Learning from Interpretation Transition

Katsumi Inoue
National Institute of Informatics, Japan

Chiaki Sakama

Wakayama University, Japan

ILP 2012
Dubrovnik, September 18", 2012

Learning Dynamics of Systems

Learning action theories in ILP
— Event calculus: Moyle & Muggleton (1997), Moyle (2003)
— Logic programs: with situation calculus: Otero (2003, 2005)
— Action languages: Inoue et al. (2005), Tran & Baral (2009)
— Probabilistic logic programs: Corapi et al. (2011)
Abductive action learning
— Abductive event calculus: Eshghi (1988), Shanahan (2000)
Active learning of action models
— STRIPS-like: Rodrigues et al. (2011)

These works suppose applications to robotics and bioinformatics.

However, it is hard to infer rules of systems dynamics due to
presence of positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions

 Herbrand interpretation /: a state of the world

* Logic program P: a state transition system, which maps an
Herbrand interpretation into another interpretation (Blair et al.,
1995—1997; Inoue, 2011; Inoue & Sakama, 2012)

* Next state T,(/): where T, is the immediate consequence operator
(T, operator).
 We propose a new learning setting in ILP:
— Given: a set of pairs of Herbrand interpretations (/,J) such that
J=Ty(l),
— Induce a program P.
e C.f. learning from interpretations (LFI)
— Given: a set S of Herbrand interpretations,

— Induce a program P whose models are exactly S.

LFIT Applied to Dynamic Systems

Learning rules of dynamic systems

— Cellular Automata (CAs): mathematical model of complex
adaptive systems (Conway, Wolfram)

— Boolean Networks (BNs): logical model of gene regulation
networks (Kauffman)

CAs and BNs can be characterized as logic programs, and T,
operator captures their synchronous update (Inoue 2011).

A learned program P is a normal logic program (NLP) in this case.

Learning NLPs has been considered in ILP, but most approaches
take the setting of learning from entailment.

Learning NLPs under the supported model semantics.

Normal Logic Programs and T, operator

A normal logic program (NLP) P is a set of rules:

H<AA.AA A=B A...A=B, (Mmn=0)
where H, A; and B; are atoms and — is (default) negation.
ground(P) : the set of ground instances of all rules in P.
The Herbrand base B is the set of ground atoms from language(P).
An (Herbrand) interpretation | (of P) is a subset of B.
To(l) = {H|H< L A..AL, € ground(P), | EL,A..AL,}.
When P is a definite program, T, operator is monotone, and T, T w
is the least model of P (van Emden & Kowalski, 1976).
When P is a normal program, T, is nonmonotone (Apt et al., 1988).
The orbit of I wrt P (Blair et al., 1997) is (T, (/)10 12 .,
where T 0(/) =1, T,**(I) = Ty(TX(/)) fork=0, 1, 2,

Supported Models / Supported Classes

An interpretation / is supported (Apt, Blair & Walker, 1988) if
VA el. 3(A <A A..AA_A—=B; A...A=B,) € ground(P) such that
Vi.A;eland V). B, & I.

Prop. /is a supported model of Piff /=T,(/).

A supported class (Inoue & Sakama, 2012) of an NLP Pis a

nonempty set S of Herbrand interpretations satisfying
S={T,(l)| €S}

A supported class S of P is strict if no proper subset of S is a

supported class of P.

Theorem (Inoue & Sakama, 2012): A finite set S of Herbrand
interpretations is a strict supported class of P iff there is a
directedcycle/, > I, &> ... > I, > |, (k= 1) in the state
transition graph induced by T, such that{/,, /,,, [} = S.

Supported Classes = Attractors

p < Tq.
qg < —p.
r < q.
* There are 3 strict supported classes of P;:

S1 = {{p}}; 52 = {{q/ r}}; 53 = {{p; q}/ {r}}
* S,andS§, are the supported models of P, (point attractors).

(o

Qp.rP Ca>
Bap >

LF1T: Learning from 1-Step Transitions

4

Input: £ € 2B x 28: (positive) examples/observations
Output: NLP P s.t. J=T,(/) holds forany(/,J) EE

If E= @, then output P and stop;
Pick (I, J) € E; put E:= E\{(/, J)};

ForeachA€J,let R, := A< N\ ;. BAN cepy 'C
Update P := AddRule(R',, P); Return to 1.

AddRule(R: rule, P: NLP)

. If R is subsumed by some rule in P, then return P;
. Remove from P all rules subsumed by R; Add those removed rules to P’;

.Findarule R”€ PU P’s.t. h(R) = h(R’) and b(R’) and b(R) differ in the sign of
only one literal. If there is no such a rule in P, return P U {R};

. Return AddRule(/g(R,R’), P\ {R’}), where Ig is the least generalization.

LF1T: Example [r,=acA, 8

@o
GG
m-m_ﬂ-ﬂ

N CEB\/_'C]

qr->pr " p < TpAgATr
R r <~ —pAgAr 2 1,2
pr->q RF, g < pANTgATr 3 1,2,3
q-—>pr R9, p < TpAgA T 4
Ig(4,1) p < TpAg 5 2,3,5 +1,4
R9. r <~ —pAgA—r 6
Ig(6,2) r < TpAqg 7 3,5,7 +2,6
pqr->pq RPa”, p < pAgATr 8
Ig(8,1) p < qgAr 9 3,5,7,9 +8
RO, q<pANgAr 10
Ig(10,3) g < pAr 11 5,7,9,11 +3,10

Example (cont.) [r,=acA, 8AA]
m-m_m-n

pg—>p P, p<pANgATT
lg(12,4) p < qgAr 13 5,7,9,11,13 +12
Ig(13,9) p <« q 14 7,11,14 +5,9,13
6 p—>E
7 EDr RE, r < —pA—gA—r 15
lg(15,6) r < —pA~—r 16 7,11,14,16 +15
8 r->r R", r <~ —pATgAr 17
Ig(17,15) r < —p A g 18 7,11,14,16,18 +17
Ig(18,7) r <« —p 19 11,14,19 +7,16,18
p < q. p(t+l) < qlt).
q < pAg. q(t+1) < p(t) A q(t).
r < —p. r(t+1) < —p(t).

propositional program first-order program

LFBA: Learning from Basins of Attraction

* Input: F C 22°: (positive) examples/observations
e OQutput: NLP P s.t. for VJ € E, any | €] belongs to the basin

of attraction of some attractor of P contained in J

* Assumption: Each J contains the interpretations belonging to the orbit of
some l, €] wrt T, and that J constitutes a sequence l, > I, > ... > |,_; =
Jo> 24 4>Jy> .., where |I|=k+/and {J,, ..., J,_;} is an attractor.

o 2orbits I, J € E reach the same attractoriff JN J=0.

PutP:=Q; P’ := @;

If £ = @ then output P and stop;

Pick J € E, and put £ := E\ {]};

Put E:={(l,J) | I, J € 1, Jis the next state of /};
P := LF1T(E, P, P’); Return to 2.

A A

LFBA: Example

PG G T)
Input: £ = {J,, L}

L:qgr>pr> qg—>pr-> qg-.. @
L:pgr>pg—> p>e>r—>r—>..

LF1T(E, @, @) ={3,5,7};
LFIT(E,, 3,5,7), {1,2,4.6)) = {11,14,19); (@ O,

In general, identification of an exact NLP using LF1T may
require 2!Bl examples, while | E| in LFBA is bounded by c6,

where 6 is the number of attractors.

Cellular Automata (CA)

A CA consists of a regular grid of cells.
A cell has a finite number of possible states.

The state of each cell changes synchronously in discrete time steps
according to local and identical transition rules.

The state of a cell in the next time step is determined by its current
state and the states of its surrounding cells (neighborhood).

CA is a model of emergence and self-organization, which are two
important features of the nature (the real life) as a complex system.

1-dimensional 2-state CA can simulate Turing Machine (Wolfram).
2-dimensional 2-state CA is known as LIFE (Conway).
2-state CA is an instance of Boolean networks.

1-Dimensional CA

current pattern | 119 | 110 | 101 | 100 | 011 | 010 | 001 | 000

new state for
center cell

Wolfram’s Rule 30 The history of the generated patterns
2 with the starting configuration (top) that

consists of a 1 surrounded by O's.

O:white 1:black

*‘,_ :T h .f? f':l"r:lr ,- 3 T
£ ”;;:’;J v f“:ff*‘*: e

o ”'TI%YT Lotk ”f’j Evolving patterns depend
J:']' .'1:"].11_:,:-

time

.,I;‘r;f-glj o o ;:;f I strongly on the initial
f’i’""‘"’f* o configuration and a rule used.

1' b e ADEE jT"' A -jﬁ’
.?'..1" : ']" J:' ‘T.J" 5 T
Jﬁ:ﬁf;"ﬁ ff’iﬁf;?ﬁ’*:‘f’

p -T;_:I,:T-rjff,n,m ;::T'_.‘T 5 ;-r

3 = 3-:-1-. . J 1-' 'r
-'T':‘I‘:‘Jf-? i]J TSI, TJTJ" ,ﬂ“ H"’"‘ r
’T 3:& J".T:fi’ﬁ- kel sl red ;“T jﬁ.’,ﬁ—ﬂ—:”f; v

Tk i)z S = b

...........

unpredictable

Wolfram’s Rule 110

current pattern | 119 | 110 | 101 | 100 | 011 | 010 | 001 | 000

new state for
center cell

c(x,t+1) <« —c(x-1,t) A —c(x,t) A c(x+1,t).
c(x,t+1) <« —c(x-1,t) A c(x,t) A —c(x+1,t).
c(x,t+1) <« —c(x-1,t) A c(x,t) A c(x+1,t).
c(x,t+1) <« —c(x-1,t) A c(x,t) A —c(x+1,t).
c(x,t+1) < c(x-1,t) A —c(x,t) A c(x+1,t).

O || I N|J]OO|lU | B |IWIN|RFPL|O|~+

Rule 110 is known to be Turing-complete.
The logic program is acyclic (Apt & Bezem, 1990).

Incorporating Background Theories

* Torus world: length 4
* (0, t) « c(4,t).

* ¢(5,t) « c(1,t).

- ¢(1), c(3), c(4)) attractor
- (1), ¢(2), c(3) > ...

0

c(3) !
- ¢(2), ¢(3) 2
> ¢(1), ¢(2), <(3) :
5

6

learning rules: 0->1(4), 122 (2), 2->3 (2).
learning positive rules: (2), (2), (1).

Incorporating Inductive Bias |

e Bias |: The body of each rule exactly contains 3 neighbor literals.

mm—m_n-

00100110 R3, c(2) « —c(1) A —c(2) A c(3)
R3, c(3) < —c(2) A c(3) A —c(4) 2 1,2
2 0110->1110 R?, c(1) < —c(0) A —c(1) Ac(2) 3
lg(3,1) c(x) < —c(x-1) A —c(x) A c(x+1) 4 2,4
R?3, c(2) < —c(1) Ac(2) Ac(3) 5 2,4,5
R?3, c(3) < c(2) A c(3) A —c(4) 6 2,4,5,6
3 1110->1011 R12, c(1) < —c(0) A c(1) A ¢(2) 7
lg(7,5) c(x) <« —c(x-1) A c(x) A c(x+1) 8 2,4,6,8
R34, c(4) <« c(3) A —c(4) A c(5) 9 2,4,6,8,9
4 1011->1110 ROL, c(1) < c(0) A c(1) A —¢(2) 10

/g(10,6) c(x) < c(x-1) A c(x) A —c(x+1) 11 2,4,8,9,11

Incorporating Inductive Bias |l

* Bias Il: The rules are universal for every time step.

* Biases | and Il imply that anti-instantiation (Al) can be applied
immediately instead of least generalization.

mm—_n-

00100110 c(2) « —c(1) A —¢(2) A c(3)
AI(1) c(x) < —c(x-1) A —c(x) A c(x+1) 2 2
R3, c(3) < —c(2) A c(3) A —c(4) 3
Al(3) c(x) < —c(x-1) A c(x) A —c(x+1) 4 2,4
2 0110->1110 R?3, c(2) <« —c(1) A c(2) A c(3) 5
Al(5) c(x) « —c(x-1) A c(x) A c(x+1) 6 2,4,6
R?3, c(3) < c(2) Ac(3) A —c(4) 7
Al(7) c(x) < c(x-1) A c(x) A —c(x+1) 8 2,4,6,8
3 1110->1011 R34, c(4) < c(3) A —c(4) A c(5) 9

Al(9) c(x) < c(x-1) A —c(x) A c(x+1) 10 2,4,6,8,10

Conclusion & Future Work

Learning complex networks becomes more and more important.

We tackled the induction problem of such dynamic systems in
terms of NLP learning from synchronous state transitions.

A more efficient construction in the bottom-up algorithm.

More complex schemes such as asynchronous and probabilistic
updates do not obey transition by the T, operator.

Applications to large and multi-state CAs.

