
Towards an Automated Pattern Selection
Procedure in Software Models

Alexander van den Berghe, Jan Van Haaren,
Stefan Van Baelen, Yolande Berbers and Wouter Joosen

{firstname.lastname}@cs.kuleuven.be
IBBT-DistriNet, Department of Computer Science, KU Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium

22nd International Conference on Inductive Logic Programming
Monday September 17th 2012

1 / 16



Software (development) is becoming increasingly complex

Three main reasons:

1 Increased complexity of problems to be solved by software

2 Shift towards distributed software

3 Relatively long lifetime of software

Software patterns are used to manage this complexity:

Selecting patterns is hard, knowledge intensive and time-consuming

Instantiating patterns is repetitive and error-prone

We propose an automated approach to selecting
software patterns with two contributions:

Formal representation of software models and patterns

Automatically learn roles for software models

2 / 16



Software development is gathering requirements
and ensuring the system meets them

Achieved by defining a number of components which each:

Satisfy a subset of the gathered requirements
Offer functionality through one or more interfaces

Graphical models capture design decisions more formally

Excerpt of a digital news system’s model
3 / 16



Software patterns provide established
solutions to recurring design issues

1 Name
Client-Dispatcher-Server

2 Resolved design issue
Clients have to use services regardless the location of the servers

3 Provided solution
Add a dispatcher as an intermediate layer between clients and servers

4 Consequences

Decouple clients and servers "
Dispatcher is a possible bottleneck %

4 / 16



Graphical models capture the solution more formally

Client-Dispatcher-Server pattern

5 / 16



Given: a software model

A digital news system

6 / 16



Given: a collection of software patterns

Client-Dispatcher-Server pattern

... (other pattern models)
...

Blackboard pattern

7 / 16



Do: instantiate patterns in a software model

Patterns instantiated in the digital news system

8 / 16



Overview of our approach

Observation: software models and patterns are highly relational

Our approach consists of three steps:

1 Represent the available patterns formally

2 Assign roles to the components in the software model

3 Select applicable patterns by leveraging the assigned roles

9 / 16



Step 1: Represent patterns formally

A software pattern is represented as a set of primitives
A primitive is a precisely defined building block that can fulfill roles

Client-Dispatcher-Pattern with three primitives

Implementation: Prolog knowledge base
pattern(clientDispatcherServer). fulfills(client, serviceRequester).
primitive(client). fulfills(server, serviceProvider).
primitive(server). used in(client, clientDispatcherServer).
primitive(dispatcher). used in(dispatcher, clientDispatcherServer).
role(serviceRequester). used in(server, clientDispatcherServer).
role(serviceProvider).

10 / 16



Step 2: Assign roles to components in the software model

Excerpt of digital news system’s model with the assigned roles

Facts derived from assigned roles:
required role(serviceRequester).

required role(serviceProvider).

11 / 16



Step 2: Automatically assigning roles

Learning task:

A collective classification task on relational data

Given:

Software model at hand (optionally with manually assigned roles)

Software models with previously learned/assigned roles

Learn:

Roles of the components in the software model at hand

12 / 16



Step 2: Any relational learner can solve this learning task

We are working on a proof-of-concept using kLog
(http://people.cs.kuleuven.be/~alexander.vandenberghe/arbps.html)

What is kLog?

Logical and relational language for kernel-based learning

Builds upon several simple but powerful concepts
(i.e., entity-relationship data modeling and graph kernels)

Why kLog?

Graphicalization process transforming the logical representation into an entity-relationship
diagram

Intuitively close to the representation of software models and patterns

13 / 16

http://people.cs.kuleuven.be/~alexander.vandenberghe/arbps.html


Step 3: Select applicable patterns leveraging roles

Method:

A pattern is applicable if it contains a fulfilling
primitive for each assigned role
Select patterns by combining the knowledge
from the two previous steps

Implementation:

14 / 16



Conclusion

We proposed a novel automated approach to selecting patterns based on
the observation that both software models and patterns are relational

Advantages

" Intuitive representation of both software models and patterns

" Significant amount of time saved during software development

" Provide hints on how to instantiate selected software patterns

Future work

Learning roles is difficult and requires further research

Even a semi-automatic role assignment saves a lot of time

15 / 16



Towards an Automated Pattern Selection
Procedure in Software Models

Alexander van den Berghe, Jan Van Haaren,
Stefan Van Baelen, Yolande Berbers and Wouter Joosen

{firstname.lastname}@cs.kuleuven.be
IBBT-DistriNet, Department of Computer Science, KU Leuven

Celestijnenlaan 200A, 3001 Leuven, Belgium

22nd International Conference on Inductive Logic Programming
Monday September 17th 2012

16 / 16


	Background
	Approach
	Conclusion

