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+ 
Backgrounds & motivations 

 Increase of tree-structured data 

 Web  documents 

 XML files etc.. 

 Discovery common characteristic tree-structured patterns from tree-

structured database  

 Application  

 Classification of a tree-structured data set 
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+ 
Backgrounds & motivations 

 A graph pattern expression common to given tree structured data 
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Linear unordered 

term trees 
[Miyahara et al., 2000] 

Backgrounds & motivations 

 A difference between tree contraction patterns and term trees which 

previously studied. 
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+ 
Tree contraction pattern (TC-pattern) 

 A tree contraction pattern (TC-pattern) is a triplet t = (Vt,Et,Ut) where 

 Vt is a vertex set, 

 Et is an edge set, and 

 Ut is a subset of Vt, whose elements are called contractible vertices. Below, purple 

vertices indicate contractible vertices. 

 (Vt,Et) is a tree with a specified root rt∈Vt. 
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TC-pattern t 
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+ 
Tree contraction pattern (TC-pattern) 

 A tree T=(VT,ET) with root rT matches a TC-pattern t with root rt, if 

there is a partition of VT, {W(v1),…,W(vm)} for v1,…,vm∈Vt, 

such that 

1. for v∈Vt   Ut, W(v) includes exactly one vertex, 

2. for any v∈Vt, any pair of W(v) is connectied, 

3. W(rt) includes rT, and 

4. the tree obtained from T by merging all vertices in W(v) into  

 one vertex for each v∈Ut is isomorphic to T. 
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+ 
Tree contraction pattern (TC-pattern) 
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+ 
Tree contraction pattern (TC-pattern) 
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1. For v∈Vt    Ut, W(v) includes exactly one vertex. 
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+ 
Tree contraction pattern (TC-pattern) 
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2. For any v∈Vt, the subtree induced by W(v) is connected. 
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+ 
Tree contraction pattern (TC-pattern) 
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3. W(rt) includes rT. 
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+ 
Tree contraction pattern (TC-pattern) 
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4. The tree obtained from T by merging all vertices in W(v) into one 

vertex for each v∈Ut is isomorphic to t. 



+ 
Time complexity of 

 the TC-pattern matching problem 

TC-pattern matching problem 

Input: a rooted unordered tree T, a 
TC-pattern t. 

Question: T matches t ? 

Theorem 

TC-pattern matching problem is 
NP-complete. 

Proof: Transform from X3C. 

match? 

In this paper, we consider a subclass of TC-patterns whose matching 

problem can be solved in polynomial time. 

t 

T 
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Theorem 

We assume that the degree of every contractible vertex in TC-patterns is 

bounded by a constant d. Then TC-pattern matching problem for a given 

TC-pattern t and a given tree T is solved in O(nNmax{d-1,1.5}) time, where 

n=|Vt| and N=|VT|. 

 

Method: Dynamic Programing. 

For every vertex v of T, we compute a unique label (a collection of 

subsets of t) by using the labels of the children of v. 
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Time complexity of 

 the TC-pattern matching problem 
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 The TC-pattern language L(t) 

 A representation power of TC-pattern t. 

 

 

 

 

 

 

 The TC-pattern language L(t) is defined as the set of all trees which 

match t. 
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The minimal language problem for TC-patterns 

L(   )={    ,   ,  ,…} 



+ 
The minimal language problem for TC-patterns 

 MINimal Language (MINL) problem for TC-patterns 

 Instance: A set of rooted unordered trees S={T1,T2,…,Tm} 

 Problem: Find a minimally generalized TC-pattern explaining S. 

 Def. A minimally generalized TC-pattern t explaining S 

1. L(t) contains all trees in S. 

2. There is no TC-pattern t’ such that S⊆L(t’)⊆L(t). 

 

 From a data mining point of view, 

this problem is a problem for searching a given 

dataset for only one specialized common pattern. 

S 

L(t’) 

L(t) 
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 An idea to compute the MINL problem 

 Starting from the most generalized TC-pattern. 

 The most generalized TC-pattern is a TC-pattern consisting of only one 

contractible vertex.  

 Trying to specialize TC-pattern t to provide a more specialized TC-pattern t’ 

which satisfies the next conditions. 

 SL(t’)L(t), and 

 if there is no such t’, output t. 

 

 

 Next, we show two refinement operators which are used in this refinement 

process. 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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The minimal language problem for TC-patterns 
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 Theorem 

We assume that there are infinitely many vertex labels in ∑, 

and that the degree of every contractible vertex in TC-

patterns is bounded by constant d.  

Minimal language problem for TC-patterns for a given set of 

trees S is computed in 

O(nNmin
d+1Nmax

max{d-1,1.5}|S||∑(S)|) time, 

where Nmin=minT∈S|VT|, Nmax=maxT∈S|VT|, and ∑(S)={δ∈∑ | 

δ appears in S}. 
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The minimal language problem for TC-patterns 
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Conclusions 

 A learning model on computational learning theory: A polynomial 

time inductive inference from a positive data 

 Theorem[Angluin, ’80, Shinohara, ’82]: If a class C has finite 

thickness, and the membership and the minimal language (MINL) 

problems for C are solvable in polynomial time, class C is polynomial 

time inductively inferable from positive data. 

 Corollary 

The class of TC-patterns such that the degree of every contractible 

vertex in it is bounded by a constant d is polynomial time inductively 

inferable from positive data. 
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Future work 

 Experiment of our algorithm 

 Web document 

 Sugar chain data etc.. 

 Development of more fast algorithm to find a minimally generalized 

TC-pattern. 

 To consider graph contraction patterns (GC-patterns) based on tree 

contraction patterns (TC-patterns) . 

 outerplanar graph 

 bounded treewidth graph etc.. 
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