Learning from Interpretation Transition

Katsumi Inoue National Institute of Informatics, Japan Chiaki Sakama Wakayama University, Japan

ILP 2012

Dubrovnik, September 18th, 2012

Learning Dynamics of Systems

- Learning action theories in ILP
 - Event calculus: Moyle & Muggleton (1997), Moyle (2003)
 - Logic programs: with situation calculus: Otero (2003, 2005)
 - Action languages: Inoue *et al.* (2005), Tran & Baral (2009)
 - Probabilistic logic programs: Corapi et al. (2011)
- Abductive action learning
 - Abductive event calculus: Eshghi (1988), Shanahan (2000)
- Active learning of action models
 - STRIPS-like: Rodrigues et al. (2011)
- These works suppose applications to robotics and bioinformatics.
- However, it is hard to infer *rules of systems dynamics* due to presence of positive and negative feedbacks.

LFIT: Learning from Interpretation Transitions

- Herbrand interpretation *I*: a state of the world
- Logic program P: a state transition system, which maps an Herbrand interpretation into another interpretation (Blair et al., 1995—1997; Inoue, 2011; Inoue & Sakama, 2012)
- Next state $T_p(I)$: where T_p is the immediate consequence operator $(T_p operator)$.
- We propose a new learning setting in ILP:
 - Given: a set of pairs of Herbrand interpretations (I, J) such that $J = T_{P}(I)$,
 - Induce a program *P*.
- C.f. learning from interpretations (LFI)
 - Given: a set S of Herbrand interpretations,
 - Induce a program *P* whose models are exactly *S*.

LFIT Applied to Dynamic Systems

- Learning rules of dynamic systems
 - Cellular Automata (CAs): mathematical model of complex adaptive systems (Conway, Wolfram)
 - Boolean Networks (BNs): logical model of gene regulation networks (Kauffman)
- CAs and BNs can be characterized as logic programs, and T_P operator captures their synchronous update (Inoue 2011).
- A learned program *P* is a *normal logic program* (NLP) in this case.
- Learning NLPs has been considered in ILP, but most approaches take the setting of *learning from entailment*.
- Learning NLPs under the *supported model semantics*.

Normal Logic Programs and T_P operator

• A *normal logic program* (NLP) *P* is a set of rules:

 $\mathsf{H} \leftarrow \mathsf{A}_1 \wedge \ldots \wedge \mathsf{A}_m \wedge \neg \mathsf{B}_1 \wedge \ldots \wedge \neg \mathsf{B}_n \ (m, n \ge 0)$

where H, A_i and B_i are atoms and - is (*default*) *negation*.

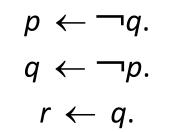
- ground(P) : the set of ground instances of all rules in P.
- The *Herbrand base* **B** is the set of ground atoms from language(*P*).
- An (*Herbrand*) *interpretation* I (of P) is a subset of **B**.
- $T_P(I) := \{ H \mid H \leftarrow L_1 \land ... \land L_n \in ground(P), I \models L_1 \land ... \land L_n \}.$
- When P is a *definite* program, T_P operator is *monotone*, and $T_P \uparrow \omega$ is the *least model* of P (van Emden & Kowalski, 1976).
- When P is a normal program, T_P is nonmonotone (Apt et al., 1988).
- The *orbit* of *I* wrt P (Blair *et al.*, 1997) is $\langle T_P^k(I) \rangle_{k=0,1,2,...}$, where $T_P^0(I) = I$, $T_P^{k+1}(I) = T_P(T_P^k(I))$ for k = 0, 1, 2,

Supported Models / Supported Classes

- An interpretation *I* is *supported* (Apt, Blair & Walker, 1988) if $\forall A \in I. \exists (A \leftarrow A_1 \land ... \land A_m \land \neg B_1 \land ... \land \neg B_n) \in ground(P)$ such that $\forall i. A_i \in I$ and $\forall j. B_j \notin I$.
- **<u>Prop.</u>** *I* is a supported model of *P* iff $I = T_P(I)$.
- A supported class (Inoue & Sakama, 2012) of an NLP P is a nonempty set S of Herbrand interpretations satisfying
 S = { T_P(I) | I ∈ S }.
- A supported class S of P is strict if no proper subset of S is a supported class of P.
- <u>Theorem</u> (Inoue & Sakama, 2012): A finite set *S* of Herbrand interpretations is a strict supported class of *P* iff there is a directed cycle $l_1 \rightarrow l_2 \rightarrow ... \rightarrow l_k \rightarrow l_1$ ($k \ge 1$) in the state transition graph induced by T_P such that $\{l_1, l_2, ..., l_k\} = S$.

Supported Classes = Attractors

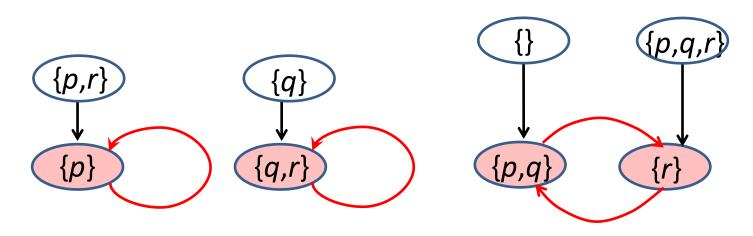
• *P*₁:



• There are 3 strict supported classes of P₁:

$$S_1 = \{\{p\}\}, S_2 = \{\{q, r\}\}, S_3 = \{\{p, q\}, \{r\}\}.$$

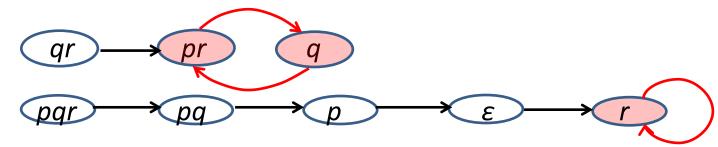
• S_1 and S_2 are the supported models of P_1 (*point attractors*).



LF1T: Learning from 1-Step Transitions

- Input: $E \subseteq 2^{B} \times 2^{B}$: (positive) examples/observations
- **Output:** NLP *P* s.t. $J = T_{P}(I)$ holds for any $(I, J) \in E$
- 1. If $E = \emptyset$, then output P and stop;
- 2. Pick $(I, J) \in E$; put $E := E \setminus \{(I, J)\};$
- 3. For each $A \in J$, let $R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B \setminus I} \neg C$;
- 4. Update $P := AddRule(R'_A, P)$; Return to 1.
- AddRule(R: rule, P: NLP)
- 1. If *R* is subsumed by some rule in *P*, then return *P*;
- 2. Remove from *P* all rules subsumed by *R*; Add those removed rules to P';
- 3. Find a rule $R' \in P \cup P'$ s.t. h(R) = h(R') and b(R') and b(R) differ in the sign of only one literal. If there is no such a rule in *P*, return $P \cup \{R\}$;
- 4. Return AddRule(lg(R,R'), $P \setminus \{R'\}$), where lg is the least generalization.

LF1T: Example $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in \mathbf{B} \setminus I} \neg C]$



Step	$I \rightarrow J$	Operation	Rule	ID	Р	P'
1	qr→pr	$R^{qr}_{\ p}$	$p \leftarrow \neg p \land q \land r$	1	1	{}
		R ^{qr} r	$r \leftarrow \neg p \land q \land r$	2	1,2	
2	pr→q	$R^{pr}_{\ q}$	$q \leftarrow p \land \neg q \land r$	3	1,2,3	
3	$q \rightarrow pr$	R^{q}_{p}	$p \leftarrow \neg p \land q \land \neg r$	4		
		<i>lg</i> (4,1)	$p \leftarrow \neg p \land q$	5	2,3,5	+1,4
		R ^q _r	$r \leftarrow \neg p \land q \land \neg r$	6		
		lg(6,2)	$r \leftarrow \neg p \land q$	7	3,5,7	+2,6
4	pqr→pq	$R^{pqr}_{\ \ p}$	$p \leftarrow p \land q \land r$	8		
		<i>lg</i> (8,1)	$p \leftarrow q \wedge r$	9	3,5,7,9	+8
		R^{pqr}_{q}	$q \leftarrow p \land q \land r$	10		
		<i>lg</i> (10,3)	$q \leftarrow p \wedge r$	11	5,7,9,11	+3,10

Example (cont.) $[R'_A := A \leftarrow \bigwedge_{B \in I} B \land \bigwedge_{C \in B \setminus I} \neg C]$

Step	$I \rightarrow J$	Operation	Rule	ID	Р	P'
5	$pq \rightarrow p$	$R^{pq}_{ ho}$	$p \leftarrow p \land q \land \neg r$	12		
		lg(12,4)	$p \leftarrow q \land \neg r$	13	5,7,9,11,13	+12
		<i>lg</i> (13,9)	$p \leftarrow q$	14	7,11,14	+5,9,13
6	$p \rightarrow \varepsilon$					
7	ε→r	R^{ε}_{r}	$r \leftarrow \neg p \land \neg q \land \neg r$	15		
		<i>lg</i> (15,6)	$r \leftarrow \neg p \land \neg r$	16	7,11,14,16	+15
8	r→r	R ^r _r	$r \leftarrow \neg p \land \neg q \land r$	17		
		lg(17,15)	$r \leftarrow \neg p \land \neg q$	18	7,11,14,16,18	+17
		lg(18,7)	$r \leftarrow \neg p$	19	11,14,19	+7,16,18

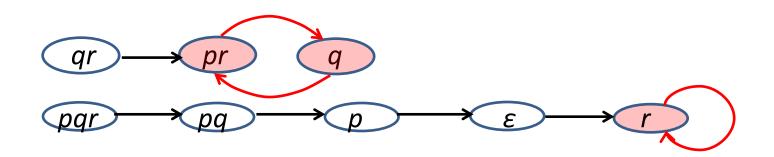
 $p \leftarrow q.$ $q \leftarrow p \land q.$ $r \leftarrow \neg p.$ propositional program $p(t+1) \leftarrow q(t).$ $q(t+1) \leftarrow p(t) \land q(t).$ $r(t+1) \leftarrow \neg p(t).$

first-order program

LFBA: Learning from Basins of Attraction

- Input: $\mathcal{I} \subseteq 2^{2^{B}}$: (positive) examples/observations
- **Output:** NLP *P* s.t. for $\forall I \in \mathcal{I}$, any $I \in I$ belongs to the basin of attraction of some attractor of *P* contained in I
- Assumption: Each I contains the interpretations belonging to the orbit of some $I_0 \in I$ wrt T_p , and that I constitutes a sequence $I_0 \rightarrow I_1 \rightarrow ... \rightarrow I_{k-1} \rightarrow J_0 \rightarrow ... \rightarrow J_{l-1} \rightarrow J_0 \rightarrow ...$, where |I| = k + l and $\{J_0, ..., J_{l-1}\}$ is an attractor.
- 2 orbits $I, J \in \mathcal{F}$ reach the same attractor iff $I \cap J = \emptyset$.
- 1. Put $P := \emptyset; P' := \emptyset;$
- 2. If $\mathcal{E} = \emptyset$ then output *P* and stop;
- 3. Pick $I \in \mathcal{E}$, and put $\mathcal{E} := \mathcal{E} \setminus \{I\}$;
- 4. Put $E := \{(I, J) \mid I, J \in I, J \text{ is the next state of } I\};$
- *5. P* := **LF1T**(*E*, *P*, *P'*); Return to 2.

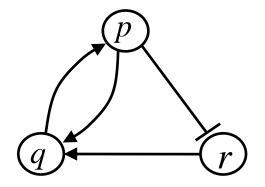
LFBA: Example



Input:
$$\mathcal{E} = \{I_1, I_2\}$$

 $I_1: qr \rightarrow pr \rightarrow q \rightarrow pr \rightarrow q \rightarrow ...$
 $I_2: pqr \rightarrow pq \rightarrow p \rightarrow \varepsilon \rightarrow r \rightarrow r \rightarrow ...$
LF1T($E_1, \emptyset, \emptyset$) = {3,5,7};

 $LF1T(E_{2'}, \{3, 5, 7\}, \{1, 2, 4, 6\}) = \{11, 14, 19\};$



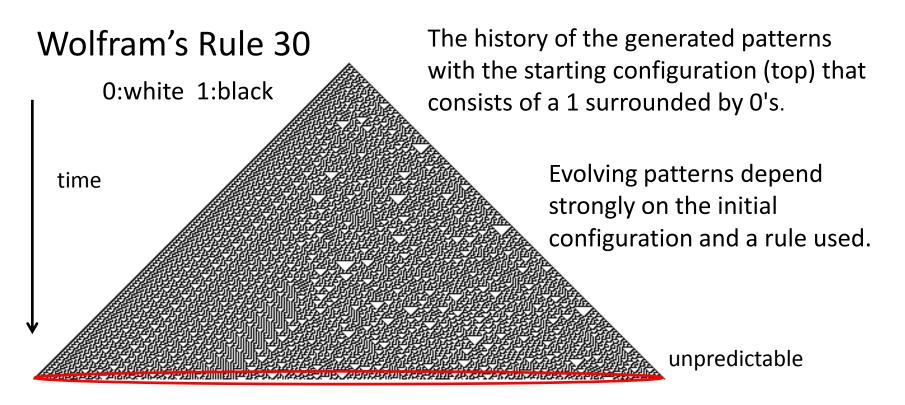
In general, identification of an exact NLP using **LF1T** may require $2^{|B|}$ examples, while $|\mathcal{I}|$ in **LFBA** is bounded by $c\delta$, where δ is the number of attractors.

Cellular Automata (CA)

- A CA consists of a regular grid of cells.
- A cell has a finite number of possible states.
- The state of each cell changes synchronously in discrete time steps according to local and identical transition rules.
- The state of a cell in the next time step is determined by its current state and the states of its surrounding cells (neighborhood).
- CA is a model of *emergence* and *self-organization*, which are two important features of the nature (the real life) as a complex system.
- 1-dimensional 2-state CA can simulate Turing Machine (Wolfram).
- 2-dimensional 2-state CA is known as LIFE (Conway).
- 2-state CA is an instance of Boolean networks.

1-Dimensional CA

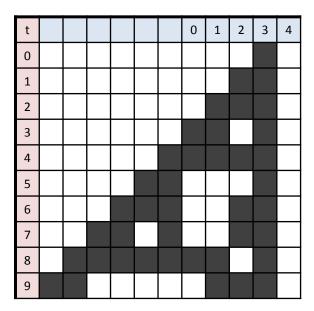
current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	0	0	1	1	1	1	0



Wolfram's Rule 110

current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	1	1	0	1	1	1	0

- $c(x,t+1) \leftarrow \neg c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land \neg c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land c(x+1,t).$
- $c(x,t+1) \leftarrow \neg c(x-1,t) \land c(x,t) \land \neg c(x+1,t).$
- $c(x,t+1) \leftarrow c(x-1,t) \land \neg c(x,t) \land c(x+1,t).$
- Rule 110 is known to be Turing-complete.
- The logic program is *acyclic* (Apt & Bezem, 1990).



Incorporating Background Theories

- Torus world: length 4
- $c(0, t) \leftarrow c(4, t)$.
- $c(5, t) \leftarrow c(1, t)$.

c(3) $\rightarrow c(2), c(3)$ $\rightarrow c(1), c(2), c(3)$ $\rightarrow c(1), c(3), c(4)$ attractor $\rightarrow c(1), c(2), c(3) \rightarrow \dots$

t	(4)	1	2	3	4	(1)
0						
1						
2						
3						
4						
5						
6						

learning rules: $0 \rightarrow 1$ (4), $1 \rightarrow 2$ (2), $2 \rightarrow 3$ (2). learning positive rules: (2), (2), (1).

Incorporating Inductive Bias I

• Bias I: The body of each rule exactly contains 3 neighbor literals.

Step	I → J	Op.	Rule	ID	Р
1	0010→0110	R ³ 2	$c(2) \leftarrow \neg c(1) \land \neg c(2) \land c(3)$	1	1
		R ³ ₃	$c(3) \leftarrow \neg c(2) \land c(3) \land \neg c(4)$	2	1,2
2	0110→1110	R ² ₁	$c(1) \leftarrow \neg c(0) \land \neg c(1) \land c(2)$	3	
		<i>lg</i> (3,1)	$c(x) \leftarrow \neg c(x-1) \land \neg c(x) \land c(x+1)$	4	2,4
		R ²³ 2	$c(2) \leftarrow \neg c(1) \land c(2) \land c(3)$	5	2,4,5
		R ²³ 3	$c(3) \leftarrow c(2) \land c(3) \land \neg c(4)$	6	2,4,5,6
3	1110→1011	<i>R</i> ¹² ₁	$c(1) \leftarrow \neg c(0) \land c(1) \land c(2)$	7	
		<i>lg</i> (7,5)	$c(x) \leftarrow \neg c(x-1) \land c(x) \land c(x+1)$	8	2,4,6,8
		R ³⁴ ₄	$c(4) \leftarrow c(3) \land \neg c(4) \land c(5)$	9	2,4,6,8,9
4	1011→1110	<i>R</i> ⁰¹ ₁	$c(1) \leftarrow c(0) \land c(1) \land \neg c(2)$	10	
		<i>lg</i> (10,6)	$c(x) \leftarrow c(x-1) \wedge c(x) \wedge \neg c(x+1)$	11	2,4,8,9,11

Incorporating Inductive Bias II

- Bias II: The rules are universal for every time step.
- Biases I and II imply that *anti-instantiation* (AI) can be applied immediately instead of least generalization.

Step	$I \rightarrow J$	Op.	Rule	ID	Р
1	0010→0110	R ³ ₂	$c(2) \leftarrow \neg c(1) \land \neg c(2) \land c(3)$	1	
		AI(1)	$c(x) \leftarrow \neg c(x-1) \land \neg c(x) \land c(x+1)$	2	2
		R ³ 3	$c(3) \leftarrow \neg c(2) \land c(3) \land \neg c(4)$	3	
		AI(3)	$c(x) \leftarrow \neg c(x-1) \land c(x) \land \neg c(x+1)$	4	2,4
2	0110→1110	R ²³ 2	$c(2) \leftarrow \neg c(1) \land c(2) \land c(3)$	5	
		AI(5)	$c(x) \leftarrow \neg c(x-1) \land c(x) \land c(x+1)$	6	2,4,6
		R ²³ 3	$c(3) \leftarrow c(2) \land c(3) \land \neg c(4)$	7	
		AI(7)	$c(x) \leftarrow c(x-1) \wedge c(x) \wedge \neg c(x+1)$	8	2,4,6,8
3	1110→1011	R ³⁴ ₄	$c(4) \leftarrow c(3) \land \neg c(4) \land c(5)$	9	
		AI(9)	$c(x) \leftarrow c(x-1) \land \neg c(x) \land c(x+1)$	10	2,4,6,8,10

Conclusion & Future Work

- Learning complex networks becomes more and more important.
- We tackled the induction problem of such dynamic systems in terms of NLP learning from synchronous state transitions.
- A more efficient construction in the bottom-up algorithm.
- More complex schemes such as asynchronous and probabilistic updates do not obey transition by the T_P operator.
- Applications to large and multi-state CAs.