ON COMPUTING MINIMAL GENERATORS IN MULTI-RELATIONAL DATA MINING WITH RESPECT TO O-SUBSUMPTION

Noriaki Nishio Atsuko Mutoh Nobuhiro Inuzuka

Nagoya Institute of Technology, JAPAN

Tue 18 Sept, 2012

INTRODUCTION

In pattern mining process a lot of patterns including redundant ones are enumerated.

[McGarry, K., Knowledge Eng. Review 20, 2005] [Silberschatz, A., IEEE Trans. Knowl. Data Eng. 8, 1996]

To generate only important patterns

- Closed patterns [Pasquier, N., ICDT, 1999]
- Minimal Generators [Bastide, Y., Computational Logic, 2000]

Multi-Relational Data Mining (MRDM)

• Frequent patterns which involve multiple tables

Not much studies on minimal generators in MRDM

- We consider the minimal generators in MRDM.
- Reduce those redundancy.

CONTENS OF MY PRESENTATION

- 1. Introduction of backgrounds
 - Formal Concept Analysis
- 2. Previous studies on pattern reduction
 - Closed patterns
 - Minimal Generators
- 3. Proposal of a reducing method in MRDM patterns
- 4. Experimental results and conclusions

FORMAL CONCEPT ANALYSIS (FCA)

Propositional FCA

• Analyzes object-attribute data.

Formal Context: (G, M, I)

- G: Objects
- M: Attributes
- I: Relation between G and M

	fruit	red	green
apple	х	х	
banana	х		
carrot		х	

Relational FCA

- Analyzes multi-relational tables including a key table.
 Formal Relational Context: (G, M, I)
- G: Instances of key relation
- M: Relational patterns
 e.g.) F1 = food(A) ← fruit(A).
- I: An instance satisfies a formula

	F1	F2	F3
food(apple)	х	х	
food(banana)	х		
food(carrot)		х	

CLOSED PATTERNS AND MINIMAL GENERATORS (1)

- **Closed pattern:** maximal pattern in an equivalence class in the sense of producing same extent.
- Minimal generator (mingen): minimal pattern in an equivalence class.

	1	2	3	4	5	6	7	8	9
t1	Х	х			Х	х	х		Х
t2		х	х	х	х				
t3	х	х					х	х	Х
t4	х						х		х
t5		х					х		х
t6		х							

o patterns in an equivalence class

1,7

1,9

2,7

2,9

9

CLOSED PATTERNS AND MINIMAL GENERATORS (1)

- Closed pattern: maximal pattern in an equivalence class in the sense of producing same extent.
- Minimal generator (mingen): minimal pattern in an equivalence class.

	1	2	3	4	5	6	7	8	9
t1	х	Х			х	х	х		x
t2		х	х	х	х				
t3	х	х					х	х	х
t4	х						х		х
t5		Х					х		х
t6		х							

patterns in an equivalence class

minimal generators

CLOSED PATTERNS AND MINIMAL GENERAOTRS (2)

Closed patterns are important by two properties.

Completeness: [Pasquier, N., ICDT, 1999]

• The set C of frequent closed patterns have the complete information on the set F of all frequent patterns and their frequencies.

Compactness: [Mannila, H., KDD, 1996]

 Frequent closed patterns are possibly exponentially fewer than |F|.

Mingens are important by their nature.

- Mingens are a core patterns in many contexts, e.g., database design (key sets) and pattern mining (minimal LHS).
 SSMG: [Dong, G., 2005]
- The mingens which redundant ones are removed.

PROPOSE <NON-REDUNDANT MINGENS> IN MRDM

Propsoe Logical Minimal Generator (LMG)

which is non-redundant mingen in the logical sense.

Keys of our proposal

Application SSMG to relational patterns

 Propose a formal context for relational patterns.
 Then enanble to apply SSMG to relational patterns.

 Selection mingens by θ-subsumption order

 Relational patterns have an independence relation.
 Pattern reduction based on θ-subsumption order.

SSMG [DONG, 2005] AND LMG [OUR PROPOSAL]

SSMG and LMG select representative mingens of all mingens.

EXPERIMENTAL RESULTS AND CONCLUSIONS

In experiments

- LMG reduce redundancy of relational patterns.
- But the current implementation is not scalable.

Conclusions

- Reviewed the importance of mingens from aspect of MRDM.
- Proposed a concept of LMG and a procedure to compute them.
- LMG are important class of mingens which is minimal in the logical sense.
- We need further study on scalability.