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Abstract

Markov Logic Networks (MLNs) are a prominent statistical relational model
that consist of weighted first order clauses. Structure and parameter learning for
MLNs is a challenging active area of current research. For complex relational
schemas with many descriptive attributes, one of the most effective algorithms is
the moralization approach: Use any Bayes net algorithm to learn a directed re-
lational graphical model, then convert to first order clauses. While this is a fast
structure learning method, optimizing parameters for a moralized Bayes net using
standard MLN techniques is a bottleneck. In this paper we investigate a moraliza-
tion approach to parameter estimation where MLN weights are directly inferred
from Bayes net parameters. Empirical evaluation indicates that parameter estima-
tion via moralization is orders of magnitude faster than parameter optimization,
while performing as well or better on prediction metrics.

1 Introduction
Statistical relational learning (SRL) concerns the induction of probabilistic knowledge
that supports accurate prediction for multi-relational structured data [1]. Markov Logic
Networks (MLNs) form one of the most prominent SRL model classes; they generalize
both first-order logic and Markov network models [2]. An MLN is represented as a set
of weighted clauses in first-order logic. Learning an MLN decomposes into structure
learning, learning the logical clauses, and parameter learning, setting the weight of
each clause. MLNs have become popular as a unifying framework for SRL [3, 4]. An
open-source benchmark system for MLNs is the Alchemy package [5]. Most previous
learning methods for both structure learning and parameter learning are still inefficient
and only applicable to small-to-medium datasets only as big as 2,673 ground atoms in
[6, 7] and upto 42558 ground atoms in [8].

The learn-and-join algorithm [9, 10] applied Bayes net (BN) algorithms to perform
structure learning for MLNs in relational datasets with schemas that feature a signif-
icant number of descriptive attributes, compared to the number of relationships. The
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evaluation was done on datasets with up to 170,000 true ground atoms. Khosravi et
al. used moralization method to produce MLN clauses from the BN structure and
then applied MLN weight learning techniques to the moralized clauses [9, 10]. Weight
learning in Markov logic is a convex optimization problem, and thus gradient descent
is guaranteed to find the global optimum. However, convergence to this optimum may
be extremely slow, partly because the problem is ill-conditioned since different clauses
may have very different numbers of satisfying groundings [11, 2]. In the experiments
of Khosravi et al., over 95% of MLN learning time was spent on parameter estimation,
which sometimes even exceeded system resources. In this paper we propose a new
parameter moralization method for MLN weight estimation.

Approach. A parameter moralization method estimates parameters from the database
statistics using fast Bayes net and decision tree algorithms. Then a conversion function
maps the conditional probabilities into MLN weights. Domingos and Richardson pro-
posed using the log-cps,logarithm of conditional probabilities, as clause weights [2].
We illustrate situations regarding ill-conditioning in which this method does not work
well and introduce a new method of conversion, LOG-LINEAR, that leads to theoreti-
cally more sound and empirically more accurate predictions.

We evaluated our learning algorithms using cross-validation on five well known
public domain datasets. Parameter moralization methods are orders of magnitude faster
than local optimization techniques, while their predictive accuracy is competitive or
even superior.

Paper Organization. We discuss related work, background, and notation. We
present a method for estimating relational conditional probabilities using BN algo-
rithms and database techniques. Conversion functions for mapping conditional prob-
abilities into weights are introduced. We compare our approach both in terms of pro-
cessing speed and in terms of model accuracy with other state of the art MLN learning
algorithms.

1.1 Related work
Most work on parameter learning in MLNs is based on ideas developed for Markov
networks (undirected graphical models) in the propositional case. Special issues that
arise with relational data are discussed by Lowd and Domingos [11]. Most recent
methods aim to maximize the regularized weighted pseudo log-likelihood [2, 8], and/or
perform a scaled conjugate gradient descent using second-order derivative information
[11]. Our approach utilizes parameter estimation algorithms from directed rather than
undirected graphical models. As far as we know, our work is the first on MLN learning
that uses a relational database for data management, which allows it to take advantage
of efficient database querying techniques that are less affected by the number and arity
of the descriptive attributes in a database.

The main motivation for converting the directed model into an undirected model
and performing inference with an undirected model is that they do not suffer from the
problem of cyclic dependencies in relational data [2, 12, 9]. Early work on this topic
required ground graphs to be acyclic [13, 14]. For example, Probabilistic Relational
Models allow dependencies that are cyclic at the predicate level as long as the user
guarantees acyclicity at the ground level [14]. A recursive dependency of an attribute
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on itself is shown as a self loop in the model graph. If there is a natural ordering of
the ground atoms in the domain (e.g., temporal), there may not be cycles in the ground
graph; but this assumption is restrictive in general. The generalized order-search of Ra-
mon et al. [15] instead resolves cycles by learning an ordering of ground atoms which
complicates the learning procedure. Our approach combines the scalability and effi-
ciency of directed model search, and the inference power and theoretical foundations
of undirected relational models.

2 Background Concepts
A Bayes net structure [16] is a directed acyclic graph (DAG) G, whose nodes com-
prise a set of random variables denoted by V . A Bayes net (BN) is a pair 〈G,θG〉
where θG is a set of parameter values that specify the probability distributions of chil-
dren conditional on assignments of values to their parents. We use as our basic model
class Parametrized Bayes Nets [17], a relatively straightforward generalization of
Bayes Nets for relational data. Our methods also apply to other directed graphical for-
malisms. A population is a set of individuals, corresponding to a domain or type in
logic. A parametrized random variable (PRV) is of the form f(t1, . . . , tk) where
f is a functor (either a function symbol or a predicate symbol) and each ti is a first-
order variable or a constant. Each functor has a set of values (constants) called the
range of the functor. A Parametrized Bayes Net structure consists of: (1) A directed
acyclic graph (DAG) whose nodes are parametrized random variables. (2) A popu-
lation for each first-order variable. (3) An assignment of a range to each functor. A
Parametrized Bayes Net (PBN) is a BN whose graph is a PBN structure.1

Relational Schemas. We assume a standard relational schema containing a set of
tables, each with key fields, descriptive attributes, and foreign key pointers. A database
instance specifies the tuples contained in the tables of a given database schema. A
table join of two or more tables contains the rows in the Cartesian products of the
tables whose values match on common fields.

Markov Logic Networks are presented in detail by Domingos and Richardson [2].
The qualitative component or structure of an MLN is a finite set of 1st-order formulas
or clauses {pi}, and its quantitative component is a set of weights {wi}, one for each
formula.

Moralized Bayes Nets The learn-and-join algorithm applied Bayes net (BN) algo-
rithms to perform structure learning for MLNs in relational datasets with schemas that
feature a significant number of descriptive attributes [9]. Moralization is a technique
used to convert a directed acyclic graph (DAG) into undirected models or MLN for-
mulas. To convert a Bayes net into an MLN using moralization, add a formula to the
MLN for each assignment of values to a child and its parents [2, Sec. 12.5.3]. The
MLN for moralized BN B thus contains a formula for each CP-table entry in B [2]
which we call MBN structure in this paper. Figure 1 illustrates a Parameterized Bayes
net learned using the learn-and-join algorithm and Figure 2(a) shows the conditional
probability table and its corresponding clauses for the node ranking.

1The term “Parametrized” refers to the semantics of PBNs, and does not mean that parameters have been
assigned for the PBN structure.
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Figure 1: A parametrized Bayes net graph.

While the moralization approach produces graph structures that represent the de-
pendencies among predicates well, converting each row of each conditional probability
table to an MLN clause leads to a large number of MLN clauses and hence MLN pa-
rameters.

Local or context-sensitive independencies are a well-known phenomenon that can
be exploited to reduce the number of parameters required in a Bayes net. A decision
tree can compactly represent conditional probabilities [18]. The nodes in a decision
tree for a Parametrized RV c are parametrized random variables. An edge that origi-
nates in a PRV f(t1, . . . , tk) is labeled with one of the possible values in the range of
f . The leaves are labeled with probabilities for the different possible values of the c
variable. Khosravi et al combine decision tree learning algorithms with Bayes nets to
learn a compact set of clauses for relational data [10]. We call this structure MBN-DT
in this paper. In their experiments, using the decision tree representation (i.e., MBN-
DT) instead of “flat” conditional probability tables (i.e., MBN) reduced the number of
MLN weight parameters by a factor of 5-25. Figure 2(b) shows the decision tree and
its corresponding MLN clauses for the ranking node in 1.

3 Relational Parameter Learning for Bayes Nets
We assume that a structure of a Parameterized Bayes net, a relational database, and a
method for storing the parameters as either conditional probability tables or decision
trees are given as input. The algorithm estimates parameter for the given structure as
output. The structure may have been obtained from various relational structure learning
methods, such as those for Probabilistic Relational Models [19], the learn-and-Join
algorithm [9], and RelationalPC [20]. Our basic approach is to consider each family in
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(a) A conditional probability table for node ranking. Range of popularity, intelligence, ranking =
{1 , 2 , 3} and range of RA = {True,False}. A tabular representation requires a total of 3×3×2×3 = 54
conditional probability parameters. The figure on the right illustrates the corresponding 54 clauses.

(b) A decision tree that specifies conditional probabilities for the ranking(S) node in Figure 1 and the
corresponding MLN clauses generated from the decision tree.

Figure 2: The MLN structure generated from MBNs [9] and MBN-DT [10]

the structure (node + parents), form a family data table, and apply any propositional
Bayes Net or Decision Tree parameter estimation algorithm to the family structure and
data table. The family data table is defined by joining the minimum subset of tables that
contains all the attributes and relationships that occur in the family. We select (project)
only the attributes that occur in the family. The family data table specifies the sufficient
statistics, that is, the number of satisfying groundings for each assignment of values to
the family nodes. Algorithm 1 summarizes the procedure with pseudocode.

For example, in the PBN of Figure 1, the family of diff (C ) comprises in addition
the parent nodes grade(S ,C ), intelligence(S ),Registration(S ,C ). Thus the family
data table is given by the join Registration on Student on Course . followed by select-
ing (projecting) the attributes intelligence, difficulty , grade . A propositional Bayes
net or decision tree parameter learner is applied to the resulting table with the family
graph, that contains difficulty(C) and its parents. The general approach of applying
a propositional learners to a relational data table was also followed in the Learn-and-
Join structure learning method. The table joins can be efficiently computed with SQL
queries.

This method implicitly considers only links or link chains that exist in the database
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(true relationship groundings). It can extended for conditional probabilities that in-
volve non-existing relationships. The main problem in this case is computing sufficient
database statistics (frequencies), which can be addressed with the dynamic program-
ming algorithm of Khosravi et al. [21]. Experimentally we found that including in-
formation from non-existing links is not helpful for predicting the attribute of a target
entity (link-based classification) because information from unrelated entities tends to
be irrelevant, but also tends to carry too much weight because there are typically may
more unrelated than relate entities. So when converting the PBN to an MLN, we only
include clauses with existing links (i.e., where relationship indicator nodes are true).

Algorithm 1 Conditional Probability Estimation for Parameterized Bayes Nets.
Input: Database instance D; DAG G ; Method M [which is either BN or DT]
Output: Parameterized Bayes net 〈G,θG〉 with θG,v for child node v.
Call: Find-Datatable(Family ,D). [Outputs a join data table for the nodes in a family
(child + parents) from database D]
Call: BPL(T , Child , Parents). [Uses any single-table Bayes net Parameter Learner
Call: DTL(T , Child , Parents). [Uses any single-table Decision tree Parameter
Learner to estimate conditional probabilities for Child given Parents from data ta-
ble T ]

1: for all parametrized random variables PRV do
2: Family := Parents(PRV ) ∪ {PRV }
3: T := Find-Datatable(Family , D)
4: if M = BN then
5: θG,PRV = BPL(T , PRV , Parents(PRV ))
6: end if
7: if M = DT then
8: θG,PRV = DTL(T , PRV , Parents(PRV ))
9: end if

10: end for
11: return 〈G,θG〉

4 Conversion Functions
In the following discussion, fix a PBN B and a child node v with k possible values
v1, . . . , vk and an assignment π of values to its parents. Then the conditional probabil-
ity p(vi|π) is defined in the CP-table or decision tree leafs for B. The moralized MBN
contains a formula pi that expresses that child node v takes on value i and the parents
take on value π. The weight of formula pi is denoted as wi.

In order to convert the conditional probabilities from parameterized Bayes Nets into
weights for MLNs, using the logarithm of the conditional probabilities was suggested
by Domingos and Richardson [2] as part of the standard moralization procedure. We
call this method LOGPROB. The LOGPROB method sets

wi := log(p(vi|π))
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, which weights events with small conditional probabilities exponentially and ignores
the ones with probability one. We use the Laplace correction for events with zero
instances in the data.

In the propositional case, combining moralization with the log-conditional prob-
abilities as in the LOGPROB method leads to an undirected graphical model that is
predictively equivalent to the original directed graphical model [16]. Although there
is no corresponding result for the case of relational data, the propositional conver-
sion result makes the log-probabilities a plausible candidate for weights in a moralized
1st-order Bayes net. Theoretical support for the LOGPROB method is provided by con-
sidering the log-likelihood function for the moralized MBN structure. The standard
log-likelihood for an MLN M [2] is given by

LM (D) =
∑
j

wjnj(D) + ln(Z)

where nj(D) denotes the number of instances of formula j in database D and Z is a
normalization constant. Omitting the normalization term ln(Z), for moralized Bayes
nets this is the sum, over all child-parent configurations, of the Bayes net log condi-
tional probability of the child given the parent, multiplied by nj,π(D), which is the
number of instances of the child-parent configuration in the database;

LM (D) =
∑
i

∑
π

log(p(vi|π))ni,π(D)

This unnormalized log-likelihood is maximized by using the observed conditional
frequencies in the database. (The argument is exactly analogous to maximum likeli-
hood estimation for a single data table). While the normalization constant is required
for defining valid probabilistic inferences, it arguably does not contribute to measuring
the fit of a parameter setting and hence can be ignored in model selection; the con-
straint that weights are derived from normalized conditional probabilities in a Bayes
net already bounds their range.

The LOGPROB method works well with the MBN structure but performs very
poorly with the MBN-DT structure. The issue that arises with the MBN-DT method
is that different formulas may have very different number of groundings, depending
on the predicates and 1st-order variables they contain. To illustrate the issue, consider
again Figures 2(a) and 2(b). Let us focus on the Intelligence predicate. When the
Markov Logic inference model evaluates the probability that Intelligence of a partic-
ular target entity s is 1, it considers only one of the short formulas of weight w1, w2,
or w3. These formulas involve only the Intelligence and Ranking predicates, which
will have only 1 grounding for a fixed target entity s. (Each student has exactly one
ranking). Thus for the assignment Intelligence = 1 , only one grounding is relevant.

Now consider the assignment Intelligence = 2 . If we restrict attention to formu-
las in which RA(P ,S ) is true (i.e., professors P such that student s is an RA for P ),
there are 9 formulas with weights w4 − w12 These formula will have more than one
grounding; for instance, if the target entity s was an RA for 10 professors, the total
number of groundings is 10. In general, the number of groundings in the larger formu-
las will be at least as great as the number of linked entities. Now log-probabilities are
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negative, so using the LOGPROB method means that relatively many negative weights
will be added up in evaluating the assignment Intelligence = 2 compared to the
assignment Intelligence = 1 . Thus the LOGPROB method leads to a bias towards
Intelligence = 1 . This illustrates how LOGPROB induces a bias against values that
satisfy formulas with more groundings. Note that, in the standard moralization method
based on CP-tables, as shown in Figure 2(a), the bias of the LOGPROB does not occur
because all values appear in the same number of the rules with similar structure and
hence groundings.

We propose another LOG-LINEAR conversion method which works well with both
MBN and MBN-DT structure. LOG-LINEAR sets

wi := log(p(vi|π))− log(1/k)

Weights set in this way can be seen as measuring the information gain provided by the
parent information π relative to the uniform probability baseline. These weights can
be interpreted as usual in a linear model: A positive weight indicates that a predictive
factor increases the baseline probability, a negative weight indicates a decreased prob-
ability relative to the baseline. A zero weight indicates a condition that is irrelevant in
the sense of not changing the baseline probability.

With the LOG-LINEAR transformation, some of the formulas receive positive and
some negative weights, so there is no bias against values that are involved in formulas
with more groundings. That is, the influences of the different groundings are more bal-
anced against each other. For instance, if the ranking of the target student is 2, then all
instances of professors P with popularity 3 and RA(P ,S ) true contribute the negative
weight ln(30%)− ln(33%). In contrast, all instances of professors P with popularity
1 or 2 and RA(P ,S ) true contribute the positive weight ln(100%)− ln(33%).

5 Experimental Design
We first discuss the datasets used, then the systems compared, finally the comparison
metrics.

5.1 Datasets
We used five benchmark real-world datasets. Table 1 lists the resulting databases and
their sizes in terms of total number of tuples and number of ground atoms, which is the
input format for Alchemy.

Each descriptive attribute is represented as a separate function, so the number of
ground atoms is larger than that of tuples.

MovieLens Database. The first dataset is the MovieLens dataset from the UC
Irvine machine learning repository. [9].

Mutagenesis Database. This dataset is widely used in ILP research [22]. It con-
tains information on Atoms, Molecules, and Bonds between them.

Hepatitis Database. This data is a modified version of the PKDD02 Discovery
Challenge database, following [23]. The database contains information on the labora-
tory examinations of hepatitis B and C infected patients.
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Mondial Database. This dataset contains data from multiple geographical web
data sources. We follow the modification of [24], and use a subset of the tables and
features. Our dataset includes a self-relationship table Borders that relates two coun-
tries.

UW-CSE database. This dataset lists facts about the Department of Computer
Science and Engineering at the University of Washington (UW-CSE) (e.g., Student,
Professor) and their relationships (i.e. AdvisedBy, Publication). The dataset was ob-
tained by crawling pages in the department’s Web site (www.cs.washington.edu).

Dataset #tuples #Ground atoms
Movielens 82623 170143
Mutagenesis 15218 35973
Hepatitis 12447 71597
Mondial 814 3366
UW-CSE 2099 3380

Table 1: Size of datasets in total number of table tuples and ground atoms.

5.2 Comparison Systems and Performance Metrics.
Structure learning. We fix the structure for all the methods to evaluate just the pa-
rameters. We use two different structure learning methods to evaluate the parameter
learning methods with both dense and sparse structures. We used the MBN [9] to
get a dense structure with conditional probabilities and MBN-DT [10] to get a sparse
structure with Decision trees. Both methods use GES search [25] and the BDeu score
as implemented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform,
ESS=10; [26]).

Our experiments compare the following methods parameter learning methods.
MLN. Weight learning is carried out with the procedure of Lowd and Domingos

[11, 3] , implemented in Alchemy.
LSM Learning Structural Motifs (LSM; [8]) uses random walks to identify densely

connected objects in data, and groups them and their associated relations into a motif.
We input the structure of the learn-and-join algorithms to LSM. Running LSMs struc-
ture learning algorithm tries to prune the structure.

LOGPROB Weight learning is carried out using the algorithm discussed in Section
3. Parameters are given by Tetrad’s maximum likelihood estimation method and the
LOGPROB conversion.

LOG-LINEAR weight learning is the same as LOGPROB method but we use the
LOG-LINEAR conversion.

We report measurements on Runtime and Accuracy. To define accuracy, we apply
MLN inference to predict the probability of an attribute value, and score the predic-
tion as correct if the most probable value is the true one. For example, to predict the
gender of person Bob, we apply MLN inference to the atoms gender(Bob, male) and
gender(Bob, female). The result is correct if the predicted probability of gender(Bob,
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male) is greater than that of gender(Bob, female). The values we report are averages
over all attribute predicates.

Infernce. We use the MC-SAT inference algorithm [27] implemented in Alchemy
to compute a probability estimate for each possible value of a descriptive attribute for
a given object or tuple of objects

6 Evaluation Results
We discuss run time and then accuracy. We investigated the predictive performance by
doing five-fold cross validation on the given datasets. All experiments were done on a
QUAD CPU Q6700 with a 2.66GHz CPU and 8GB of RAM.

6.1 Run Times.
Table 2 shows the time taken in seconds for learning the parameters for Markov Logic
Networks using the structures generated by MBN and MBN-DT. The time for the
conversion methods is basically the same, namely the time required to compute the
database statistics for the entries. For the purposes of discussing runtime, we group
LOGPROB and LOG-LINEAR methods and call it Log/Lin in this table. The runtime
improvements of orders of magnitude that result from extending the moralization ap-
proach to parameter learning findings provide strong evidence that the moralization ap-
proach leverages the scalability of relational databases for data management and Bayes
nets learning to achieve scalable MLN learning on databases of realistic size—for both
structure and parameter learning.

Table 2: The time taken in seconds for parameter learning. we group LOGPROB and
LOG-LINEAR methods and call it Log/Lin in this table.

Structure Learning MBN MBN-DT
Parameter Learning Log/Lin MLN LSM Log/Lin MLN LSM

UW-CSE 2 5 80 3 3 8
Mondial 3 90 260 3 15 26

MovieLens 8 10800 14300 9 1800 2100
Mutagenesis 3 9000 58000 4 600 1200

Hepatitis 3 23000 34200 5 4000 5000

6.2 Accuracy.
Table 3 and Table 4 shows the accuracy results using the MBN and MBN-DT re-
spectively. Higher numbers indicate better performance. For the MBN structure,The
LOGPROB, LOG-LINEAR, and MLN methods are competitive. LSM clearly performs
worse. For the MBN-DT structure, the LOGPROB method performs very poorly as
discussed before. The LOG-LINEAR and MLN methods are competitive and have per-
formance as well as each other.
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LOGPROB LOG-LINEAR MLN LSM
UW-CSE 0.72 ± 0.083 0.76 ± 0.022 0.75 ± 0.028 0.64 ± 0.086
Mondial 0.40 ± 0.060 0.41 ± 0.045 0.44 ± 0.050 0.32 ± 0.042

Movielens 0.64 ± 0.006 0.64 ± 0.006 0.60 ± 0.029 0.57 ± 0.016
Mutagenesis 0.55 ± 0.139 0.64 ± 0.025 0.61 ± 0.022 0.64 ± 0.029

Hepatitis 0.49 ± 0.033 0.50 ± 0.037 0.51 ± 0.025 0.30 ± 0.028

Table 3: The 5-fold cross-validation estimate using MBN structure learning for the
accuracy of predicting the true values of descriptive attributes, averaged over all de-
scriptive attribute instances. Observed standard deviations are shown.

LOGPROB LOG-LINEAR MLN LSM
UW-CSE 0.06 ± 0.088 0.73 ± 0.166 0.75 ± 0.086 0.65 ± 0.076
Mondial 0.18 ± 0.036 0.43 ± 0.027 0.44 ± 0.033 0.31 ± 0.024

Movielens 0.26 ± 0.017 0.62 ± 0.026 0.62 ± 0.023 0.59 ± 0.051
Mutagenesis 0.21 ± 0.021 0.61 ± 0.023 0.60 ± 0.027 0.61 ± 0.025

Hepatitis 0.19 ± 0.024 0.48 ± 0.032 0.50 ± 0.021 0.40 ± 0.032

Table 4: The 5-fold cross-validation estimate using MBN-DT structure learning for
the accuracy of predicting the true values of descriptive attributes, averaged over all
descriptive attribute instances. Observed standard deviations are shown.

7 Conclusion and Future Work
This paper considered the task of building a statistical-relational model for databases
with many descriptive attributes. The moralization approach combines Bayes net learn-
ing, one of the most successful machine learning techniques, with Markov Logic net-
works, one of the most successful statistical-relational formalisms. Previous work ap-
plied the moralization method to learning MLN structure; in this paper we extended it
to learning MLN parameters as well. We motivated and empirically investigated a new
method for converting Bayes net paramters to MLN weights. Our evaluation on five
medium-size benchmark databases with descriptive attributes indicates that compared
to previous MLN learning methods, the moralization parameter learning approach im-
proves the scalability and run-time performance by at least two orders of magnitude.
Predictive accuracy is competitive or even superior.
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