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Human pose estimation: what’s so hard?
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Local signal is weak

color map: 

low high 

State-of-the-art right elbow detector
[HoG+SVM+etc]

= true right elbow location



Joints 
•  HoG 
•  Skin color 
•  Optical Flow 

Graphical Models vs. Tyranny of Small Decisions

• Detecting joints and parts in isolation is hard

• Need to capture relationships between joints
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Graphical Models vs. Tyranny of Small Decisions

Joints 
•  HoG 
•  Skin color 
•  Optical flow 

Limbs 
•  HoG 
•  Length 
•  Angle 
•  Contour support 

Left-Right Symmetry 
•  Color similarity 
•  Distance 
•  Left-right ordering 

Temporal Persistence 
•  Color tracking 
•  Joint motion 

Frame t Frame t+1 
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• Detecting joints and parts in isolation is hard

• Need to capture relationships between joints



Graphical Models vs. Tyranny of Small Decisions

Eichner & Ferrari BMVC09 Sapp, Weiss & Taskar CVPR11

• Detecting joints and parts in isolation is hard

• Need to capture relationships between joints



Accuracy of Wrist Localization
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• Problem: inference exponential in # of joints (1024)

The Catch



• Problem: inference exponential in # of joints (1024)

• Structured prediction cascades [Weiss & Taskar, 10]

• E!cient, accurate inference & learning (with high-probability) 

• Using a coarse-to-fine cascade of graphical models 

The Catch



Graphical Models vs. Tyranny of Small Decisions

Discrete Multivariate Distributions
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*Not shown: Dalvi & Suciu 07, Poon & Domingos 11, planar and log-supermodular models



Graphical Models vs. Tyranny of Small Decisions

Tree

Discrete Multivariate Distributions
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A distribution over sets of poses?
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Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.
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• Uncertainty over number

• Spatial repulsion

• Tractable?



Image search: “jaguar”

Relevance
only:

...
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Summarization



Frequency only:

• Romney expected to claim nomination

• Romney wins three primaries

• Romney tightens grip in GOP race

• Romney is unpopular, likely nominee

Summarization



Graphical models?
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sentence i



Graphical models?

sentence i
0/1



Graphical models?



Graphical models?



Graphical models?

Local negative interactions + many cycles = hard



Determinantal point processes (DPPs)

diversity



Determinantal point processes (DPPs)

diversity

Global, negative interactions are easy



k-DPPs (fixed cardinality)

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs

News threading
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Discrete point process
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•      items (e.g., images or sentences):

•      possible subsets

• Probability measure      over subsets              

Y = {1, 2, ..., N}

P

N

2N

Y ⊆ Y

Discrete point process



• Each element i included with probability     :

Independent point process

pi

P(Y = Y ) =
Y

i2Y
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Y
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(1� pi)



• Each element i included with probability     :

Independent point process

pi

P(Y = Y ) =
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Feature function g on items in 
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L =

Lij = g(i)!g(j)
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Determinantal point process

P(Y ) ∝ det(LY )

[Macchi, 1975]

= squared volume spanned by
g(i), i ∈ Y



Determinantal point process
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Determinantal point process

• Given an                 symmetric p.s.d. matrix     

L22 L24

L42 L44
P({2, 4}) ∝

∣∣∣∣

∣∣∣∣

N ×N L

[Macchi, 1975]

P(Y = Y ) � det(LY )



DPP inference

• Normalization:

• Marginals, conditioning (N3 or faster)

• Exact sampling (N3 or faster)

• MAP / mode is NP-hard, but log-submodular

P(Y ) ∝ det(LY )



DPP inference

• Normalization:

• Marginals, conditioning (N3 or faster)

• Exact sampling (N3 or faster)

• MAP / mode is NP-hard, but log-submodular

P(Y ) = det(LY )/ det(L+ I)



DPP inference

• Marginals:

P(A � Y ) = det(KA)



DPP inference

• Marginals:

K = L(L+ I)−1

P(A � Y ) = det(KA)
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P(A � Y ) = det(KA)

P(i � Y ) = det(Kii) = Kii

P(i, j ⇥ Y ) = det
�

Kii Kij

Kji Kjj

�

= KiiKjj �KijKji
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Diversity>



Point process samples

�������������� DPPIndependent



k-DPPs (fixed cardinality)

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs

News threading
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Lij = q(i)�(i)��(j)q(j)

L =

Quality score
q(i) ∈ R+



Lij = q(i)�(i)��(j)q(j)

Diversity features
�(i) � RD, ��(i)�2 = 1

L =

Quality score
q(i) ∈ R+
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q(i)�(i)

q(j)�(j)

Increased quality Reduced diversity

Vol2 � P({i, j})



Quality vs. diversity



• Intuitive and natural tradeo!

• Log-linear quality model:

• Optimize      by maximum likelihood

Quality vs. diversity

�

q(i) = exp(θ!f(i))
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• Intuitive and natural tradeo!

• Log-linear quality model:

• Optimize      by maximum likelihood

• Can find global optimum in O(N3)

• Don’t yet know how to learn diversity e"ciently 
(a natural parametrization is NP-hard)

Quality vs. diversity

�

q(i) = exp(θ!f(i))



k-DPPs (fixed cardinality)

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs

News threading
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Elementary DPP

v4 v6v1 v2 v3 v5

P{2,3,6}



• Easy to sample in polynomial time

•        only supported on sets of size

Elementary DPP

v4 v6v1 v2 v3 v5

P{2,3,6}

|J |PJ



Every DPP is a “factored” mixture of its 
elementary DPPs:

Key insight

mixture weight

P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

[Hough et al, 2006]
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mixture weight

P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

v4 v6v1 v2 v3 v5

λ3λ5·

+ · · ·
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+ λ2λ3λ6·
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Sampling algorithm

Pr(J) ∝
∏

n∈J

λn

Choose elementary DPP         by mixture weight:PJ

PHASE ONE

PHASE TWO
PJDraw sample from



Pr(J) ∝
∏

n∈J

λn

Choose elementary DPP         by mixture weight:PJ

PHASE ONE

• Let

• For

•                           with probability

J = ∅

n = 1, 2, . . . , N

J ← J ∪ {n} λn
λn+1



PHASE TWO

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

PJDraw sample from



Sampling algorithm

Pr(J) ∝
∏

n∈J

λn

Choose elementary DPP         by mixture weight:PJ

PHASE ONE

PHASE TWO
PJDraw sample from



• Phase one determines:

• Size of sample (      )

• Likely content of sample (eigenvectors)

Consequences

|J |



• Phase one determines:

• Size of sample (      )

• Likely content of sample (eigenvectors)

➡ Size and content are tied 

➡ Size is sum of Bernoulli variables 

Consequences

|J |



What if we need exactly k diverse items?
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k-DPPs (fixed cardinality)

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs

News threading



• Simple idea: condition DPP on target size k

• Can choose k at test time

• But inference (naively) looks exponential!

k-DPPs

Pk(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)
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n∈J

λn

|J | = k
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• Need new PHASE ONE to pick

• No longer independent:

• Once we pick one, can only pick k-1 more

k-DPP sampling

|J | = k



k-DPP sampling

• Solution: recursion on elementary symmetric 
polynomials:

• Runtime of new PHASE ONE is

• PHASE TWO is unchanged 

O(Nk)

eNk =
∑

J∈{1,...,N}
|J|=k

∏

n∈J

λn



• A gut-busting pizza has been launched — 
with a hot dog sausage stu"ed in the 
crust.

• Pizza Hut has released the limited edition 
dish after the success of its cheese and 
BBQ crusts.

Hot dog in pizza is the stu! of dreams

[The Sun, 
4/12/12]

• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.
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Quality features
2. Pizza Hut has released the limited edition 

dish after the success of its cheese and 
BBQ crusts.

4. The firm was the first to stu" its crusts 
and has been selling the hot dog variety in 
Thailand and Japan since 2007.
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in article
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• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.

Quality features

2. Pizza Hut has released the limited edition 
dish after the success of its cheese and 
BBQ crusts.

4. The firm was the first to stu" its crusts 
and has been selling the hot dog variety in 
Thailand and Japan since 2007.
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Diversity features

•     fixed to tf-idf vectors: cosine similarityφ

Dubbed the “pizza dog”, the 14-inch feast is only 
available for delivery and costs up to £19.49.φ

( )



The 14-inch “pizza dog” is 
available for delivery.

Diversity features

•     fixed to tf-idf vectors: cosine similarityφ

Dubbed the “pizza dog”, the 14-inch feast is only 
available for delivery and costs up to £19.49.



Sadly, this caloric coma is not 
available in the U.S. yet.

Diversity features

•     fixed to tf-idf vectors: cosine similarityφ

Dubbed the “pizza dog”, the 14-inch feast is only 
available for delivery and costs up to £19.49.



News summarization

• Input: 10 news articles, ~250 sentences

• Output: 665 character summary

• Eval: ROUGE metric (four human summaries)

• Learn on DUC 03, test on DUC 04 data



System ROUGE-1F ROUGE-1R R-SU4F

Begin 32.08 32.69 10.37

MMR* 37.58 38.05 13.06

Best in 2004 37.87 38.20 13.19

SubMod** 38.90 39.35 -

DPP MAP 38.96 39.15 13.83

DPP MinRisk 40.33 41.31 14.13

55

[*Carbonell and Goldstein, 1998] [**Lin and Bilmes, 2012]
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k-DPPs

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs

News threading



?
?

?

?



?
?

?

?



Y Y Y

I""""""""really""""""""love"""""""SDPPs
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Structured DPPs

• Exponentially many complex “items”

• Can’t even write down N x N kernel

• But can still compute marginals and sample!



Structured DPPs

• Exponentially many complex “items”

• Can’t even write down N x N kernel

• But can still compute marginals and sample!

1. Factorized model

2. Dual representation of L

3. Second order message-passing
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• Diversity features factor additively:
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• Quality scores factor multiplicatively:

• Diversity features factor additively:

1. Factorization

e.g., tree

e.g., 
spatial overlap

�(i) =
X

v�V
�v(iv) +

X

vu�E
�vu(iv, iu)

q(i) =
Y

v�V
qv(iv)

Y

vu�E
qvu(iv, iu)

�(i)>�(j)



Quality



Quality



Quality

x



Quality

x

x



Quality

x

x =



Diversity



Diversity



Diversity

Low diversity



Diversity

Low diversity



Diversity

Low diversity

High diversity



2. Dual representation

L = Q Φ Q
Φ

Lij = q(i)�(i)��(j)q(j)



2. Dual representation

Q ΦQ
Φ



2. Dual representation

Q ΦQ
ΦC =

Q2



2. Dual representation

L = C = 2

N x N D x D



2. Dual representation

L = C = 2

N x N D x D

• C and L have the same non-zero eigenvalues, 
and related eigenvectors

• Use C for sampling and other inference!
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2. Dual representation

L = C = 2

N x N D x D

Crl =
�

i

q2(i)�r(i)�l(i)

C is covariance of      under                 .� Pr(i) � q2(i)
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3. Second-order message passing

• Can compute feature covariance using message 
passing if q is a tree

• Use special semiring sum-product [Li & Eisner,09]

• Linear in number of nodes

• Quadratic in number of diversity features D  
                                  O(D2 log N)



Multiple-pose estimation

• Images from TV shows

• 3+ people/image, similar scale, hand labeled

• Trained quality model, spatial diversity model
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Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.

8



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.

8



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.

8



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.

8



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.

8



Pose accuracy

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Overall F
1

 

 

SDPP
Non−max
Indep.

(a)

40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

Match radius (in pixels)

Arms F
1

(b)

40 60 80 100 120 140

0.2

0.4

0.6

0.8

Match radius (in pixels)

Precision / recall (circles)

(c)

Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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k-DPPs

Sampling

Quality, diversity, and learning

Determinantal point processes

Structured DPPs
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Feb 24: Parkinson’s Disease Increases Risks to Pope
Feb 26: Pope’s Health Raises Questions About His Ability to Lead 
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy 
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name
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[Blei & La"erty, 2006]
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Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients Still Don’t Know How Often Women Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not the Way It Aids Men 
Mar 16: Radiation Therapy Doesn’t Increase Heart Disease Risk
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You

[Blei & La"erty, 2006]



• Input: large news corpus

• Output: threads of articles

• Each thread narrates a major story

• Threads are diverse to cover many stories

• Combine k-DPPs, structured DPPs, and 
volume-preserving random projections to scale 

News threading
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• ~35,000 articles per six month time period

• About 10360 possible sets of threads

• D = 36,356-dimensional diversity features

• Naively, each second-order message is 200 TB

• Using random projections to approximate volumes 
We show need only log(# articles) projections 

Scale
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Runtime (s) 626 19,434 252
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• DPPs capture global, negative correlations

• E!cient normalization, marginals, sampling

• Our contributions:

- representation 
- learning
- inference
- structure

make DPPs useful for modeling real-world data.



• Relevant Papers:  see my webpage 
(NIPS10, UAI11, ICML11, EMNLP12,NIPS12)

• Tutorial: 
http://arxiv.org/abs/1207.6083  (117 pages)

• Matlab Code: 
http://www.cis.upenn.edu/~kulesza/code/dpp.tgz 

Papers, Tutorial, Code
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