially empty (X ← {}). It proceeds as follows:

1. It selects a variable V from the open-set;
2. For all parfactors defining the variable V , it compute the constraints as a

sequence of Prolog goals, and it adds the other random variables V ′ to O if
V ′ 6∈ X;

3. It terminates when O empty.

The PFL uses the convention that in Bayesian networks a single parfactor
defines each variable, and in markov networks all parfactors define the variable.
This implementation is currently used by variable elimination, belief propagation
and counting belief propagation, and the CLP(BN ) solvers [24].

Lifted solving performs a first step of computing transitive closure, but only
on the graph of parfactors. No constraints are called, and no grounding is made.
A second step then computes the extension of the constraints, so the groundings
are kept separate from the graph. This implementation is used by lifted variable
elimination.

The probabilistic inference algorithms used in the PFL are discussed next.

4 Probabilistic Inference Algorithms

A typical inference task is to compute the marginal probabilities of a set of
random variables given the observed values of others (evidence). Variable elim-
ination (VE) and belief propagation (BP) are two popular ways to solve this
problem.

Next we briefly describe this two agorithms as well their lifted versions.



4.1 Variable Elimination

Variable elimination [25] is one of the simplest exact inference methods. As the
name indicates, it works by successively eliminating the random variables that
appears in the factors until only the query variable remains.

At each step, each variable X is eliminated by first collecting the factors
where X appears, then calculating the product of these factors and finally sum-
ming out X. The product of two factors works like a join operation in relational
algebra, where the set of random variables of the resulting factor is the union of
the random variables of the two operands, and the product is performed such
that the values of common random variables match with each other. Summing
out a variable X is done through the summation of all probabilities where the
values of X varies, while the values of the other variables remains fixed.

Unfortunately, the cost of variable elimination is exponential in relation to
the treewidth of the graph. The treewidth is the size of the largest factor created
during the operation of the algorithm using the best order in which the variables
are eliminated. And it gets worse: finding the best elimination order is a NP-Hard
problem.

4.2 Belief Propagation

Belief propagation [26] is a very efficient way to solve probabilistic queries in
models where exact inference is intractable. Here we describe the implementa-
tion of the algorithm over factor graphs. The algorithm consists in iteratively
exchanging local messages between variable and factor nodes of a factor graph,
until convergence be achieved (the probabilities for each variable stabilize). These
messages consists in vectors of probabilities that measures the influence that
variables have among others.

Belief propagation is know to converge to the exact answers case the factor
graph is acyclic. Otherwise, there is no guarantee on the convergence of the al-
gorithm, or that the results will be good approximations of the exact answers.
However, experimental results show that often it converges to good approxima-
tions and can finish several times faster than other methods [27].

Next, we describe how the messages are calculated and how to obtain the
marginals for each variable. The message from a variable X to a factor f is
defined by:

uX→f (x) =
∏

g∈neighbors(X)\{f}

ug→X(x) , (1)

that is, it consists in the product of the messages received from X’s other neigh-
bor factors. The message that a factor f sends to a variable X is defined by:

uf→X(x) =
∑

y1,...,yk

f(x, y1, . . . , yk)

k∏
i=1

uYi→f (yi) , (2)



where Y1, . . . , Yk are other f ’s neighbor variables. In other words, it is the product
of the messages received from other f ’s neighbor variables, followed by summing
out all variables except X.

Finally, we estimate the marginal probabilities for a variable X by computing
the product of the messages received by all X’s neighbor factors:

P (x) ∝
∏

f∈neighbors(X)

uf→X(x) . (3)

Depending on the graphical model, we may also need to normalize the prob-
abilities. That is, to scale them to sum to 1. In our implemented, initially all
messages are initialized in a uniform way.

4.3 Lifted Variable Elimination

Lifted variable elimination exploits the symmetries present in first-order prob-
abilistic models, so that it can apply the same principles behind variable elim-
ination to solve a probabilistic query without grounding the model. However,
instead of summing out a random variable at a time, it works out by summing
out a whole group of interchangeable random variables.

Initially a shattering operation is applied in all of the parfactors. Shattering
consists in splitting the parfactors until all atoms represent under the constraint
either identical or disjoint sets of ground random variables. Intuitively, this is
necessary to ensure that the same reasoning steps are applied to all ground
factors represented by a parfactor. Sometimes it may also be necessary to further
split the parfactors for some lifted operation be correct, that is, equal to a set
of multiple ground operations.

Work on lifting variable elimination started with Poole [13] and was later
extended by de Salvo [28]. Milch [23] increased the scope of lifted inference by
introducing counting formulas, that can be seen as a compact way to represent
a product of repeated ground factors. The current state of art on lifted variable
elimination is GC-FOVE [21]. GC-FOVE extends previous work by allowing
more flexibility about how the the groups of interchangeable random variables
are defined.

4.4 Lifted Belief Propagation

There are currently two main approaches for applying belief propagation in a
lifted level: lifted first-order belief propagation [15] and counting belief propaga-
tion [16]. While the first requires a first-order probabilistic model as input, the
second does not (is a generalization of the first). Here we focus only in counting
belief propagation.

Counting belief propagation is defined over factor graphs and employs two
steps. Firstly, variable and factor nodes that are indistinguishable in terms of
messages sent and received are respectively grouped in clusters of variables and
clusters of factors, creating with this process a compressed factor graph. To



achieve this, counting belief propagation simulates the use of belief propagation
by using a color based scheme, where colors are transmitted instead of real
probabilities and identical colors identify identical messages.

Secondly, an adapted version of belief propagation is executed over the com-
pressed factor graph. Adapted because it needs to consider that an edge in the
compressed factor graph can represent multiples edges in the original factor
graph.

As the size of compressed factor graph can be a lot smaller than the original
factor graph, the time required to solve some query can substantially decrease.

5 Experimental Evaluation

We compare the performance of variable elimination, belief propagation and
their lifted versions in four benchmark problems described using PFL: workshop
attributes [23], competing workshops [23], city [13] and social domain [29].

Our implementation of lifted belief propagation is based on counting belief
propagation (CBP), while the implementation of lifted variable elimination cor-
responds to GC-FOVE with the difference that we do not employ a constraint
tree [21]. All algorithms are written in C++ and are available with the YAP
Prolog system1 [30].

The test environment was a machine with 2 Intel R© Xeon R© X5650@2.67GHz
processors and 99 Gigabytes of main memory, running a Linux kernel 2.6.34.9-
69.fc13.x86 64. The times for solving each query presented here are the minimum
times of a series of multiple runs.

Figure 1 displays the running times to solve a query on series for both work-
shop attributes and competing workshops problems with an increased number
of individuals [23]. GC-FOVE is the method that performs better, followed by
CBP. For CBP, the size of the compressed factor graph remains constant as
we increase the number of individuals. Hence its cost is mostly dominated by
the time used to compress the factor graph. Variable elimination performs rea-
sonable well even in the presence of large domains, as the treewidth remains
constant for all number of individuals. Although converges in few iterations,
belief propagation is clearly the slowest method.

Figure 2(a) shows the running times to solve a query on guilty for some in-
dividual in the city problem, given the descriptions of the others [13]. Here the
performances of CBP and GC-FOVE are close, as well as their non-lifted ver-
sions. More interesting is the social domain problem [29] where non-lifted exact
inference is intractable, since the treewidth of the graph increases exponentially
in relation to the number of individuals. Figure 2(b) displays the performances
of belief propagation, GC-FOVE and CBP for a query on friends. We found that
GC-FOVE can solve very efficiently this problem and in a faster way than CBP.

At last, we are interested in study how evidence causes the parfactors to
be split for GC-FOVE and how it influences the size of the compressed factor

1 Available from http://yap.git.sourceforge.net/git/gitweb.cgi?p=yap/yap-6.3.
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Fig. 1. Performance on workshops attributes and competing workshops problems with
an increased number of individuals.
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Fig. 2. Performance on city and smokers problems with an increased number of indi-
viduals.
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Fig. 3. Performance on social domain city varying the percentage of evidence.

graph for CBP. For this experiment we took the social domain network, fixed the
number of individuals at 500 and varied the percentage of evidence on random
variables produced by smokes (observed random variables as well their observed
values were choose randomly). The results are show in Figure 3. The run times
for belief propagation and CBP remain stable for all different percentages of
evidence. Therefore the size of the compressed factor graph does not considerably
increase for CBP. For GC-FOVE, the first set of evidence causes an increase on
the run time as some parfactors will be split. However adding more evidence will
not cause further splitting and instead the run times will decrease gradually, since
the absorption of the evidence will cause some operations used by GC-FOVE to
become slightly cheaper.

6 Conclusions and Future Work

We introduce the PFL, an extension of Prolog to manipulate complex distribu-
tions represented as products of factors. The PFL has been implemented as an
extension to the YAP Prolog system, and is publicly available in YAP’s devel-
opment version. As an initial experiment, we use the PFL to represent several
lifted inference benchmarks, and compare a number of inference techniques. Our
results show benefit in using first-order variable elimination, even given the com-
plexity of the algorithm.

We see the PFL as a tool in experimenting with ways to combine proba-
bilistic and logical inference, and plan to continue experimenting with different
approaches, such as other forms of lifted belief propagation [15]. We also plan
to look in more detail to aggregates. Last, and not least, our ultimate focus is
to be able to learn PFL programs.
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