Opening Doors An Initial SRL Approach

Bogdan Moldovan¹, Laura Antanas¹, and McElory Hoffmann^{1,2}

¹Department of Computer Science, Katholieke Universiteit Leuven, Belgium ²Department of Mathematical Sciences, Stellenbosch University, South Africa

Robotics

- Autonomous robots in indoor environments
- Mobile manipulation tasks
- Navigation requires operating doors
- One of the three scenarios

of the FIRST-MM EU project

Door Opening Problem

- Detecting and localising door
- Detecting and localising handle
- Recognising grasping points
- Finding the right actionable point
- Finding the right action to apply
- Performing the action on the handle

Initial Idea

Relational Domain Motivation

- Relations at the grasping point level
 - Relative positions of candidate points
 - Contact points on the door
 - Robot hand type might limit choices
 - Uncertainty in handle shape detection

Relational Domain Motivation

- Relations in the scene
 - Relative position of handle to door
 - Handle and door relative sizes
 - Relative position of door in the room
 - Other objects in the scene: hinges, light switch, ...

Task Specification

- Assume door and handle detected
- Images with labelled bounding boxes

- Predict discretised:
 - Action: push in, out, left, ...
 - Action location: left, right, centre, ...

Initial Setting

- Extract (5) independent features:
 - Handle aspect ratio, relative width/height, ...
- Action prediction:
 - Use Naive Bayes classifier
 - MAP estimate: $argmax_A \prod P(F_i|a)$
- Action point prediction:
 - Depends on action and handle relative location

 $i \equiv 1$

- Use Bayesian Network (features dependent)
- Learn parameters from examples

Towards a Relational Domain

- Define prior probability distributions
- Add background knowledge reduce number of parameters to learn
- Use logical rules:

handleRelativeWidth(I) :- (A=in;A=out), hrw(I,A), action(A).

actionpoint(centre) :- (A=turn_clock;A=turn_counter), action(A).

• Investigate relational extensions

- 60 door dataset annotated with bounding boxes
- Randomly split between train/test
- Repeated 5 times

Predict	Experiments	Avg. Success	Pct.
Action	30	23.6	78.67%
Action Point	30	23	76.67%

Future Work

- Use point cloud data detection uncertainty
- Extend relational domain
 - Actionable point level
 - Scene level
- Temporal relational aspect:
 - Push handle down before pushing door inwards

