
Learning from Interpretation Transition 

Katsumi  Inoue  
National Institute of Informatics, Japan 

Chiaki  Sakama  
Wakayama University, Japan 

 

ILP 2012 

Dubrovnik, September 18th, 2012 

 



Learning Dynamics of Systems 

• Learning action theories in ILP 
– Event calculus: Moyle & Muggleton (1997), Moyle (2003) 
– Logic programs: with situation calculus: Otero (2003, 2005) 
– Action languages: Inoue et al. (2005), Tran & Baral (2009) 
– Probabilistic logic programs: Corapi et al. (2011) 

• Abductive action learning 
– Abductive event calculus: Eshghi (1988), Shanahan (2000) 

• Active learning of action models 
– STRIPS-like: Rodrigues et al. (2011) 

 

• These works suppose applications to robotics and bioinformatics.     

• However, it is hard to infer rules of systems dynamics due to 
presence of positive and negative feedbacks.   



LFIT: Learning from Interpretation Transitions 

• Herbrand interpretation I: a state of the world 

• Logic program P: a state transition system, which maps an 
Herbrand interpretation into another interpretation (Blair et al., 
1995—1997; Inoue, 2011; Inoue & Sakama, 2012) 

• Next state TP(I): where TP is the immediate consequence operator 
(TP operator).   

• We propose a new learning setting in ILP: 
– Given: a set of pairs of Herbrand interpretations (I,J) such that 

J = TP(I),  
– Induce a program P.  

• C.f. learning from interpretations (LFI) 
– Given: a set S of Herbrand interpretations,  
– Induce a program P whose models are exactly S.   

 



LFIT Applied to Dynamic Systems 

• Learning rules of dynamic systems 
– Cellular Automata (CAs): mathematical model of complex 

adaptive systems (Conway, Wolfram) 
– Boolean Networks (BNs): logical model of gene regulation 

networks (Kauffman) 

• CAs and BNs can be characterized as logic programs, and TP 
operator captures their synchronous update (Inoue 2011). 

 
• A learned program P is a normal logic program (NLP) in this case. 

• Learning NLPs has been considered in ILP, but most approaches 
take the setting of learning from entailment. 

• Learning NLPs under the supported model semantics.    



Normal Logic Programs and TP operator  

• A normal logic program (NLP) P is a set of rules: 

H  A1  …  Am  B1  …  Bn  (m,n  0) 

 where H, Ai and Bj are atoms and   is (default) negation.   

• ground(P) : the set of ground instances of all rules in P. 

• The Herbrand base B is the set of ground atoms from language(P). 

• An (Herbrand) interpretation I  (of P) is a subset of B.  

• TP (I)  :=  { H | H  L1 ... Ln  ground(P),  I ╞ L1 ... Ln }. 

• When P is a definite program, TP operator is monotone, and TP↑ω 
is the least model of P (van Emden & Kowalski, 1976).     

• When P is a normal program, TP is nonmonotone (Apt et al., 1988). 

• The orbit of I wrt P (Blair et al., 1997) is TP
k(I)k=0,1,2,…,  

     where TP
0(I) = I,  TP

k+1(I) = TP(TP
k(I)) for k = 0, 1, 2, …. .   

 



Supported Models / Supported Classes 

• An interpretation I is supported (Apt, Blair & Walker, 1988) if   

     A I. (A A1…AmB1 …Bn)  ground(P) such that  

     i. Ai  I and j. Bj  I. 

• Prop.  I is a supported model of P iff  I = TP (I) .  

• A supported class (Inoue & Sakama, 2012) of an NLP P is a 
nonempty set S of Herbrand interpretations satisfying   

S = { TP(I) | I ∈ S }.   

• A supported class S of P is strict if no proper subset of S is a 
supported class of P.   

• Theorem (Inoue & Sakama, 2012):  A finite set S of Herbrand 
interpretations is a strict supported class of P iff there is a 
directed cycle I1 → I2 → … → Ik → I1 (k ≥ 1) in the state 
transition graph induced by TP such that {I1, I2, …., Ik} = S. 



Supported Classes = Attractors 

• P1:   

p   ￢q. 

q  ￢p. 

r    q. 

• There are 3 strict supported classes of P1:  

S1 = {{p}},  S2 = {{q, r}},  S3 = {{p, q}, {r}}. 

• S1 and S2 are the supported models of P1 (point attractors).   

{r} {p,q} 

{p,q,r} {} 
{p,r} 

{p} 

{q} 

{q,r} 



LF1T: Learning from 1-Step Transitions 

• Input: E ⊆ 2B × 2B: (positive) examples/observations 

• Output: NLP P  s.t.   J = TP(I)  holds for any (I, J) ∈ E 
 

1. If E = ∅ , then output P and stop; 

2. Pick (I, J) ∈ E;  put E := E \ {(I, J)}; 

3. For each A ∈ J, let   RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B\I￢C ; 

4. Update P := AddRule(RI
A , P); Return to 1. 

 

• AddRule(R: rule, P: NLP) 
1. If R is subsumed by some rule in P, then return P; 

2. Remove from P all rules subsumed by R; Add those removed rules to P’; 

3. Find a rule R’ ∈ P ∪ P’ s.t. h(R) = h(R’) and b(R’) and b(R) differ in the sign of 
only one literal. If there is no such a rule in P, return P ∪ {R}; 

4. Return AddRule(lg(R,R’), P \ {R’}), where lg is the least generalization.   



LF1T: Example  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B\I￢C] 

Step I → J Operation Rule ID P P’ 

1 qr→pr Rqr
p  p  ￢p ∧ q ∧ r 1 1 {} 

Rqr
r  r  ￢p ∧ q ∧ r 2 1,2 

2 pr→q Rpr
q  q  p ∧ ￢q ∧ r 3 1,2,3 

3 q→pr Rq
p  p  ￢p ∧ q ∧ ￢r 4 

lg(4,1) p  ￢p ∧ q  5 2,3,5 +1,4 

Rq
r  r  ￢p ∧ q ∧ ￢r 6 

lg(6,2) r  ￢p ∧ q  7 3,5,7 +2,6 

4 pqr→pq Rpqr
p  p  p ∧ q ∧ r 8 

lg(8,1) p  q ∧ r  9 3,5,7,9 +8 

Rpqr
q  q  p ∧ q ∧ r 10 

lg(10,3) q  p ∧ r  11 5,7,9,11 +3,10 

 pqr               pq                  p                     ε         r 

 qr                pr               q 



Example (cont.)  [RI
A :=  A  ∧ B∈I B ∧ ∧ C∈B\I￢C] 

Step I → J Operation Rule ID P P’ 

5 pq→p Rpq
p  p  p ∧ q ∧ ￢r 12 

lg(12,4) p  q ∧ ￢r  13 5,7,9,11,13 +12 

lg(13,9) p  q 14 7,11,14 +5,9,13 

6 p→ε 

7 ε→r Rε
r  r  ￢p ∧ ￢q ∧ ￢r 15 

lg(15,6) r  ￢p ∧ ￢r 16 7,11,14,16 +15 

8 r→r Rr
r  r  ￢p ∧ ￢q ∧ r 17 

lg(17,15) r  ￢p ∧ ￢q 18 7,11,14,16,18 +17 

lg(18,7) r  ￢p 19 11,14,19 +7,16,18 

p   q.  
q  p ∧ q. 
r   ￢p. 

propositional program 

p(t+1)   q(t).  
q(t+1)  p(t) ∧ q(t). 
r(t+1)   ￢p(t). 

first-order program 



LFBA: Learning from Basins of Attraction 

• Input: E ⊆ 22B: (positive) examples/observations 

• Output: NLP P  s.t. for ∀I ∈ E, any I ∈ I belongs to the basin 
of attraction of some attractor of P contained in I 

• Assumption: Each I  contains the interpretations belonging to the orbit of 
some I0 ∈I  wrt TP, and that I  constitutes a sequence I0 → I1 → … → Ik−1 → 
J0 → … → Jl−1 → J0 → … , where |I|= k + l and {J0, … , Jl−1} is an attractor. 

• 2 orbits I,J ∈ E  reach the same attractor iff I ∩ J = ∅ . 

 

1. Put P := ∅; P’ := ∅; 

2. If E = ∅ then output P and stop; 

3. Pick I ∈ E, and put E := E \ {I}; 

4. Put E := {(I, J) | I, J ∈ I,  J is the next state of I}; 

5. P := LF1T(E, P, P’); Return to 2. 



LFBA: Example 

 pqr               pq                  p                     ε         r 

 qr                pr               q 

Input: E  =  {I1,  I2}  
I1  :   qr → pr →  q → pr →  q → … 
I2 : pqr → pq →  p → ε →  r →  r → …  
 
LF1T(E1, ∅, ∅ ) = {3,5,7};  
LF1T(E2, {3,5,7}, {1,2,4,6}) = {11,14,19}; 
 
In general, identification of an exact NLP using LF1T may 
require 2|B| examples, while |E| in LFBA is bounded by cδ, 
where δ is the number of attractors.    

p 

q r 



Cellular Automata (CA) 

• A CA consists of a regular grid of cells.  

• A cell has a finite number of possible states.  

• The state of each cell changes synchronously in discrete time steps 
according to local and identical transition rules.  

• The state of a cell in the next time step is determined by its current 
state and the states of its surrounding cells (neighborhood).  

• CA is a model of emergence and self-organization, which are two 
important features of the nature (the real life) as a complex system. 

• 1-dimensional 2-state CA can simulate Turing Machine (Wolfram).   

• 2-dimensional 2-state CA is known as LIFE (Conway).   

• 2-state CA is an instance of Boolean networks.   



1-Dimensional CA 

current pattern 111 110 101 100 011 010 001 000 

new state for 
center cell 

0 0 0 1 1 1 1 0 

Wolfram’s Rule 30 The history of the generated patterns  
with the starting configuration (top) that 
consists of a 1 surrounded by 0's. 0:white  1:black 

Evolving patterns depend 
strongly on the initial 
configuration and a rule used. 

time  

unpredictable 



Wolfram’s Rule 110 

current pattern 111 110 101 100 011 010 001 000 

new state for 
center cell 

0 1 1 0 1 1 1 0 

• c(x,t+1)  ￢c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ c(x+1,t). 

• c(x,t+1)  ￢c(x-1,t) ∧ c(x,t) ∧ ￢c(x+1,t). 

• c(x,t+1)  c(x-1,t) ∧ ￢c(x,t) ∧ c(x+1,t). 

 

• Rule 110 is known to be Turing-complete.   

• The logic program is acyclic (Apt & Bezem, 1990).    

t 0 1 2 3 4 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 



Incorporating Background Theories 

• Torus world: length 4 

• c(0, t) c(4, t).  

• c(5, t) c(1, t).   

 

     c(3)  

→ c(2), c(3)   

→ c(1), c(2), c(3)   

→ c(1), c(3), c(4)       attractor 

→ c(1), c(2), c(3) → … 

 

learning rules:       0→1 (4), 1→2 (2), 2→3 (2).  

learning positive rules:  (2),          (2),           (1).  

t (4) 1 2 3 4 (1) 

0 

1 

2 

3 

4 

5 

6 



Incorporating Inductive Bias I 

• Bias I: The body of each rule exactly contains 3 neighbor literals.  

      Step I → J Op. Rule ID P 

1 0010→0110 R3
2  c(2)  ￢c(1) ∧ ￢c(2) ∧ c(3) 1 1 

R3
3  c(3)  ￢c(2) ∧ c(3) ∧ ￢c(4) 2 1,2 

2 0110→1110 R2
1  c(1)  ￢c(0) ∧ ￢c(1) ∧ c(2) 3 

lg(3,1) c(x)  ￢c(x-1) ∧ ￢c(x) ∧ c(x+1) 4 2,4 

R23
2 c(2)  ￢c(1) ∧ c(2) ∧ c(3) 5 2,4,5 

R23
3  c(3)  c(2) ∧ c(3) ∧ ￢c(4) 6 2,4,5,6 

3 1110→1011 R12
1  c(1)  ￢c(0) ∧ c(1) ∧ c(2) 7 

lg(7,5) c(x)  ￢c(x-1) ∧ c(x) ∧ c(x+1) 8 2,4,6,8 

R34
4 c(4)  c(3) ∧ ￢c(4) ∧ c(5) 9 2,4,6,8,9 

4 1011→1110 R01
1  c(1)  c(0) ∧ c(1) ∧ ￢c(2) 10 

lg(10,6) c(x)  c(x-1) ∧ c(x) ∧ ￢c(x+1) 11 2,4,8,9,11 



Incorporating Inductive Bias II 

• Bias II: The rules are universal for every time step.   

• Biases I and II imply that anti-instantiation (AI) can be applied 
immediately instead of least generalization.   

 

      
Step I → J Op. Rule ID P 

1 0010→0110 R3
2  c(2)  ￢c(1) ∧ ￢c(2) ∧ c(3) 1 

AI(1) c(x)  ￢c(x-1) ∧ ￢c(x) ∧ c(x+1) 2 2 

R3
3  c(3)  ￢c(2) ∧ c(3) ∧ ￢c(4) 3 

AI(3) c(x)  ￢c(x-1) ∧ c(x) ∧ ￢c(x+1) 4 2,4 

2 0110→1110 R23
2 c(2)  ￢c(1) ∧ c(2) ∧ c(3) 5 

AI(5) c(x)  ￢c(x-1) ∧ c(x) ∧ c(x+1) 6 2,4,6 

R23
3  c(3)  c(2) ∧ c(3) ∧ ￢c(4) 7 

AI(7) c(x)  c(x-1) ∧ c(x) ∧ ￢c(x+1) 8 2,4,6,8 

3 1110→1011 R34
4 c(4)  c(3) ∧ ￢c(4) ∧ c(5) 9 

AI(9) c(x)  c(x-1) ∧ ￢c(x) ∧ c(x+1) 10 2,4,6,8,10 



Conclusion & Future Work 

• Learning complex networks becomes more and more important.   

• We tackled the induction problem of such dynamic systems in 
terms of NLP learning from synchronous state transitions.  

• A more efficient construction in the bottom-up algorithm.   

• More complex schemes such as asynchronous and probabilistic 
updates do not obey transition by the TP operator.  

• Applications to large and multi-state CAs.    


