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Abstract. A workmanlike, but nevertheless very effective combination
of statistical and relational learning uses a statistical learner to construct
models with features identified (quite often, separately) by a relational
learner. This form of model-building has a long history in Inductive Logic
Programming (ILP), with roots in the early 1990s with the LINUS sys-
tem. Additional work has also been done in the field under the cate-
gories of propositionalisation and relational subgroup discovery, where
a distinction has been made between elementary and non-elementary
features, and statistical models have been constructed using one or the
other kind of feature. More recently, constructing relational features has
become a essential step in many model-building programs in the emerg-
ing area of Statistical Relational Learning (SRL). To date, not much
work—theoretical or empirical—has been done on what kinds of rela-
tional features are sufficient to build good statistical models. On the face
of it, the features that are needed are those that capture diverse and
complex relational structure. This suggests that the feature-constructor
should examine as rich a space as possible, in terms of relational descrip-
tions. One example is the space of all possible features in first-order logic,
given constraints of the problem being addressed. Practically, it may be
intractable for a relational learner to search such a space effectively for
features that may be potentially useful for a statistical learner. Addi-
tionally, the statistical learner may also be able to capture some kinds
of complex structure by combining simpler features together. Based on
these observations, we investigate empirically whether it is acceptable
for a relational learner to examine a more restricted space of features
than that actually necessary for the full statistical model. Specifically,
we consider five sets of features, partially ordered by the subset relation,
bounded on top by the set Fd, the set of features corresponding to defi-
nite clauses subject to domain-specific restrictions; and bounded at the
bottom by Fe, the set of “elementary” features with substantial addi-
tional constraints. Our results suggest that: (a) For relational datasets
used in the ILP literature, features from Fd may not be required; and (b)
Models obtained with a standard statistical learner with features from
subsets of features are comparable to the best obtained to date.
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1 Introduction

The emerging area of statistical relational learning (SRL) is characterised by
a number of distinct strands of research. Especially prominent is research con-
cerned with the construction of models from data that use representations based
on either first-order logic programs augmented with probabilities or probabilistic
graphical models. The concerns here are the usual ones to do with expressive
power, estimation, and inference: what kinds of probabilistic models can be con-
structed with one representation or the other; how can we estimate the struc-
ture and parameters in the model; how do we answer queries exactly, given data
that is observed, and perhaps missing; and so on. The combination of relational
learning with statistical modeling, however, has a longer history within Inductive
Logic Programming (ILP), with origins at least as early as 1990, with the LINUS
system [8]. Since then, there are have been regular reports in the literature on
the use of ILP systems, as a tool for constructing relational features for use in
statistical modeling [15].

An argument can be made that construction of relational features must nec-
essarily require some form of first-order learning, of which ILP is an instance
(for example, see [7]). Arguments in-principle aside, the literature also suggests
that augmenting any existing features with ILP-constructed relational ones can
substantially improve the predictive power of a statistical model. There are
thus good practical reasons to persist with this variant of statistical and log-
ical learning. On the other hand there has been some work done on compar-
ing the different kinds of propositionalisation techniques used to transform the
search space from the space of first-order hypothesis to the space of propositional
features which can be handled by more scalable propositional/statistical learn-
ers. [6] claims that of the two main kinds of propositionalization methods, namely
logic oriented and database-oriented, both have their specific advantages. While
logic-oriented methods can handle complex relational structures in the form of
background knowledge and provide more expressive relational models, database-
oriented models are much more scalable. According to their empirical findings,
a combination of features from these two groups are necessary for learning good
models.

Even within this well-trodden corner of statistical relational learning (no
more, perhaps, than a “poor man’s SRL”), there are some issues that remain
unaddressed. To date, not much work—theoretical or empirical—has been done
on what kinds of relational features are sufficient to build good statistical models.
On the face of it, the features that are needed are those that capture diverse and
complex relational structure. This suggests that the feature-constructor should
examine as rich a space as possible, in terms of relational descriptions. One ex-
ample is the space of all possible features in first-order logic, given constraints of
the problem being addressed. Practically, it may be intractable for a relational
learner to search such a space effectively for features that may be potentially
useful for a statistical learner. Additionally, the statistical learner may also be
able to capture some kinds of complex structure by combining simpler features
together. For example, a statistical learner like a support vector machine or lo-
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gistic regression that may also be able to approximate the effect of a conjunction
of these features using their weighted sum. Reports in the ILP literature sug-
gest at least 5 kinds of relational feature classes: (1) Fd: (the set of) features
from definite clauses with no restrictions other than those of the domain [17,
15]; (2) Fi: features from “independent” clauses that place restrictions on the
sharing of existential variables [1]; (3) Fr: features denoting a class of relational
subgroup that place additional restrictions on the use of existential variables
in independent clauses [9]; (4) Fs: features from “simple” clauses in the sense
described in [10]; and (5) Fe: features developed from the class of “elementary”
clauses described in [3]. In this paper, we show certain subset relationships hold
between these sets. These are shown diagrammatically in Fig. 1. When exploring
whether smaller feature-spaces are adequate, we use these relationships to inves-
tigate empirically whether exploring larger sets of features adds any significant
predictivity to a statistical learner.

Fig. 1. Relationships between the sets of features considered in this paper.

The rest of the paper is organised as follows. In Section 2 we describe the
mapping between clauses and relational features. We also describe in greater de-
tail the five feature classes Fd–Fe. In Section 3 we derive the relationships shown
in Fig. 1 and enumerate some consequences that follow directly from them. Sec-
tion 4 describes an empirical investigation, using standard statistical learners of
the smallest size feature class that appears to be useful for constructing predic-
tive models for several ILP benchmark datasets. Section 5 concludes the paper.
paper.

2 Feature Classes

In this paper, we will take first-order relational features simply to be first-order
clauses that either maximize some objective either collectively or individually
(effectively, a restatement of the distinction in [4] between strong and weakly
relevant features, in optimisation terms). Specifically, we will assume that is a
one-to-one correspondence between first-order relational features and definite
clauses (alphabetic variants of a clause are treated as being the same clause).
Formally, we adopt the same notation as in [15] for a function that maps a first-
order definite clause to a feature. The set of examples provided to an ILP system



4 Amrita Saha, Ashwin Srinivasan, and Ganesh Ramakrishnan

can be defined as a binary relation which is a subset of the Cartesian product
X ×Y where X denotes the set of individuals (i.e. structured objects consisting
of first-order predicates) and Y denotes the finite set of classes. The definite
clauses obtained as an output of the ILP system can be represented in the form
hj(x, c) : Class(x, c)← Cpj(x) where Cpj : X → {0, 1} is a nonempty conjunc-
tion of predicates on the variable x ∈ X and c is the class variable specified in
the head predicate. For convenience, we will say Head(hj(x, c)) = Class(x, c)
and Body(hj(x, c)) = Cpj(x). Given a clause hj(x, c), a first-order feature can
be defined as fj(x) = 1 iff Body(hj(x, c)) = 1 and 0 otherwise. Constraints on
Body(hj(x, c)) allow us to define several kinds of features. Following [10] (with
a small difference) we distinguish between “source” predicates and “sink” pred-
icates in the language of clauses allowed in the domain. The former are those
that contain at least one output argument and any number of input arguments
(in the sense used by the mode declarations in [11]) and the latter are those that
contain no output arguments. In a clause, thus all new existentially quantified
variables should be introduced in the source literals and not in the sink literals.
3 Additionally, following [1], for a clause hj(x, c), the independent components
in Body(hj(x, c)) are partitions of the literals in Body(hj(x, c)) into sets, such
that each partition consists of a “connected” set of literals (once again, using
input and output variables in the sense of [11]), and that literals across partitions
only share the head variable x. We are then able to define the following kinds of
relational feature classes:

The class Fd: This consists of first-order features obtained from definite clauses
hj(x, c) in the functional manner described above. That is, no constraints
are placed on Body(hj(x, c)). Features used in [17], for example, belong to
this class.

The class Fi: This is a restricted version of the class Fd, consisting of features
from clauses hj(x, c)) such that Body(hj(x, c)) consists of exactly 1 indepen-
dent component.

The class Fr: This is a restricted version of the class Fi, consisting of features
obtained from clauses hj(x, c) such that Body(hj(x, c)) consists of exactly
1 independent component, and with an additional constraint that all new
existential variables introduced by a source literal appear in source or sink
literals in Body(hj(x, c)). The features in [9] are from this class, and the
first-order features described in [3] are a special case of features in Fr (the
special case arising from restrictions on sources and sinks to structural and
property predicates as described earlier).

The class Fs: This consists of features obtained from clauses hj(x, c) such that
hj is a simple clause in the sense defined by [10]. That is, Body(hj(x, c))
contains exactly 1 sink literal.

The class Fe: This is a restricted version of the of the class Fr, consisting of
features obtained from clauses hj(x, c) such that Body(hj(x, c)) contains

3 “Structural” predicates used in [3] are thus binary source literals that introduce a
single new variable, and “property” predicates are sink literals.
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exactly 1 sink literal. “Elementary” features described in [3] are a special
case of features in Fe.

3 Relationships Between Feature Classes

Some of the relationships4 between feature classes are evident from the defini-
tions. That is: Fr ⊆ Fi ⊆ Fd. The following additional statements hold

– Fs ⊆ Fi

– Fs 6⊆ Fr and Fr 6⊆ Fs

– Fe = Fr ∩ Fs

Thus, the feature classes exhibit the following hierarchical structure:
Fe = (Fr ∩ Fs) ⊆ Fr ⊆ Fi ⊆ Fd

Fe = (Fr ∩ Fs) ⊆ Fs ⊆ Fi ⊆ Fd

Given these subset relationships between feature classes, it is also of some
importance to consider whether there a way of reconstructing, using logical op-
erations, every feature in a superset class by combining features from a subset
(or smaller) class (clearly, the reverse is always possible: a feature in a subset
class can always be constructed from a feature in the superset class). The in-
terest here is of course that if such logical relationships hold, then features in
the larger class may be approximated by statistical learners using weighted com-
binations of features from the smaller class. The following logical relationships
hold between the feature classes:

– Every feature in Fi can be constructed from features in Fs

– Every feature in Fd can be constructed from features in Fi

Thus, every feature in Fd can be constructed from Fs. In addition:

– Not every feature in Fi can be constructed from features in Fr

– Not every feature in Fr can be constructed from features in Fe

– Not every feature in Fs can be constructed from features in Fe

We now evaluate empirically the utility of features from the different classes,
proceeding from the smallest (Fe) to the largest (Fd).

4 Empirical Evaluation

4.1 Aims

Our aim is to obtain empirical evidence of the smallest feature class that is found
to yield good statistical models. Specifically, we mean that we wish to find using a
set of well-studied benchmark data sets and popular statistical learners, whether
there is a feature class such that adding features from larger classes yields no
significant increases in predictive accuracy.

4 Proofs of these results have not been elaborated here. They are accessible at this
location:http://www.cse.iitb.ac.in/~amrita/ilp/appendix.pdf
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4.2 Materials

Domains We use biochemical datasets that have been used in a range of papers
in the ILP literature. These are tabulated below.These datasets have been used
widely: see, for example [7, 14, 18]).

1. Alz (Amine)
2. Alz (Acetyl)
3. Alz (Memory)
4. Carcin
5. DSSTox
6. Mut188

4.3 Algorithms and Machines

The statistical learners used in the paper are these:

– A support vector machine(SVM). Specifically, we examine SVMs with both
the L1-norm ,also known in literature as L1-SVM (the LibLINEAR imple-
mentation) and the L2-norm ,known as L2-SVM,(the LibSVM implementa-
tion) on the weight vector used as the regularizer. The L1-norm is known
to induce sparsity on the feature space, forcing a form of feature selection
which is important when the number of features is large.

– Logistic regression. Specifically, we consider a standard version of this tech-
nique and a faster and more efficient variant called SMLR (Sparse Multino-
mial Logistic Regression) [5]

– Rule ensemble learning using maximum likelihood estimation (MLRules) [2].
This employs a greedy approach of maximising likelihood to construct an
ensemble of rules from the features. Like logistic regression, the weights of the
rules are derived from the conditional probability distribution learnt. So it
can be thought of as a generalization of Logistic Regression, where the space
explored to construct rule ensembles can be considered as an approximation
of of conjunctions of rules/features.

All statistical learners here, compute the decision function as a weighted linear
combination of the features (which can be thought of as an approximation to
a logical conjunction). Features in each feature class are constructed using the
ILP system Aleph [16]. It is possible to enforce the constraints associated with
each feature class in a straightforward manner as part of background knowledge
provided to this system.
All experiments were conducted on a machine equipped with a 8-core Intel i7
2.67GHz processors and 8 gigabytes of random access memory.

4.4 Method

The methodology adopted for providing the statistical learners features from
feature classes Fe to Fd is as follows:
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1. Select a total ordering on the classes Fe ≺ · · · ≺ Fd that is consistent with
the partial ordering imposed by subset relationships between these sets.

2. For each dataset and each statistical learner:
(a) For sets Sj from smallest (Fe) to the largest (Fd), in the total ordering
≺:

(b) Let F0 = ∅
i. Repeat R times:

A. Obtain a set of features F from Sj

B. Fj = Fj−1 ∪ F
C. Obtain an estimate of the predictive accuracy Aj of the statistical

learner with features Fj

ii. Obtain the mean predictive accuracy Aj across the R repeats
3. Determine the smallest set Sk after which there are no significant changes

in mean predictive accuracy Ak

The following details are relevant:

1. There are only 2 total orderings possible, given the subset relationships be-
tween the feature classes: Fe ≺1 Fr ≺1 Fs ≺1 Fi ≺1 Fd and Fe ≺2 Fs ≺2

Fr ≺2 Fi ≺2 Fd. According to our incremental algorithm, here, Fs in ≺1 and
Fr in ≺2 actually refer to sets of features from Fr∪Fs, because of their order
of appearance. The results we report here are with ≺=≺1. Our conclusions
do not change with either ≺1 or ≺2.

2. All predictive accuracies are estimated using 10-fold cross-validation.
3. The results are averaged over R = 4 repetitions. Larger values of R would

result in smaller standard errors of the mean estimate.
4. Statistical learners have parameters that require optimisation. It has been

shown elsewhere [18] that using default values of parameters can result in
sub-optimal models, which can clearly confound the conclusions that can be
drawn here. For each set of training data in a cross-validation run, we set
aside some small part of the training data as a “validation” set, and use
this to tune the parameters of the statistical learner. The “best” parameter
value that results is then used to construct a model on the training data; and
then evaluated on the test dataset of that cross-validation run. This does not
necessarily yield the best model possible, but accuracies are usually higher
than those obtained with the default settings for the parameters.

5. The feature-construction procedure employed by the ILP engine requires an
upper-bound k on the number of features produced for each class label in
the example data. For experiments reported here, k = 500. There is a ran-
domised element to the feature-construction procedure in Aleph, which can
been seen as selecting (non-uniformly) upto k features, from the set of all
possible features allowed. The selection of features is controlled by parame-
ters that correspond to precision and recall in the data mining literature. For
experiments here, these values have been deliberately left low (and hence,
easy to obtain for the ILP engine). The intent is that the statistical learner
should be able to combine these to obtain higher values.
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6. We have elected to assess the utility of features from each feature class
by examining the improvements in mean accuracy by augmenting features
already present from feature classes earlier in the ordering ≺. The alternative
of simply comparing accuracies with a new set of features drawn from the
from each feature class X in the ordering would have confounded matters,
since this set could contain features from a class Y ⊆ X. It would not then
be known whether the increases in accuracy, if any, are due to features from
a class X, or those from class Y .

7. It is known that for large R, mean accuracies are distributed normally. For
small R, it is known that the sampling distribution of the mean is a t-
distribution with R − 1 degrees of freedom. This is used in statistical com-
parisons when needed (as will be seen, it is often evident whether differences
are significant, and no undue statistical testing is needed).

4.5 Results and Discussion

The comparative performance of the models is shown in Fig. 2. The principal
result from this tabulation is this: broadly, there is little value in including fea-
tures from Fd (the largest feature class considered here). Examining the table in
greater detail, we are able to obtain the number of “wins” for each feature class
(that is, the number of times the highest predictive accuracy results from using
features in that class). A cross-tabulation of this against the learners is shown
in Fig. 3:

The data in Figs. 2 and 3 suggest that it is sufficient to consider features from
Fi (that is, features from clauses containing one independent component). Now,
while it is possible to reconstruct every feature in Fd exactly as a simple logical
conjunction, of some features in Fi, it is also possible to reconstruct several (but
not all) features in Fd by simple logical conjunction of select features in Fr, Fs

and Fe. This appears to be exploited by all of the statistical learners here, since
it is by no means necessary for any of them that features from Fd are consistently
required to produce the best results. This is reinforced further, if rather than
considering outright wins, we consider a model as being good enough if there
no (statistically) significant difference to the best model. Then, the performance
tallies can be summarized as in Fig. 4.

These tabulations do suggest that of the classes Fe . . . Fd, the class Fi may be
the most useful. But how good are the models obtained with Fi, when compared
against the ILP models reported in the literature? Fig. 5 shows a comparison of
the best statistical models against the predictive accuracies of the ILP models
obtained after parameter selection and optimisation [18].

Finally, although not relevant to the aims of the experiment here, we note
some exceptional behaviour on the “Carcin” dataset, in which there is a fairly
consistent trend of decreasing predictive accuracies as we progress from Fe to Fd.
An examination of re-substitution (training-set) accuracies for this data shows
the opposite trend, suggesting that these data may be especially prone to over-
fitting.
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Data Learner Using Features From

Fe Fr Fs Fi Fd

Alz(Amine)

L2-SVM 66.14±0.84 65.71±0.69 67.23±0.86 81.62±0.92 81.45±0.61

L1-SVM 65.50±0.15 65.84±0.14 64.91±1.65 78.34±4.18 80.31±1.57

LR 65.42±0.0 65.42±0.0 64.38±0.0 79.32±3.93 81.28±0.31

SMLR 65.42±0.0 66.05±0.22 67.12±0.38 81.20±2.56 81.63±2.77

MLRules 64.39±0.0 64.39±0.0 68.67±0.0 82.32±1.18 82.22±0.35

Alz(Acetyl)

L2-SVM 69.42±0.33 68.52±0.70 68.59±2.11 74.40±0.80 72.97±0.47

L1-SVM 69.85±0.05 68.55±0.0 66.20±0.0 74.06±0.91 72.78±1.44

LR 69.82±0.0 69.82±0.0 71.93±0.0 73.87±0.44 74.16±0.24

SMLR 70.36±0.11 70.32±0.14 72.17±0.12 73.34±1.38 73.20±0.65

MLRules 69.59±0.0 69.59±0.0 70.95±0.0 71.67±0.47 72.44±0.52

Alz(Memory)

L2-SVM 59.80±0.22 61.09±0.45 63.46±1.07 68.39±1.15 68.07±1.75

L1-SVM 56.99±1.29 62.89±1.07 64.33±0.25 71.29±1.04 67.96±0.41

LR 59.07±0.08 59.07±0.08 65.87±0.0 70.31±1.54 69.30±0.55

SMLR 59.69±0.0 58.44±1.32 66.34±0.73 70.10±1.26 71.83±1.67

MLRules 58.83±0.19 58.83±0.19 64.76±0.08 70.13±1.14 67.91±0.64

Alz(Toxic)

L2-SVM 70.72±1.0 71.97±1.99 77.17±0.82 83.01±0.73 82.04±2.40

L1-SVM 70.06±0.0 71.73±0.0 80.94±3.15 82.59±0.70 82.83±2.21

LR 72.84±0.0 72.09±1.51 77.91±0.0 81.65±0.79 83.32±0.87

SMLR 74.50±2.35 74.07±0.79 76.76±0.16 82.59±0.39 84.21±0.69

MLRules 73.18±0.0 73.18±0.0 77.44±0.0 84.50±0.44 84.19±0.56

Carcin

L2-SVM 60.59±1.58 62.15±1.75 59.49±1.75 62.03±1.28 59.85±1.67

L1-SVM 61.21±0.0 59.71±0.0 58.66±3.10 60.26±0.71 59.21±1.29

LR 59.00±0.0 57.71±0.16 54.01±2.79 51.80±1.37 52.52±3.49

SMLR 60.88±0.0 60.17±0.38 59.51±2.91 58.80±3.42 57.94±2.84

MLRules 59.39±0.25 59.20±0.15 58.83±1.96 57.94±2.31 56.64±0.94

DSSTox

L2-SVM 69.36±1.15 69.86±1.19 72.21±1.22 73.12±0.94 70.90±3.15

L1-SVM 69.25±0.25 69.00±0.25 70.77±1.60 71.91±1.77 69.21±1.34

LR 70.49±0.0 70.49±0.0 72.18±1.71 71.01±0.87 70.32±0.47

SMLR 72.24±0.0 72.29±0.09 70.71±2.62 70.95±2.94 71.02±1.38

MLRules 71.55±0.0 71.55±0.0 72.85±1.43 72.73±1.52 72.16±1.09

Mut(188)

L2-SVM – 65.80±1.25 85.84±1.36 86.49±0.28 84.63±1.58

L1-SVM – 63.70±0.30 84.92±0.65 85.27±0.31 85.52±0.48

LR – 67.12±0.0 74.85±1.74 77.48±3.38 77.61±2.88

SMLR – 73.44±0.0 88.06±1.57 85.83±1.81 84.10±2.02

MLRules – 71.86±0.0 85.04±0.76 86.50±1.40 85.70±1.55

Fig. 2. Mean predictive accuracies of statistical models including features from Fe to
Fd. “–” indicates no features in this class were possible given the domain constraints.
Here, refers to the Fs in the incremental order ≺1, hence it actually denotes the set of
features from Fr ∪ Fs. Same notation has been followed in Fig. 3. and Fig. 4.



10 Amrita Saha, Ashwin Srinivasan, and Ganesh Ramakrishnan

Feature Number of Wins Total

Class L1-SVM L2-SVM LR SMLR MLRules Wins

Fe 1 0 1 1 1 4/35

Fr 0 1 1 1 0 3/35

Fs 0 0 1 1 1 3/35

Fi 3 6 1 1 4 15/35

Fd 3 0 4 3 1 11/35

Fig. 3. Number of outright wins for a feature class. This is number of occasions out of
the total number of possible occasions (i.e. 35) on which a statistical learners achieves
the highest mean predictive accuracy using features from that class.

Feature Number of Good Enough Models Total No. of

Class L1-SVM L2-SVM LR SMLR MLRules Good Models

Fe 2 1 2 2 2 9/35

Fr 2 2 1 4 4 13/35

Fs 3 2 1 4 4 14/35

Fi 7 7 6 7 7 34/35

Fd 4 5 6 7 7 25/35

Fig. 4. Number of good enough models (out of all possible models i.e. 35), using a
feature class. A model is taken to be good enough if its predictive accuracy is not
statistically different to the model with the highest predictive accuracy.

We also experimented with ≺=≺2 and found that the results were quite
similar with the ones with ≺=≺1 tabulated here. In interest of space, those
results have been omitted.

5 Concluding Remarks

In this paper we have explored the relationship between several feature spaces
that have been reported in ILP literature and examined empirically whether
it is possible to construct good statistical models using features from smaller
spaces. The intuition underlying this is that statistical models may often be able
to approximate the effect of more elaborate features by weighted combinations
of simpler features. Our results suggests that the class Fi, consisting of features
constructed from clauses containing exactly one independent component seems
to be particularly useful. This makes some sense: a linear combination of multiple
features from Fi can approximate the reconstruction of a full first-order feature,
since no variable sharing is required between such features. In fact, this leads us
to hypothesize that statistical learners like [12] that perform conjunctive feature
learning will not perform any better than learners using weighted combinations
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Data Statistical Model ILP Model With

Parameter Selection & Optimization

Alz (Amine) 82.32±1.18 80.20

Alz (Acetyl) 74.16±0.24 77.40

Alz (Memory) 71.83±1.67 67.40

Alz (Toxic) 84.50±0.44 87.20

Carcin 62.15±1.75 59.10

DSSTox 73.12±0.94 73.10

Mut(188) 88.06±1.57 88.30

Fig. 5. Comparison of mean predictive accuracies of statistical models against the ILP
models constructed with parameter selection and optimisation (see [18]).

of features from Fi, and will incur a greater computational cost. Further, this also
leads us to believe that weighted linear combinations of first order clauses in re-
lational learning models such as MLN [13] and Relational Markov Networks [19]
could be efficiently and effectively approximated by weighted linear combination
of clauses from simpler classes such as Fi and is part of our ongoing work.
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