
Filip Železný

Nada Lavrač (Eds.)

Inductive Logic Programming

18th International Conference, ILP 2008

Prague, Czech Republic, September 2008

Late Breaking Papers

Preface

The 18th International Conference on Inductive Logic Programming was held
in Prague, September 10-12, 2008. ILP returned to Prague after 11 years, and
it is tempting to look at how the topics of interest have evolved during that
time. The ILP community clearly continues to cherish its beloved first-order
logic representation framework. This is legitimate, as the work presented at ILP
2008 demonstrated that there is still room for both extending established ILP
approaches and exploring novel logic induction frameworks. However, besides
the topics lending ILP research its unique focus, we were glad to see at ILP
2008 a good number of papers contributing to areas such as statistical relational
learning, graph mining, or the semantic web. To help open ILP to mainstream
research areas, the conference featured three excellent invited talks from the do-
mains of the semantic web (Frank van Harmelen), bioinformatics (Mark Craven)
and cognitive sciences (Josh Tenenbaum). We deliberately looked for speakers
who are not directly involved in ILP research. We further invited a tutorial on
statistical relational learning (Kristian Kersting) to meet the strong demand to
have the topic presented from the ILP perspective. Lastly Stefano Bertolo from
the European Commission was invited to give a talk on the ideal niches for ILP
in the current EU-supported research on intelligent content and semantics.

Apart from the main conference track, ILP 2008 featured special sessions
devoted to late breaking papers. These papers went through a separate review
procedure and the 21 selected papers are contained in this book. They present
mainly work in progress, challenge papers, applications reviews, and also brief
summaries of relevant work presented by the authors at another conference (such
as ECML/PKDD 2008). The late breaking papers were presented at ILP 2008
through posters as well as short plenary talks.

Organizing ILP 2008 was a great experience, thanks to the excellent help
we received on several fronts. We are indebted to our generous sponsors who
made possible the trips of the invited speakers (sponsored by the US Air Force
European Office of Aerospace Research and Development, the PASCAL2 Net-
work of Excellence, the Czech Society for Cybernetics and Informatics and the
European Commission) and the best student paper prize (sponsored by the Ma-
chine Learning Journal). We are equally grateful to Springer for collaborating
so flexibly and pro-actively in preparing the main track proceedings and the
Machine Learning Journal special issue. Thanks go as well to the diligent pro-
gram committee for their reviews of the submitted papers. Their review activity
was supported by the MyReview System, which proved to be a powerful, yet
easy-to-use, conference management software. ILP would be just three letters
were it not for the authors of the submitted papers. To them goes our foremost
gratitude. Keep up the good work and submit to ILP 2009!

August 2008 Filip Železný and Nada Lavrač

ILP 2008 Organization

Program Chairs

Filip Železný Czech Technical University, Prague
Nada Lavrač Jožef Stefan Institute, Ljubljana

Local Organization Chairs

Jǐŕı Kléma Czech Technical University, Prague
Peter Vojtáš Charles University, Prague
Milena Zeithamlová Action M Agency, Prague

Program Committee

Annalisa Appice, Italy
Hendrik Blockeel, Belgium
Rui Camacho, Portugal
James Cussens, UK
Luc De Raedt, Belgium
Sašo Džeroski, Slovenia
Floriana Esposito, Italy
Alan Fern, USA
Peter Flach, UK
Tamás Horváth, Germany
Katsumi Inoue, Japan
Andreas Karwath, Germany
Kristian Kersting, Germany
Stefan Kramer, Germany
John Lloyd, Australia
Francesca Lisi, Italy
Donato Malerba, Italy
Stan Matwin, Canada

Stephen Muggleton, UK
Ramon Otero, Spain
C. David Page, USA
Bernhard Pfahringer, New Zealand
Jan Ramon, Belgium
Céline Rouveirol, France
Vitor S. Costa, Portugal
Jude Shavlik, USA
Takayoshi Shoudai, Japan
Ashwin Srinivasan, India
Prasad Tadepalli, USA
Tomoyuki Uchida, Japan
Christel Vrain, France
Stefan Wrobel, Germany
Akihiro Yamamoto, Japan
Mohammed J. Zaki, USA
Gerson Zaverucha, Brazil

Local Organization Committee

Petr Buryan
Matěj Holec
Jǐŕı Kubaĺık
Onřej Kuželka

Karel Mouĺık
Petr Poš́ık
Olga Štěpánková
Monika Žáková

III

Invited Speakers

Josh Tenenbaum Massachusetts Institute of Technology
Kristian Kersting Fraunhofer IAIS, Germany
Frank van Harmelen Vrije Universiteit Amsterdam
Mark Craven University of Wisconsin in Madison
Stefano Bertolo European Commission

Additional Reviewers

Ana Luisa Duboc
Jǐŕı Kléma
Oliver Ray

Sponsors

Czech Technical University in Prague
Jožef Stefan Institute, Ljubljana
Charles University in Prague
US Air Force, European Office of Aerospace Research and Development
PASCAL2 European Network of Excellence
Czech Society for Cybernetics and Informatics
Machine Learning Journal
European Commission

Table of Contents

Late Breaking Papers

The phase transition of the bounded ILP consistency problem 1
Erick Alphonse

Accelerating frequent subgraph search by detecting low support structures 7
Petr Buryan

Inductive Graph Logic Programming: work in progress 14
Christophe Costa Florêncio

Experiments with Czech Linguistic Data and ILP . 20
Jan Dědek, Alan Eckhardt, Peter Vojtáš

Network Analysis of the ILPnet2 Co-authorship Network 26
Qingyi Gao, Peter Flach

Learning Comprehensible Relational Features to Distinguish Subfossil De-
capod Crustacean Dactyls . 32

Mark Goadrich, Jeffrey Agnew

Estimating the Parameters of Probabilistic Databases from Probabilisti-
cally Weighted Queries and Proofs [Extended Abstract] 38

Bernd Gutmann, Angelika Kimmig, Kristian Kersting, Luc De Raedt

Propositionalizing the EM algorithm by BDDs . 44
Masakazu Ishihata, Yoshitaka Kameya, Taisuke Sato, Shin-ichi Minato

Using Bio-Pathways in Relational Learning . 50
Matěj Holec, Filip Železný, Jiř́ı Kléma, Jiř́ı Svoboda, Jakub Tolar

Combining answer caching with smartcall optimization in mining frequent
DL-safe queries . 57

Joanna Józefowska, Agnieszka Lawrynowicz, Tomasz Lukaszewski

Probabilistic Local Pattern Mining . 63
Angelika Kimmig, Luc De Raedt

HiFi: Tractable Propositionalization through Hierarchical Feature Con-
struction . 69

Ondřej Kuželka, Filip Železný

Learning Conceptual Predicates for Teleoreactive Logic Programs 75
Nan Li, David J. Stracuzzi, Pat Langley

V

Predicting Gene Coexpression from Pathway Relations 81
Karel Mouĺık, Filip Železný

TopLog: ILP using a logic program declarative bias . 87
Stephen H. Muggleton, Joé C. A. Santos, Alireza Tamaddoni-Nezhad

Mutlirelatonal GUHA Method and Genetic Data . 93
Martin Ralbovský, Alexander Kuzmin, Jan Rauch

On and Off-Policy Relational Reinforcement Learning 99
Christophe Rodrigues, Pierre Gérard, Céline Rouveirol

Learning Complex Ontology Alignments - A Challenge for ILP Research . . 105
Heiner Stuckenschmidt, Livia Predoiu, Christian Meilicke

A Simple Model for Sequences of Relational State Descriptions 111
Ingo Thon, Niels Landwehr, Luc De Raedt

Relational Data Mining in Crisis Management . 117
Martin Večeřa, Luboš Popeĺınský

A Sample Complexity for PILP . 123
Hiroaki Watanabe, Stephan Muggelton

Author Index . 130

VI

The phase transition of the bounded ILP
consistency problem

Erick Alphonse

LIPN-CNRS UMR 7030, Université Paris 13, France
erick.alphonse@lipn.univ-paris13.fr

Abstract. A number of recent works have been focusing on analysing
the phase transition of the NP-complete ILP covering test, which have
been fruitful in linking this phenomenon to plateaus during heuristic
search. However, it is only a facet of the ILP complexity as it is very de-
pendent of the search strategy. Its inherent difficulty has to be studied as
a whole to design efficient learners. ILP is arguably harder than attribute-
value learning, which has been formalised by Gottlob et al. who showed
that the simple bounded ILP consistency problem is Σ2−complete. Some
authors have predicted that a phase transition could be exhibited further
up the polynomial hierarchy and we show this is the case in this problem
space, where the number of positive and negative examples are order pa-
rameters. Those order parameters are the same as for the k-term DNF
consistency problem studied in the context of attribute-value learning.
We show that the learning cost exhibits the easy-hard-easy pattern with
a lgg-based learner.

1 Introduction

The phase transition framework, which has been strongly developped in many
combinatorics domains, like in SAT or CSP domains, since [1], has changed the
way search algorithms are empirically evaluated. This lead to new designs of
search algorithms, from incomplete to complete solvers and from deterministic
to randomised solvers [2].

Symbolic learning, which has been cast more than 20 years ago as search
into a state space [3] has known few developments of the phase transition (PT)
framework. As far as we know, the only work that studied the PT of learning
has been done by [4] who showed that the number of positive and negative
examples where order parameters of the k-term DNF consistency problem, which
is NP-complete. Indeed, if one keeps one parameter constant and varies the
other, one wanders from an under-constraint region, named the “yes” region,
associated with a small value, where there is almost surely a solution, to an
over-constraint region, named the “no” region, as the parameter value increases,
where almost surely no generalisation of the positive examples is correct. A
related work studied the PT of the subsumption test which is a key NP-complete
sub-problem of learning. Although, this study has been fruitful in linking this
phenomenon to plateaus during heuristic search [5], it is only a facet of the ILP

2

complexity as it is very dependent of the search strategy and does not study the
complexity of learning in the PT framework.

ILP is arguably harder than attribute-value learning, like k-term DNF learn-
ing, which has been formalised by Gottlob et al. [6] who showed that the simple
bounded ILP consistency problem is Σ2-complete. This is one class higher in the
polynomial hierarchy than NP-complete (or Σ1-complete) problems. Some au-
thors, e.g. [7], have predicted that a phase transition could be exhibited further
up the polynomial hierarchy and therefore that this framework could be useful
to other PSPACE-complete problems.

We show this holds for the bounded ILP consistency problem, where the
number of positive and negative examples are order parameters of the phase
transition. We show that the median learning cost exhibits the easy-hard-easy
pattern with a simple lgg-based learner.

We present, in the next section, the necessary background on the bounded
ILP consistency problem and the model RLPG which is a generator proposed to
study this problem, first described in [5]. The section 3 will present the complete
learner used to answer the ILP consistency problem. Section 4 will exhibit the
phase transition, beyond NP, of the ILP consistency problem with respect to the
two order parameters which are the number of positive and negative examples.
We show that the solver used allow to exhibit the easy-hard-easy pattern of
median search cost. Finally, we will conclude and draw some perspective and
benefits of these results for relational learning.

2 Background

In this article, we study what has been termed the bounded ILP consistency
problem for function-free Horn clauses by [6]. Given a set of positive examples
E+ and a set of negative examples E− of function-free ground Horn clauses
and an integer k polynomial in |E+ ∪E−|, does there exist a function-free Horn
clause h with no more than k literals such that h θ-subsumes each element in
E+ and h does not θ-subsume any element in E−.

[5] proposed a random generator for this problem, named model RLPG (Re-
lational Learning Problem Generator). A learning problem instance in this model
is denoted RLPG(k, n, α,N, Pos, Neg). The parameters k, n, α, N are related
to the definition of the hypothesis and example spaces. Pos and Neg are the
number of positive and negative examples respectively. The first four parame-
ters are defined in order to ensure that a subsumption test between a hypothesis
and an example during search encode a valid CSP problem, following models for
random CSP. This requirement is imposed as the model RLPG was proposed to
study the impact of the phase transition of the subsumption test on heuristic
search. We briefly recall their meaning and focus on the last two parameters.

k ≥ 2 denotes the arity of each predicate present in the learning language,
n ≥ 2 the number of variables in the hypothesis space, nα the domain size for all
variables, and finally N the number of literals in the examples built on a given
predicate symbol. Given k and n, the size of the bottom clause of the hypothesis

3

space Lh is (n
k). It encodes the largest constraint network of the underlying

CSP model. Each constraint between variables is encoded by a literal built on
a unique predicate symbol. Lh is then defined as the power set of the bottom
clause, which is isomorphic to a boolean lattice. Its size is 2(n

k).
Learning examples are randomly drawn, independently and identically dis-

tributed, given k, n, α and N . Their size is N(n
k). Each example defines N literals

for each predicate symbol. The N tuples of constants used to define those liter-
als are drawn uniformly and without replacement from the possible set of (nα

k)
tuples.

3 Exhibiting the easy-hard-easy pattern with a complete
solver

Besides the phase transition behaviour of decision problems, a strong motivation
of its study is that it is conjectured that the hardest problem instances occur
in the phase transition (see e.g. [1, 8, 7]). The under-constraint problems from
the “yes” region appear to be easily solvable, as there are a lot of solutions.
This is the same for over-constraint problems from the “no” region as it is
easy to prove that they are insoluble. These findings have been corroborated on
several problems, with different types of algorithms, and it is considered that
the problem instances appearing in the phase transition are inherently hard,
independently of the algorithms used. In the “yes” and “no” regions, the easy
ones, the complexity appears to be very dependent of the algorithm. There are,
in these regions, some problems exceptionally hard, whose complexity dominates
the complexity of instance problems in the phase transition region for certain
types of algorithm [8].

In other words, exhibiting the easy-hard-easy pattern require a “good” al-
gorithm. We propose to use a depth-first lgg-based algorithm to solve the ILP
consistency problem, DF-BDD (Depth-First Bottom-up Data-Driven), which is
similar to the approach of [4] for the k-term DNF consistency problem. Its Prolog
code is given below:

1 df_bdd(Sol,[],_,Sol).
2 df_bdd(Hypo,[Pos|L_Pos],L_Neg,Sol) :-
3 lgg(Hypo,Pos,LGG), % non-deterministic computation of a LGG
4 % consistency check
5 correctness(LGG,L_Neg),
6 df_bdd(LGG,L_Pos,L_Neg,Sol).

The computation of lggs (line 3) is done with depth-first search into possible
subsets of the hypothesis. It outputs the largest subsets that subsume the ex-
ample. The implementation is rather naive, which may blur the easy-hard-easy
pattern, as we will see. Once a lgg has been computed, we test, in a depth-first
way, if it is correct with respect to all negative examples (line 5).

4

4 Numbers of positive and negative examples as order
parameters

In this section, we study the effect of the number of positive and negative ex-
amples on the solubility probability and the solving cost of the ILP bounded
consistency problem. If we refer to section 2, RLPG is parametrised with 6 pa-
rameters but we only study the last two, Pos and Neg, as the effect of the other
parameters have been already studied in [5] for constant number of positive and
negative examples. Here, we focus on few settings for these parameters, with
k = 2, n = 5 and n = 6, to study different problem sizes, α = 1.4 and N = 10.
The choice of these parameters ensures that we do not generate trivially insol-
uble problems [7], but also various experiments, not shown here, indicated that
there were representative of the phase transition behaviour of the ILP consis-
tency problem. In all experiments below, statistics were computed from a sample
of 500 learning problems.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
sa

t

Pos = Neg

n = 5
n = 6

Fig. 1. Probability of statisfiability according to the number of learning examples (Pos
= Neg), with n = 5 and n = 6

We start by varying both Pos and Neg. Figure 1 shows the solubility prob-
ability of the ILP consystency problem when Pos = Neg are varied from 1 to
25, for n = 5 and n = 6. As we can see, when the number of examples is small,
there is almost surely a consistent hypothesis, and when the number is large it
is almost surely impossible to find a consistent hypothesis. The cross-over point,
where the probability of solubility is about 0.5, is around 4 for n = 5 and 5 with
n = 6. It is not surprising that it increases with bigger problems. For n = 5,
the hypothesis space size is 210 and 215 for n = 6. We could not conduct exper-
iments for larger values of n as the hypothesis space grows too fast in RLPG.
For instance, n = 7 sets a hypothesis space of size 221, which cannot be handled
by our complete solver. In the future, it would be interesting to modify RLPG

5

to specify the size of the bottom clause and then draw the number of variables
accordingly.

Figure 2 and 3 show the associated cost (the median cost along with the 25th
and 75th percentiles) to solve the problem instances, with n = 6. We measured
the cost by recording the time in milliseconds, as well as the number of backtracks
of the subsumption procedure, needed to solve a learning problem. The latter
seems relevant, as the subsumption test is used to compute the lggs.
We can see that a complexity peak is associated with instances in the phase
transition region, and that the search cost follows the easy-hard-easy pattern.
The complexity in the “no” region slowly decreases as the number of examples
increases, where we could have expected a sharper decrease, but it may be related
to our implementation.

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t

Pos = Neg

75th percentile
50th percentile
25th percentile

Fig. 2. Cost in resolution time (ms.) ac-
cording to the number of learning examples
(Pos = Neg), for n = 6

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
os

t

Pos = Neg

75th percentile
50th percentile
25th percentile

Fig. 3. Cost in number of bactracks of the
subsumption test according to the number
of learning examples (Pos = Neg), for n = 6

We study now the phase transition along the number of positive examples,
for constant values of Neg, but omit cost plots. The results are almost symmetric
when Pos is constant and Neg varies, and is not shown here. Figures 4 and 5
show the phase transition when Pos varies from 1 to 25, for n = 5 and n =
6 respectively. The transition becomes sharper as Pos increases, which is not
surprising as the subset of complete hypotheses shrinks with Pos.

5 Conclusion

It is conjectured that the phase transition of decision problem can be exhibited
further up the polynomial hierarchy and therefore that this framework could be
useful to other PSPACE-complete problems. We have shown that this holds with
the bounded ILP cosistency problem, a Σ2-complete problem, which exhibits
a phase transition in its solubility, with the number of positive and negative
examples as order parameters. The search cost as given by a depth-first lgg-
based solver exhibits the easy-hard-easy pattern. This is the first work that

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
sa

t

Pos

Neg = 1
Neg = 2
Neg = 3
Neg = 4

Fig. 4. Probability of statisfiability accord-
ing to the number of positive examples with
n = 5, for Neg = 1, 2, 3, 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P
sa

t

Pos

Neg = 1
Neg = 2
Neg = 3
Neg = 4

Fig. 5. Probability of statisfiability accord-
ing to the number of positive examples with
n = 6, for Neg = 1, 2, 3, 4

study the phase transition of learning in ILP and we hope that it will stimulate
algorithmic developments, in the line of what has been done in combinatorics.
It points out interesting follow-ups: the model RLPG has been used to generate
random problems and we plan to study the impact of its other parameters on
the generation of hard instances; we plan to generate hard problems to study
the different solvers proposed in ILP.

Acknowledgment

We thank Aomar Osmani for his support and the numerous discussions about
this work, as well as Henry Soldano and Dominique Bouthinon.

References

1. Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In
Proc. of the 12th Int. Joint Conf. on Artificial Intelligence. (1991) 331–340

2. Carla Gomes, Heny Kautz, A.S., Selman, B.: Satisfiability solvers. In: Handbook
of Knowledge Representation. (2007)

3. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18 (1982) 203–226
4. Rückert, U., Kramer, S., Raedt, L.D.: Phase transitions and stochastic local search

in k-term DNF learning. Lecture Notes in Computer Science 2430 (2002) 405–417
5. Alphonse, E., Osmani, A.: A model to study phase transition and plateaus in rela-

tional learning. In: Proc. of Inductive Logic Programming. (2008) to be published.
6. Gottlob, G., Leone, N., Scarcello, F.: On the complexity of some inductive logic

programming problems. In Proc. of the 7th Int. Workshop on Inductive Logic
Programming. Volume 1297 of LNAI. (1997) 17–32

7. Gent, I.P., Walsh, T.: Beyond np: the qsat phase transition. In Proc. of the 16th
Nat. Conf. on Artificial intelligence. (1999) 648–653

8. Davenport, A.: A comparison of complete and incomplete algorithms in the easy
and hard regions. In: Work. on Studying and Solving Really Hard Problems, CP-95.
(1995) 43–51

7

Accelerating frequent subgraph search by detecting
low support structures

Petr Buryan

Gerstner Laboratory, Department of Cybernetics, Czech Technical University, Technicka 2,

Prague, Czech Republic. buryan@labe.felk.cvut.cz

Abstract. Latest research in the domain of frequent subgraph mining focuses
mainly on completely searching the subgraph space, efficient candidate
enumeration, duplicate identification, embeddings storing and other effective

memory allocation issues leaving the search process itself aside. This paper
shows two techniques that contribute to accelerating the complete search. They
are based on the idea of using information discovered so far during the search
to limit time spent by unnecessary testing structures for subgraph isomorphism
during the support calculations and efficient utilisation of this information to
drive the search process. As a result, time spent by subgraph isomorphism tests
is minimised.

1 Introduction

Graph mining, particularly frequent subgraph mining became an area attractive for

data-mining researchers during past decades. The domain focuses mainly on finding

interesting common substructures (patterns) in a set of given graphs that could be

used e.g. for classification purposes. The level of interestingness can be approached
in many ways; however, it is most often the frequency of pattern appearances among

the graphs that matters.

Despite the need for efficient graph mining algorithm, several approaches targeting

this domain extending classical complete subgraph lattice search approach [8]

appeared as late as mid 1990s. The first to start the avalanche was Subdue algorithm

[9] followed by others among which Warmr [3], AGM [4], Gaston [1], gSpan [5],

FSG[10], FFSM[12] or MolFea [6] can be stated here. A good overview is presented

e.g. in [2]. The majority of these implementations focus on complete pattern search

and are able to work with labelled graphs, i.e. graphs where vertices (and often also

edges) are assigned symbols from some domain describing alphabet (e.g. molecule

structures can be seen as an example of labelled graph).
Main sources of complexity in the frequent subgraph mining are:

1) The graph isomorphism problem (GI complexity – in general neither P nor

NP).

2) The subgraph isomorphism problem (NP-complete).

3) The state space search (generally NP-complete).

And it is not only that solutions of problems 1) and 2) are rather time demanding but

these tasks have to be solved extremely often during the search. In addition, search

spaces that are determined by the most of real graph databases are sparse meaning

that only a small fraction from all possible subgraphs really occurs within the

databases. As a consequence, search by random sampling is very difficult and

8

frequent subgraph search currently bears up against randomised techniques (e.g.

genetic algorithms). Another effect is that large amount of patterns generated during

the search turns out to have zero coverage which is also the drawback that is targeted

by this paper.

On the other hand, constraints such as maximal node degree often exist that help a lot

in narrowing the search space and speeding up the algorithm by filtering out fabled

structures.

Latest research [2] focuses mainly on efficient candidate enumeration, duplicate

identification, embeddings storing and other effective memory allocation issues

leaving the search process itself aside. This paper shows two techniques that also

contribute to accelerating the search.

First one exploits the idea that instead of directly performing complicated
calculations to determine support of a new discovered pattern, it is cheaper first to

test the pattern for presence of smaller fragments that were discovered so far and

have insufficient support. By this technique a lot of unnecessary lengthy subgraph

isomorphism testing can be avoided.

Second technique that is presented in this paper is sorting the open list in ascending

order according to the support of the structures listed (opposite of standard sorting for

greedy search). In combination with previous technique it enables fast detection of

low-support structures near the transition.

2 Graphs

A graph or undirected graph G is an ordered pair G = (V,E), that is subject to the

following conditions:

- V is a set of vertices or nodes;
- E is a set of pairs (unordered) of distinct vertices, called edges.

A labelled graph is a graph with labels assigned to its nodes and edges i.e. an ordered

triple G = (V,E,λ), where

E ⊆ V × ΣE × V,

λ: V → ΣV,

ΣV being the set of vertex labels (node label alphabet), ΣE the edge label

alphabet and λ is the vertex labelling function.
Verifying whether a graph G is a subgraph of H means finding set of mutually

matching pairs of both vertices and edges in these structures. Let V(G) be the vertex

set of a graph and E(G) its edge set. Graphs G and H are subisomorphic iff there is an

injection (often called embedding)

f: V(G) → V(H),

 such that (u,a,v) ∈∈∈∈ E(G) if and only if (f(u), a, f(v)) ∈∈∈∈ E(H) and the label of
f(u) equals to that of u for all vertices u.. In other words, a graph G is sub-isomorphic

to graph H iff graph G is isomorphic to at least one subgraph of H.

On the other hand, graphs G and H are isomorphic iff there is a bijection

f: V(G) → V(H),

such that any two vertices u and v of G are adjacent in G if and only if ƒ(u)

and ƒ(v) are adjacent in H and the label of f(u) is the same as that of u for all vertices

u.

9

Let analysed graph database DG contain a collections of graphs G. The frequency of

subgraph pattern p is calculated as a ratio of size of set DG(p), i.e. set of graphs from

database that contain p to the size of set of all graphs in database DG.

freq(p, DG) =

G

G

D

pD)(
,

DG(p) = {G∈DG | contains(G, p)}, and contains(G, p) means that p is a
subgraph of G.

The primary task of the subgraph mining algorithms is as follows:

Given a set of graphs (graph database) DG = {G0,G1,…,Gn}, find all subgraphs

(patterns) appearing in at least freqmin
.
|DG| graphs (isomorphic subgraphs are

considered the same subgraph).

This means finding patterns the frequency of which is above some given level of

minimal support freqmin

min),(freqSpfreq ≥ .

3 Low-support structures detection

Sorting the structures in the list of patterns to be extended (“open list”) according to

their coverage is quite a common approach in algorithms searching the state space,
mainly in greedy or other heuristic driven approaches. The main idea is to prefer for

expansion those patterns that have higher support so that interesting patterns are

found fast.

Suppose a new pattern g was created by extending pattern g0 the coverage of which

(freqg0 =

G

G

D

gD)(0
) was sufficient according to given threshold. Calculating the

coverage of g means to perform approximately |DG|
.
freqg0 subgraph isomorphism

tests on graphs from the database DG (not considering any case specific filtering).

The time complexity of subgraph isomorphism (SGI) testing grows fast with the size

of the graphs tested. The approach presented here exploits the idea that instead of

performing these SGI calculations with g on DG directly, it is cheaper first to test g

for presence on fragments smaller than g that were discovered so far and have

insufficient support before advancing to testing large graphs for presence of g. By

this technique a lot of unnecessary lengthy SGI testing can be avoided.

The situation is illustrated in Fig 1. Even though learning in the beginning of the

search that the structure b-a-b is not present in the graph database, state-of-the-art

algorithms spend time recalculating the fact again and again in future steps. From the
image it is clear, that this is the case not only for pattern-growth approaches but for

pattern combination (Apriori-like) approaches as well, as in this example the pattern

b-a-a is frequent but extension created by its combination may be not.

Second technique that is presented in this paper is sorting the open list in ascending

order as to the support of the structures which is the opposite of sorting used by

standard greedy search. In combination with previously introduced keeping track of

infrequent patterns during complete search for filtering purposes it enables fast

detection of low-support structures near the transition.

Sorting the list in such manner (less frequent ones come first) helps to delimit fast the

border between frequent and infrequent patterns. The smaller infrequent patterns are

10

thereby immediately at hand and can be instantly used for filtering. Sorting open list

according to pattern size brings similar effect but sorting by support criterion leads to

faster run of the algorithm.

Fig. 1. Example of a part of subgraph lattice

4 Experimental results

In this section, results of basic experiments on the Mutagenesis classification

problem are presented. Standard PTE dataset was used as e.g. in [5, 7] - a smaller
widely used benchmark dataset containing few hundreds of chemical compounds

with an average size of 30 nodes (maximum size of a graph 214 nodes) classified as

carcinogens or otherwise. The dataset included hydrogen atoms in the graph

encoding.

In order to evaluate usefulness of techniques presented, basic pattern growth based

state space searching algorithm with embedding lists was used. No pattern is

generated twice which is ensured by several simple duplicate detection techniques

based on pattern statistics and graph invariants in combination with full pattern GI

testing. Nevertheless, the idea presented here might be in a similar way implemented

to any of the above mentioned algorithms.

The impact of presented improvement depends on the graph database determining the

structure of searched space. However, keeping track of only small infrequent
fragments up to size of several nodes usually speeds up the search significantly.

Therefore, it is sufficient to remember only the smallest subgraphs instead of all

discovered infrequent patterns. Graphs in Figures 2 and 3 show, that majority of all

infrequent patterns discovered is of smaller size and majority of pruning is performed

using these small infrequent patterns as well.

The process may be further optimised for pattern growth algorithms (e.g. Gaston) by

indexing the database of patterns with support below threshold by graph leafs.

Should the new pattern g include one of these infrequent fragments, it has to be one

of fragments that include also the node/edge last added to g. This enables efficient

search for infrequent candidates that may be present in tested graph.

11

Apart from higher memory demand, a drawback may be seen in fact, that as the

patterns with high coverage come lately to expansion, interrupting the algorithm

during search causes loosing potential interesting results which might be limiting for

incomplete searches.

Fig. 2 Sizes of discovered infrequent patterns, PTE dataset, min. support 0.35

Fig. 3. Frequency of pruning actions with discovered infrequent patterns, PTE dataset, min.

support 0.35

The experimental steps for determining impact on search time were as follows:
1) Sort out all node and edge labels with insufficient support in the dataset;

2) Perform classical subgraph space search, sort / do not sort patterns

according to their support;
3) For each new pattern found perform following checks:

a) check, if pattern was not generated before (pattern statistics,

invariants, full GI check);

b) check / do not check, if pattern does not contain some of

discovered infrequent patterns (pruning phase);

c) calculate pattern support (evaluation phase).

Results presented in Table 1 show, that pruning lattice by utilisation of infrequent

patterns generally requires only a fraction of time needed for coverage calculations

2n 1e 3n 2e 3n 3e 4n 3e 4n 4e 5n 4e 5n 5e 6n 5e 6n 6e 7n 6e 7n 7e 8n 7e 8n 8e 9n 8e 10n
9e

0

10

20

30

40

50

60

70

80
Frequency of prunning w. infrequent patterns, PTE dataset, min.sup. = 0.35

size of infrequent pattern (# of nodes &
edges)

re
l.
 f

re
q

u
e

n
c
y
 o

f
p

ru
n

n
in

g
s
 [

%
]

 (
to

ta
l
=

 5
7

7
1

 p
ru

n
n

in
g
s
)

2n 1e 3n 2e 3n 3e 4n 3e 4n 4e 5n 4e 5n 5e 6n 5e 7n 6e 8n 7e 9n 8e 10n
9e

0

8

16

24

32

40

48

size of infrequent pattern (# of nodes &
edges)

re
l.
 f

re
q

u
e

n
c
y
 o

f
in

fr
e

q
u

e
n

t
p

a
tt

e
rn

s
 i
n

 t
h

e
 s

e
t

[%
]

 (
to

ta
l
=

 9
7

 i
n

fr
e

q
u

e
n

t
p

a
tt
e

rn
s
)

Discovered infrequqent patterns - PTE dataset, minSup = 0.35

12

and it helps minimising the number of “unnecessary“ SGI tests performed on the

dataset thereby significantly speeding up the search process. In addition, sorting the

list of patterns to be expanded according to their support (low support first) brings

another speed-up to the search process.

Table 1. PTE dataset experiments

Minimal

support

[%] Pattern Counts

Pruning

Time

[s] *) **) Evaluation Time [s] *) ***)

Frequent

patterns

Infrequent

patterns

pruning

with sorting

Pruning, no

sorting

no pruning,

no sortrting

15 433 259 14.4 62.59 180 326

35 66 97 0.4 4.9 9.9 40

50 37 57 0.2 1.8 3.8 7.7
*)

Average value over 10 search runs
**)

Total time spent testing whether patterns contain one of infrequent patterns discovered
***)

 Total time spent calculating patterns support

5 Conclusions

The results presented in the paper indicate, that focusing search on border line

dividing patterns with insufficient support threshold (i.e. patterns of low coverage yet

above threshold) during complete subgraph search speeds up the search process

significantly. Two main observations follow:

4) significant speed-up is achieved during complete subgraph search by using

pruning based on infrequent patterns discovered so far before proceeding

to calculating pattern support;

5) preferring patterns with lower support (above given minimal support limit)

during enumeration brings another positive impact on search runtime.

Currently, extension of this idea into the Gaston algorithm [1] is in progress as it
seems to be the most promising state-of-the-art algorithm.

References

[1] Nijssen S., Kok J. N.. Frequent Graph Mining and its Application to Molecular Databases,
Proceedings of the 2004 IEEE Conference on Systems, Man & Cybernetics (SMC2004),
2004.

[2] Washio T., Motoda H., State of the Art of Graph-based Data Mining, SIGKDD
Explorations Special Issue on Multi-Relational Data Mining, pp 59-68, Volume 5, Issue 1,
2003

[3] King R. D., Srinivasan A., Dehaspe L., Wamr: a data mining tool for chemical data, J.

Comput.-Aid. Mol. Des., 2001, 15, pp.173-181.

[4] Inokuchi A., Washio T., Okada T., Motoda H., Applying the Apriori-based Graph Mining

Method to Mutagenesis Data Analysis, Journal of Computer Aided Chemistry, 2001, 2,
pp.87-92.

13

[5] Yan X., Han J., gSpan: Graph-Based Substructure Pattern Mining, Proceedings of the

2002 IEEE International Conference on Data Mining (ICDM 2002), IEEE Computer
Society, 2002, pp.721-724.

[6] Helma C., Cramer T., Kramer S., de Raedt L., Data Mining and Machine Learning

Techniques for the Identification of Mutagenicity Inducing Substructures and Structure

Activity Relationships of Noncongeneric Compounds, J. Chem. Inf. Comput. Sci., 2004, 44,
1402-1411.

[7] Srikant R. & Agrawal R.. Mining Generalized Association Rules. Proc. of Very Large Data
Bases Conference, pp. 407–419, 1995.

[8] Ullmann, J. R.: "An Algorithm for Subgraph Isomorphism". Journal of the ACM, 23(1),
pp.31–42, 1976.

[9] Cook D. J., Holder L., Substructure discovery using minimum description length and

background knowledge, Journal of Artificial Intelligence Research, 1, pp.231-255, 1994

[10] Kuramochi M., Karypis G., "Frequent Subgraph Discovery," ICDM, p. 313, First IEEE
International Conference on Data Mining (ICDM'01), 2001

[11] Inokuchi A., Washio T., Motoda H.,, Complete mining of frequent patterns from graphs,
Mining graph data, Machine Learning, 50, pp.321-354, 2003

[12] Huan J., Wang W., Prins J., "Efficient Mining of Frequent Subgraphs in the Presence of
Isomorphism," ICDM, pp. 549, Third IEEE International Conference on Data Mining
(ICDM'03), 2003

14

Inductive Graph Logic Programming: work in
progress

Christophe Costa Florêncio

Department of Computer Science, K.U. Leuven, Leuven, Belgium
Chris.CostaFlorencio@cs.kuleuven.be

Abstract. There has recently been a lot of interest in learning from
graphs. Most approaches to this problem up to this point have been
pragmatic. While there definitely exists a need for such research, theo-
retically sound approaches that yield comprehensible theories of higher
expressive power are also desirable.

These are strong points of ILP, so it seems a good starting point for such
an approach. Thus, in order to express hypotheses about graphs, a graph
logic has to be chosen. A good candidate is Cardelli et al’s GL, since it
has decent expressive power while retaining acceptable computational
complexity. The most important operator in this logic is composition,
which non-deterministically composes (splits) a graph in two parts. This
makes the logic very flexible, since it allows quantification over subgraphs
with specified properties, but this power comes at a price.

We argue that a restricted form of composition is much more useful for
our purposes, and that little expressive power is sacrificed as long as
recursive theories are allowed.

1 Introduction

There has recently been a lot of interest in learning from graphs and structured
data. Most approaches to this problem up to this point have been more or
less pragmatic, i.e., focused on creating algorithms that achieve decent accuracy
on large datasets, using just a limited amount of computational resources (see
[CH06] for a recent collection of this kind of work). Such algorithms tend to yield
theories about their domain that have low expressive power, and sometimes even
take the form of just a set of frequent subpatterns.

While there definitely exists a need for such research, it is also desirable to
have approaches that can be shown to be mathematically sound, while yielding
comprehensible theories of higher expressive power. Such approaches of course
have an intrinsic theoretical interest, but certainly offer the perspective of useful
applications as well.

Since soundness and comprehensible theories are strong points of ILP, tech-
niques from this field are an obvious good starting point for such an approach.
Thus, in order to express hypotheses about graphs, a graph logic has to be cho-
sen. A good candidate is Cardelli et al’s GL and its variants, since it has decent

15

expressive power (between FO and MSO) while retaining acceptable computa-
tional complexity to be usable as query language. The most interesting opera-
tor in this logic is composition, which non-deterministically composes (splits) a
graph in two parts. This makes the logic very flexible, since it allows quantifi-
cation over subgraphs with specified properties, but this power of course comes
with a pricetag.

In this paper, we argue that in practice, GL as programming language re-
quires more computational resources than GL used as query language. We also
argue that composition yields problems when defining an lgg operator for graphs
as logical objects, since such an operator could yield an exponential number of
lggs. So, a restricted (linear) form of composition is much more useful for our
purposes, and that little expressive power is sacrificed as long as recursive theo-
ries are allowed. In other words, the computational burden can be shifted from
the operator to the more extensive use of recursive predicates. Although learning
recursive theories cannot be considered ‘solved’, it is at least a familiar research
problem. Some methods have been proposed to tame its complexity, and these
could be readily be applied in our framework.

2 The graph logic GL and its variants

The spatial graph logic GLµ was introduced in [CGG01,CGG02]. Its expressive
power was studied in [DGG07], which introduced the notation GL and GLµ for
the variants without and with the least fixed-point operator, respectively, and
for their linear variants LGL and LGLµ.

Of course, alternative logics have been known for a long time (first order
language of graphs, MSO logic for graphs) as well as alternative query languages
(TQL, Strudel and Graphlog). The main reason we are interested in GL (and
its variants) is that it allows graphs to be treated as logical objects and that it
expresses properties of graphs in a very direct and concise way. This makes it an
interesting candidate for ILP-like applications, since it is expected to introduce
a language bias that is easily interpretable in terms of graph properties, enhanc-
ing comprehensibility. This is true both of the theories generated by a learning
algorithm and the background theory that the user might specify in order to
define a language bias.

3 The Query Language

The core of the graph query language consists of first order logic, with quantifi-
cation restricted to edge label- (α) and node variables (ξ), an ‘edge’ predicate
written as α(ξ1, ξ2), and the (graph) composition operator |. Graphs are repre-
sented as multisets of edges, and the query Q1|Q2 is true iff the current graph can
be split in parts G1 and G2 such that Qi is true of Gi. For the purpose of this
discussion, details of transducers, abstraction and the least fix-point operator
can be ignored.

16

Composition is sometimes called exponential composition, to distinguish it
from the linear variant which is denoted Q1]Q2. For this variant, the left graph,
for which Q1 must be true, consists of just one edge.

We define the useful predicate here(x) with the formula in degree(x) ≥ 1 ∨
out degree(x) ≥ 1.1 The formula ∀x.here(x) → φ says that φ holds for all nodes
in the graph. This is abbreviated as ∀x ∈ G.φ (∀x1, . . . , xn ∈ G.φ).

This notation allows the expression of some common properties of graphs.
For example, the following formula defines a graph consisting of a single path:
path(x, y) def= in degree(x) = 0 ∧ out degree(y) = 0 ∧ ∀z ∈ G.((z 6= x →
in degree(z) = 1) ∧ (z 6= y → out degree(y) = 1)). A graph consisting of just
(nonoverlapping) cycles is defined by cycles def= ∀x ∈ G.degree(x) = 2. Trans-
ducers can be used to define operations on graphs like transitive closure, for
example.

This logic is not able to deal with hyperedges and isolated vertices, and does
not allow for labels for vertices. The latter can easily be introduced. The logic
does not really need to be extended to deal with hyperedges; there are well-
known ways to rewrite a hypergraph to a ’normal’ graph. However, to improve
readability it is preferable to work on hypergraphs directly, all that is needed for
this is some syntactic sugaring. Since hyperedges are by default ordered, ordered
trees are just a specific case of such graphs, and these are obviously useful in
computational linguistics.

The same is true of isolated vertices. The logic GL and variants do not allow
for this, since they define graphs as just multisets of edges. Once all edges that
have vertex v as origin or destination are removed from a graph, vertex v itself
is no longer accessible either. It is however very easy to encode such graphs,
simply by introducing a reserved edge label and using it to label loop edges for
all vertices. This obviously does not extend the expressive power of the logics.

4 Complexity and expressive power

In [DGG07] it is demonstrated that without recursion, the linear and exponential
versions of the logic are equivalent to first-order (FO) and monadic second-
order (MSO) logics on graphs representing strings, respectively. Extended with
the fix-point operator for recursion, both are able to express PSPACE-complete
problems.

For query languages, it makes sense to distinguish the following:

1. combined complexity {(G,φ) : G |= φ};
2. data complexity the complexity class that contains all sets Gφ.

The combined complexity takes the size of both query and database into
account, the data complexity is defined strictly in terms of size of the database.
Since in real-life situations, queries are generally much smaller than the databases
1 We do not need to introduce natural numbers into the logic for this; [DGG07] shows

how to define the degree predicates for any number n.

17

they query, the latter is considered to be more realistic. However, in the case of
graph mining, the so-called transactional setting is quite common. This entails
dealing with many graphs of restricted size, and thus the combined complexity,
which is generally higher, may be more relevant in such cases. Whether this is
really the case is hard to determine a priori, and can probably only be decided
in practice.

However, in an ILP context, GL would be used as a description- or program-
ming language more than a query language. In other words, it would not be
used exclusively for model checking. This leaves open the possibility that the
complexity goes up in such a setting, and in the following we argue that this is
actually the case.

5 Learning

Casting graph learning in the ILP framework makes a whole spectrum of ap-
proaches to this problem possible: learning from positive and negative examples,
learning from positive data, intensional clustering, decision trees or -lists, regres-
sion etc. All of these require the definition of a refinement operator for graphs,
like least general generalization.

As the name suggests, the least general generalization operation is meant to
generate, given two clauses, a clause that generalizes both, but is still as specific
as possible. One aspect of this operation is the generalization of literals, which
involves matching and generalizing their arguments. Normally anti-unification
is the appropriate approach to this problem. Given two terms t1 and t2, anti-
unification yields a (unique) term t such that there exist substitutions σ1, σ2

such that σ1[t1] = t and σ2[t2] = t.
In the case of graph logic, where graphs are represented by multisets, this

approach will not work. One reason is that there generally is no unique term.
The composition operator | is both associative and commutative. Unification of
graphs that are represented using this operator is thus equivalent to a special case
of unification under an equivalence theory (E-unification), namely unification
modulo associativity and commutativity.

When used as a query language, generally one of the terms is ground (since
the logic is only used for model checking) and this greatly simplifies matters.
However, when used as a programming language, where both terms can contain
variables representing subgraphs, nodes and edge labels, the full power of AC-
unification is necessary. This operation is known to be finitary, i.e., it always
yields a finite number of most general unifiers, if the terms are unifiable. This
number can be very high even for simple terms ([BHK+88]), so computing the
complete set of mgus is generally not a feasible approach. Even the problem
of checking whether two terms containing AC-function symbols are unifiable
(AC-matching) is only known to be in NP ([KN92]).2

Thus, pure composition seems to be an operation that is too powerful for
our purposes. Note that the problems with composition remain even with a
2 However, AC linear matching is in P ([BH96]).

18

restricted class of graphs for which otherwise difficult problems are known to
be polynomial-time solvable, such as outerplanar graphs. It is also difficult to
see how such problems could be avoided in any formalism with the same type
of multi-set semantics. It may be possible to come up with optimizations which
compile out composition in certain cases, but this is expected to be very hard.

Thus, linear composition is much more attractive from a computational point
of view, especially when combined with recursion, and makes implementation
easier as well. Whether GL has the same expressive power as LGLµ is currently
an open question, but it is clear that these systems are very close in expressive
power ([KN92]). Thus, it seems we can shift the computational burden from the
exponential composition operation to recursive clauses.

6 Recursion

In order to restrict composition to the linear case while preserving expressive
power, recursive predicates must be allowed. Learning recursive logic programs
is a notoriously difficult problem, however, positive results do exist. For example,
in [Sha83] an algorithm is presented that identifies such programs in the limit,
in the context of learning from interpretations, from positive and negative data.
Generally, positive results are either theoretically sound but only applicable to
a restricted class, or theoretically unjustified heuristics are used to prune the
search space. We give some more examples:

In [Mal03] the ILP system ATRE is described. Building on work on multiple
predicate learning (cf [RLD93]), ATRE is able to learn recursive theories from
real world data in reasonable time. ATRE explores just a polynomially bounded
part of the search space, although it may still take exponential time to do so. A
short overview of work in this direction can also be found in [Mal03].

In the setting of nonmonotonic inductive logic programming, introduced in
[Hel89], the focus is on finding interesting properties of the examples. In the
formalization from [RD94], concepts are represented as clausal theories, and
examples as interpretations that are models of the theory. It has been shown
there that first order range-restricted clausal theories consisting of clauses made
up of up to k literals of size at most j are PAC-learnable from positive data in
polynomial time. This is an expressive class which includes recursive concepts.
This framework has been implemented as the CLAUDIEN system, which does
not generate all clauses in jk−CT, but uses an optimal refinement operator and
a bias specification mechanism.

A more theoretical perspective is offered by work done on the subject of
elementary formal systems (EFS), basically logic programs consisting of definite
clauses whose arguments are patterns instead of terms. A definite clause of an
EFS is hereditary (H-EFS) if every every pattern in the body is a subword of a
pattern in the head. It has been shown ([MSS00]) that H − EFS(m, k, t, r) is
polynomial-time (PAC)learnable, where theories consist of at most m hereditary
definite clauses with predicate symbols of arity at most r, where k and t bound
the number of occurences of variables in the head and the number of atoms in the

19

body, respectively. This is a strong theoretical result, and offers the perspective
of PAC-learnability results for GL-based programs. For this we need a notion of
pattern that has a multi-set semantics, which could easily be done.

7 Conclusions

The exponential composition operator is known to be more or less tractable in
the context of a graph query language. However, for an ILP setting it seems all
but unusable, and the linear variant seems a much better candidate. In order
not to lose expressive power, theories expressed with this operator need to be
recursive, which although problematic is not infeasible for restricted subclasses.

References

[BH96] Jochen Burghardt and Birgit Heinz. Implementing anti-unification modulo
equational theory. Arbeitspapiere der GMD 1006, Fraunhofer Institute, June
1996.

[BHK+88] Hans-Jürgen Bürckert, Alexander Herold, Deepak Kapur, Jórg H. Siek-
mann, Mark E. Stickel, Michael Tepp, and Hantao Zhang. Opening the
ac-unification race. J. Autom. Reason., 4(4):465–474, 1988.

[CGG01] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for
querying graphs, 2001.

[CGG02] Luca Cardelli, Philippa Gardner, and Giorgio Ghelli. A spatial logic for
querying graphs. In ICALP ’02: Proceedings of the 29th International Col-
loquium on Automata, Languages and Programming, volume 2380 of Lecture
Notes in Computer Science, pages 597–610, London, UK, 2002. Springer-
Verlag.

[CH06] Diane J. Cook and Lawrence B. Holder. Mining Graph Data. John Wiley
& Sons, 2006.

[DGG07] Anuj Dawar, Philippa Gardner, and Giorgio Ghelli. Expressiveness and
complexity of graph logic. Inf. Comput., 205(3):263–310, 2007.

[Hel89] N. Helft. Induction as nonmonotonic inference. In Proc. First Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing, pages 149–156, San Mateo, CA, 1989. Morgan Kaufmann.

[KN92] Deepak Kapur and Paliath Narendran. Complexity of unification problems
with associative-commutative operators. Journal of Automated Reasoning,
9(2):261–288, 1992.

[Mal03] Donato Malerba. Learning recursive theories in the normal ILP setting.
Fundam. Inf., 57(1):39–77, 2003.

[MSS00] Satoru Miyano, Ayumi Shinohara, and Takeshi Shinohara. Polynomial-time
learning of elementary formal systems. New Generation Computing, 18:217–
242, 2000.

[RD94] Luc De Raedt and Sašo Džeroski. First-order jk-clausal theories are PAC-
learnable. Artif. Intell., 70(1-2):375–392, 1994.

[RLD93] L. De Raedt, N. Lavrač, and S. Džeroski. Multiple predicate learning. In
Proceedings of the 13th International Joint Conference on Artificial Intelli-
gence. Morgan Kaufmann, 1993.

[Sha83] Ehud Shapiro. Algorithmic Program Debugging. Cambridge, MA, MIT
Press, 1983.

20

Experiments with Czech Linguistic Data and ILP

Jan Dědek1, Alan Eckhardt1,2, Peter Vojtáš1,2

1 Department of Software Engineering, Charles University in Prague, Czech Republic

2 Institute of Computer Science, Czech Academy of Science
{dedek, eckhardt, vojtas}@ksi.mff.cuni.cz

Abstract. In this paper we present basic experiments that we have made in
connection with our research in the domain of the Semantic Web. These
experiments should demonstrate possibilities of employing ILP technique in
the task of acquisition of semantic information from text of Czech Web pages.

These experiments are preceded by complex linguistic analysis of the texts and
the output of linguistic tools is processed in the ILP procedure.

Keywords: ILP, web, semantics, linguistics, text processing, Czech language.

1 Introduction

Our long-term aim is to extract semantic information from natural language texts.

There is a large amount of texts publicly available on internet, but it is difficult to

process it using a machine or software agent as it is suggested in the idea of the

Semantic Web. These texts are suitable for human reader, who has to read them.

Automatic machine processing of information hidden in the texts is very problematic.

The extraction of structured information from the text is often based on linguistic

methods and we also process the texts by linguistic tools and use the resulting
linguistic trees of sentences for easier extraction of information with help of ILP.

In Section 2 we describe basic methodology of our extraction. Experiments are

described in Section 3 and in Section 4 is a conclusion.

2 Methodology

Our extraction method exploits several linguistic tools developed mainly in the

Institute of Formal and Applied Linguistics1 in Prague, Czech Republic. These tools

produce domain independent linguistic annotation. The linguistic annotation is then

used in the extraction process. The extraction process is supported with extraction

rules, which are learned in an ILP procedure. In this paper we present initial

experiments with learning of extraction rules. After all semantic interpretation of

extraction rules can provide semantics to the extracted data.

1 http://ufal.mff.cuni.cz

21

Domain independent intermediate linguistic annotation.
We use a chain of linguistic analyzers ([1], [2], and [3]) that process text presented

on a web page and produce linguistic (syntactic) trees corresponding to particular

sentences. These trees serve as a basis of our extraction process.

Fig. 1. A tectogrammatical tree of the sentence: “Two men died on the spot in the demolished
Trabant...”

Unlike the usual approaches to the description of English syntax, the Czech

syntactic descriptions are dependency-based, which means that every edge of a

syntactic tree captures the relation of dependency between a governor and its

dependent node. Especially the tectogrammatical (deep syntactic) level of

representation [4] is closer to the meaning of the sentence. The tectogrammatical

trees (see Figure 1) have a very convenient property of containing just the type of

information we need for our purpose, namely the information about inner participants

of verbs - actor, patient, addressee etc.

On the Figure 1 we can see the relationship between particular words of a sentence

and nodes of tectogrammatical tree – the highlighted node of the tree corresponds
with the word “two” in the sentence (also highlighted).

Domain and purpose dependent extraction.
Assume we have pages annotated by the linguistic annotator and we have a

domain ontology. The extraction method we have used is based on extraction rules.

An example of such an extraction rule is on Figure 2 (on the left side). These rules

represent common structural patterns that occur in sentences (more precisely in

corresponding trees) with the same or similar meaning. Mapping of the extraction

22

rules to the concepts of target ontology would enable the semantic extraction.

Example of such mapping is demonstrated in the Figure 2.

We experimented with obtaining extraction rules in two ways.

(1) Rules and mappings were designed manually (like the rule on the Fig. 2) and

(2) Rules and mappings were learned using ILP methods.

Incident

actionManner String*

negation Boolean

actionType String

hasParticipant Instance* Participant

Participant

participantType String

participantQuantity Integer

hasParticipant*

Fig. 2. An example of extraction rule and its mapping to ontology

Here we will present our experiments with learning of the rules. We discovered

that we can use a straightforward transformation of linguistic trees to predicates of

ILP (for example see Figure 3). Logic representation of a tree consists of three parts:

1. nodes (represented as atoms nodeX_Y)

2. edges (represented by predicate edge) and

3. attributes of nodes (additional predicates e.g. t_lemma, functor,

m_tagX).

%%%

% Two men died on the spot in the % demolished trabant – a senior 82

% years old and another man, who’s

%%%%%%%% Nodes %%%%%%%%

tree_root(node0_0). node(node0_0).

id(node0_0, t_jihomoravsky49640_txt_001_p1s4).

node(node0_1).

t_lemma(node0_1, zemrit).

functor(node0_1, pred).

gram_sempos(node0_1, v).

node(node0_2).

t_lemma(node0_2, x_perspron).

functor(node0_2, act).

gram_sempos(node0_2, n_pron_def_pers).

...

%%%%%%%% Edges %%%%%%%%

edge(node0_0, node0_1). edge(node0_1, node0_2). edge(node0_1, node0_3).

...

edge(node0_34, node0_35).

%%%%%%%% Injury %%%%%%%%

injured(t_jihomoravsky49640_txt_001_p1s4).

Fig. 3. A sample of the prolog representation of a sentence

23

3 Experiments

We tried to extract some semantic information from natural language texts. The

aim was to find out the number of injured persons during car accidents. Firemen

reports have been used; some of them were about car accidents, some were not. Each

report was split into sentences and each sentence was linguistically analyzed and

transformed into a tectogrammatical tree, as described in the previous section. These

trees were converted to a set of the Prolog facts (see Figure 3).

Sentences, which talk about an injury during a car accident, were manually tagged

by predicate injured(X), where X is the id of the sentence. Those sentences that

do not talk about injured persons during a car accident were tagged as :-

injured(X), which represents a negative example. This tagging can be done even
by a user inexperienced in linguistics and ILP.

These tagged sentences formed the input for ILP; we used 22 sentences as positive

examples and 13 as negative examples. We used Progol [5] as ILP software.

The rules ILP found are in Table 1.

Table 1. Rules found by ILP.

injured(A) :- id(B,A), id(B,t_plzensky57770_txt_001_p5s2).

injured(A) :- id(B,A), id(B,t_plzensky60375_txt_001_p1s6).

injured(A) :- id(B,A), id(B,t_plzensky57870_txt_001_p8s2).

injured(A) :- id(B,A), id(B,t_plzensky57870_txt_001_p1s1).

injured(A) :- id(B,A), edge(B,C), edge(C,D), t_lemma(D,zranit).

injured(A) :- id(B,A), edge(B,C), edge(C,D), t_lemma(D,nehoda).

The first four rules are over-fitted to match specific sentences. Only the last two

represent generally applicable rules. But they do make sense – “zranit” means “to

hurt” and “nehoda” means “an accident” in Czech. These two rules mean that the

root element is connected either to a noun that means an accident or to a verb that

means to hurt.

We tested these rules on a set of 15 positive and 23 negative examples. Results are

in Table 2, overall accuracy was 86.84%. P is a sentence that ILP classified as

positive, ~P is a negative sentence, A is a sentence that was manually tagged as

positive and ~A is a sentence tagged as negative. Out of 15 sentences that were

tagged as positive, 11 were also classified as positive by ILP and 4 were classified as

negative. Out of 23 sentences that were tagged as negative, 22 were also classified as

negative by ILP and only 1 was classified as positive.

Table 2. Results on the test set.

 A ~A

P 11 1

~P 4 22

We also tried to find the number of injured in each sentence. Each sentence was

tagged by binary predicates number_injured and number_severe_injury. The
first parameter is the id of a sentence; the second is the correct number of persons

involved. We also added artificial negative examples with wrong numbers – we used

24

the numbers present in the dataset: 1.2.3.4.5.6.7.8.9. Note that this task is more

difficult than the previous one, because the number is sometimes not mentioned

explicitly in the sentence. For example the sentence “both men died in the accident”

speaks about two men, but the word “two” is not present in the sentence.

Two following rules were mined (see Table 3). We have excluded twenty rules –

each covered only one sentence. These mined rules (in the Table 3) are quite

interesting because they are not meaningless. Especially the second one is nearly

exemplary. This second rule contains path form the root to the analytical leaf node E:

root_id(A)→node(B) →node(C) →node(D) →analytical_node(E).

Node D is connected in the role of patient – affected object (functor(D,pat)) and
in the morphological description in the node E there is restriction on singular number

of the node D (m_tag3(E,s)). So there should be only one participant of the injury.

Table 3. Rules found by ILP.

number_injured(A,1) :- id(B,A), edge(B,C), edge(C,D),

edge(D,E), edge(E,F), m_tag2(F,m).

number_injured(A,1) :- id(B,A), edge(B,C), edge(C,D),

edge(D,E), functor(D,pat), m_tag3(E,s).

The results in Table 4 look promising, but the high accuracy is attended thanks to

the high number of negative examples. Overall accuracy was 96,30%.

However, ILP has succeeded to classify correctly 4 out of 6 positive examples.

Table 4. Results on the test set using only 6 sentences with a number of injured present.

 A ~A

P 4 0

~P 2 48

When we look at the predicate number_severe_injury, the situation is about
the same. Only one useful rule was mined (leaving out three rules with ids):

Table 5. A rule found by ILP.

number_severe_injury(A,1) :- id(B,A), edge(B,C), edge(C,D),

edge(D,E), m_tag3(E,s), m_tag4(E,1).

 And the results are also similar:

Table 6. Results on the test set using only 8 sentences with a number of severe injuries
present.

 A ~A

P 4 1

~P 4 64

Now only 4 out of 8 positive examples were classified correctly. Overall accuracy

was 93.15%.

25

4 Conclusion

The main contribution of this paper was to try ILP as a learning procedure of

extraction rules in our information extraction process supported by linguistic

preprocessing of text data. We used a complex set of linguistic tools to transform

natural language to linguistic trees; these trees were afterwards transformed into a

Prolog representation.

The performance of ILP is questionable – we did use rather small data set for

learning and results are not astonishing. However, the preliminary results are not

desperate – some rules were found and their performance was not too bad. For real-
world use, many optimizations should be made.

In future, we would like to do more experiments in different domains and extend

the set of extraction tasks. We also would like to test this approach on a larger data

set and study the dependence of the size of the training data and the time of the

inductive process. Also, some ILP systems other than Progol can be used.

Acknowledgment

This work was partially supported by Czech projects 1ET100300517, 1ET100300419

and MSM-0021620838.

References

1. Jan Hajič. Morphological Tagging: Data vs. Dictionaries. In: Proceedings of the 6th Applied
Natural Language Processing and the 1st NAACL Conference, Seattle, Washington, 2000,
pp. 94-101.

2. Michael Collins, Jan Hajic, Eric Brill, Lance Ramshaw, and Christoph Tillmann. A
Statistical Parser of Czech, in Proceedings of 37th ACL Conference, pp. 505–512,
University of Maryland, College Park, USA, 1999.

3. Vaclav Klimes. Transformation-Based Tectogrammatical Analysis of Czech, in Proceedings
of the 9th International Conference, TSD 2006, number 4188 in Lecture Notes In Computer
Science, pp. 135–142, Springer-Verlag Berlin Heidelberg, 2006.

4. Marie Mikulova, Alevtina Bemova, Jan Hajic, Eva Hajicova, Jirı Havelka, Veronika
Kolarova, Lucie Kucova, Marketa Lopatkova, Petr Pajas, Jarmila Panevova, Magda

Razımova, Petr Sgall, Jan Stepanek, Zdenka Uresova, Katerina Vesela and Zdenek
Zabokrtsky. Annotation on the tectogrammatical level in the Prague Dependency Treebank.
Annotation manual, Technical Report 30, UFAL MFF UK, Prague, Czech Rep. 2006.

5. S. Muggleton. Learning from positive data. In Proceedings of the Inductive Logic
Programming Workshop, 1996.

26

Network Analysis of the ILPnet2 Co-authorship
Network

Qingyi Gao and Peter Flach

Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK

Abstract. In this paper we study the ILPnet2 co-authorship network.
The ILPnet2 on-line library (www.cs.bris.ac.uk/ILPnet2/Tools/Reports/)
is a repository of more than 1,000 ILP-related articles by well over 500
authors, published between 1970 and 2003. Co-authorship networks con-
stitute a specific view on bibliographic data, in which scientific publi-
cations are modeled as vertices, and two vertices are connected by an
undirected edge whenever the two corresponding papers share at least
one author. We investigate the largest connected component in this net-
work, which contains 816 papers by 526 different authors. Properties of
interest include degree distribution and degree centrality and PageRank.
We furthermore study the community structure in this network by ap-
plying the Newman-Girvan algorithm. Our main conclusion is that, even
with restricted information based purely on co-authorship, bibliographic
network analysis can reveal useful and interesting patterns.

1 Introduction

Network analysis has attracted considerable attention these years. It covers a
wide range of domains ranging from abstract space such as social networks of
collaborations, coauthors network [2] and acquaintance network [6], to tangible
networks like World Wide Web, biological networks or transportation network
[3], to name but a few.

Mathematically, a network or graph consists of set of nodes or vertices to-
gether with a set of pairs of vertices called edges. Alternatively, they can be
represented by an adjacency matrix. An adjacency matrix of a network with n
vertices is the n×n matrix A with Ai,j if there is an edge from vertex i to vertex
j appears, and 0 otherwise.

Bibliographic data can induce various types of network, such as collabora-
tion networks, co-citation networks and co-authorship networks. In collaboration
networks authors are vertices and edges indicate scientific collaboration. Two au-
thors have a collaboration relationship if they have published at least one paper
together. Clearly, collaboration is a symmetric relation, which means that the
network is undirected: an edge (u, v) exists if and only if (v, u) exists. Undirected
networks have symmetric adjacency matrices. Citation networks have papers as
vertices and (directed) edges indicate that one paper cites another. In a co-
authorship network, which is the subject of this paper, vertices indicate papers

27

and undirected edges between vertices represent that papers share at least one
joint author.

We investigate the largest connected component in this network, which con-
tains 816 papers by 526 different authors. This component has 38,372 edges out
of a possible 8162, which is a relatively high 5.76%. This means that the network
is comparatively dense, which is also borne out by the fact that the average dis-
tance (number of edges in a shortest path or geodesic) between any two vertices
is 3.37. The diameter of the network, i.e., the longest geodesic, is 9; there are
111 paper pairs with this distance.

One question that we can ask in such a network is how important or cen-
tral a vertex is. Centrality measures have been defined in social network theory
as indices of prestige, prominence, importance, and power-the four Ps. [1]. In
this paper we concentrate on degree centrality and PageRank centrality. Degree
centrality represents the simplest definition of centrality and ranks vertices by
their numbers of neighbors. PageRank centrality refines that further by trying
to estimate how influential a vertex is.

2 Degree Centrality

The degree (or degree centrality) of a vertex in a network is the number of edges
connected to that vertex.We can simply calculate the vector of degree centralities
by multiplying the adjacency matrix with a matrix containing all ones. Figure
1 shows how many papers corresponding to a given degree. We can observe a
few small plateaus in this plot, which would typically indicate groups of papers
with the same authors and hence the same degrees. Figure 2 indicates cumulative
degree distribution of ILPNet2, whereas Figure 3 illustrates the doubly logarithm
of cumulative degree distribution of ILPNet2, Figure 4 introduces the results of
using linear regression, the slope of equation is around −7. The top 10 Degree
Centrality papers are as follows (The first number indicates the degree of each
paper):

1. 195: L. De Raedt; S. Muggleton; - Inductive Logic Programming: Theory
and Methods; - 1994

2. 176: C. Moure; M. Molina; N. Jacobs; S. Dzeroski; S. Muggleton; W. Van
Laer - Detecting Traffic Problems with ILP; - 1998

3. 174: L. De Raedt; N. Lavrac; S. Dzeroski - Multiple predicate learning; -
1993

4. 174: L. De Raedt; N. Lavrac; S. Dzeroski - Multiple predicate learning; -
1993

5. 170: I. Bratko; S. Dzeroski; S. Muggleton - Applications of inductive logic
programming; - 1995

6. 170: H. Blockeel; K. Driessens; L. De Raedt; S. Dzeroski - Relational Rein-
forcement Learning; - 1998

28

7. 162: S. Dzeroski; S. Muggleton; S. Russell - PAC-learnability of determinate
logic programs; - 1992

8. 162: S. Dzeroski; S. Muggleton; S. Russell - PAC-learnability of constrained
nonrecursive logic programs; - 1992

9. 162: S. Dzeroski; S. Muggleton; S. Russell - Learnability of constrained logic
programs; - 1993

10. 156: D. Kazakov; D. Zupanic; L. Todorovski; N. Lavrac; O. Stepankova; P.
Flach; S. Dzeroski; S. Weber - Internet Resources on ILP for KDD; - 2001

The top 10 authors in the top 50 degree centrality papers are (the number in
brackets refers to the number of top 50 papers they are involved in): S. Muggleton
(31), A. Srinivasan (21), L. De Raedt (16), S. Dzeroski (14), N. Lavrac (8), H.
Blockeel (6), D. Page (5), M. Bain (5), P. Flach (3) and J. Ramon (3). In order to
get a better understanding of the degree distribution, Figure 1 plots a histogram.
It is clear that this distribution is very spiky. In fact, several of these spikes can
be attributed to specific authors or sets of authors, as we now show. Consider
the highest spike of 38 papers having degree 102. These 38 papers have the
following authorships: S. Muggleton (27), S. Muggleton, M. Sternberg (2), S.
Muggleton, A. Tamaddoni-Nezhad (2), S. Muggleton, K. Khan, R. Parson (2),
S. Muggleton, J. Firth (1), S. Muggleton, S. Colton (1), S. Muggleton, A. Puech
(1), S. Muggleton, Parson (1), and B. Swennen, C. Ghil, E. Bleken, L. De Raedt,
M. Bruynooghe, V. Coget (1). In other words, 37 out of the 38 papers are either
by S. Muggleton as single author, or by S. Muggleton together with other authors
who have only published with S. Muggleton (otherwise their degree would be
higher than 102). The only exception is the last paper, which can be seen as a
coincidence. The spike can thus clearly be attributed to S. Muggleton.

Fig. 1. General degree distribution

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Cumulative degree distribution

29

Fig. 3. Doubly logarithm plot Fig. 4. Power law equation

3 PageRank Centrality

PageRank centrality differs from eigenvector centrality in that each vertex can
propagate only a fixed total amount of centrality to its neighbors. In other words,
if a vertex has d neighbors and centrality x, then x/d is propagated to its neigh-
bors. Furthermore, each node is given a small amount of centrality to begin with,
regulated by a parameter α. Formally, let M by a probability transition matrix
obtained from A by renormalising each row to sum to 1, and let U be a transition
matrix of uniform transition probabilities. The transition matrix αU +(1−α)M
establishes a Matrix chain, and the principal eigenvector of this transition ma-
trix, which defines the stationary distribution of the Markov chain, is defined as
the vector of PageRank centralities [5].

Figure 5 shows all papers sorted on decreasing PageRank centrality. It is
interesting to note that we obtain a much gentler slope than with degree, and
that particularly at the low end. PageRank centrality generally distinguishes
papers well.

The top 10 PageRank Centrality papers are as follows (The first number
indicates the PageRank centrality value of each paper):

1. 0.1013: D. Kazakov; D. Zupanic; L. Todorovski; N. Lavrac ; O. Stepankova;
P. Flach; S. Dzeroski; S. Weber - Internet Resources on ILP for KDD; - 2001

2. 0.0809: F. Zelezny; M. Krogel; N. Lavrac; P. Flach; S. Rawles ;S. Wrobel -
Comparative Evaluation of Approaches to Propositionalization; - 2003

3. 0.0786: B. Tausend; C. Nedellec; C. Rouveirol; F. Bergadano ; H. Adz -
Declarative Bias in ILP; - 1996

4. 0.0785: D. Page; L. De Raedt; S. Wrobel - Guest Editorial; - 2001
5. 0.0767: L. De Raedt; S. Muggleton - Inductive Logic Programming: Theory

and Methods; - 1994
6. 0.0747: L. De Raedt; N. Lavrac; S. Dzeroski - Multiple Predicate Learning;

- 1993

30

7. 0.0747: L. De Raedt; N. Lavrac; S. Dzeroski- Multiple Predicate Learning; -
1993

8. 0.0742: C. Moure; M. Molina; N. Jacobs; S. Dzeroski; S. Muggleton; W. Van
Laer - Detecting Traffic Problems with ILP; - 1998

9. 0.0742: H. Blockeel; K. Driessens; L. De Raedt; S. Dzeroski - Relational
Reinforcement Learning; - 1998

10. 0.0735: I. Bratko; S. Dzeroski; S. Muggleton - Applications of inductive logic
programming; - 1995

0 100 200 300 400 500 600 700 800 900
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 5. PageRank Centrality

4 Community Structure

We applied Newmans community structure algorithm to the ILPnet2 co-authorship
network. We observed that the algorithm repeatedly finds a smaller cluster and
continues splitting the rest. That is, if we were to plot a dendrogram it would
always branch in the same direction. Figure 6 gives a graphical depiction of
some of the clusters. From the 57 clusters we calculated a modularity value of
Q = 0.5217. According to Newman [4], most networks fall in the range 0.3 to
0.7. Consequently, Q = 0.5217 appears a reasonable split of the graph.

5 Conclusion

In this paper we analyzed the co-authorship network derived from the ILPnet2
on-line library. We have demonstrated that, even though co-authorship informa-
tion is limited, it can be used to reveal interesting information. For instance,
the degree distribution suggests a mixture of two distributions, a pure power
law describing the fat tail of high degree papers the giant component and a log-
normal distribution describing the low-degree periphery papers. We gave results

31

Fig. 6. Community Structure of ILPNet2

of degree centrality and PageRank centrality. Based on these results, we would
suggest that the latter gives the most interesting and balanced results, as degree
centrality is too simplistic. We have also given the results of a network cluster-
ing algorithm. Future work includes assessing the quality of these results with
the help of domain experts, and complementing the centrality analysis of ILP
papers by means of citation counts. We also plan to investigate the weighted
co-authorship network, where the weights are proportional to the number or
proportion of shared authors.

References

1. Stephen P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–71,
January 2005.

2. M. E. Newman. Coauthorship networks and patterns of scientific collaboration.
Proc Natl Acad Sci U S A, 101 Suppl 1:5200–5205, April 2004.

3. M. E. J. Newman. Scientific collaboration networks. i. network construction and
fundamental results. Physical Review E, 64(1):016131+, June 2001.

4. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks, August 2003.

5. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

6. S. Wuchty and E. Almaas. Evolutionary cores of domain co-occurrence networks.
BMC Evol Biol, 5(1), 2005.

32

Learning Comprehensible Relational Features
to Distinguish Subfossil Decapod

Crustacean Dactyls

Mark Goadrich and Jeffrey Agnew

Department of Mathematics and Computer Science
Department of Geology

Centenary College of Louisiana

Abstract. Our research explores the application of Inductive Logic Pro-
gramming to a new domain involving decapod crustacean claws. We find
that we can distinguish dactyl shapes by automatically extracting rela-
tional features that describe their underlying spatial structure. We first
use medial axis techniques to find the shock graph of each dactyl outline,
which is then converted into a first-order logic representation capturing
the connections, distances and angles between the nodes in this graph.
We then use Aleph to find relational classification rules based on the
shock graph representations. These relational rules provide a concise and
human-understandable way to describe the morphological differences be-
tween closely related decapods, and can be seen as a first step to creating
automatically learned quantitative taxonomic keys.

1 Introduction

Because decapod crustacean claws are potentially affected by numerous selective
agents, they are excellent candidates for evolutionary studies of morphology.
Despite being commonly found in shell-rich fossil assemblages, decapod dactyls
(i.e., claw movable fingers) are usually ignored because of the assumption that
they can be identified only to high taxonomic levels.

However, outline-based and geometric morphometric methods have success-
fully discriminated the dactyls of sibling species and hybrids of the stone crab
Menippe [2], closely related species of Panopeus [3] and other xanthoid genera
including Cataleptodius, Dyspanopeus and Eriphia [1]. Principal component anal-
yses of elliptic Fourier descriptors [6] also have been used to quantify ontogenetic
shape trajectories and wear in dactyls [1]. Although these techniques allow sta-
tistical tests of differences in dactyl morphologies, dactyl shapes must still be
described qualitatively.

Our research introduces a new method for distinguishing dactyl shapes by
automatically extracting relational features that describe their underlying spatial
structure. Using Aleph [9], an Inductive Logic Programming (ILP) algorithm,
we learn general rules that capture informative biological relationships, and find
that we can limit overfitting by restricting ourselves to a simple representation
of the data.

33

Fig. 1. Scanning Electron Microscope images of Eriphia gonagra (a) and
Menippe mercenaria (b) dactyls, and their corresponding shock graphs, (c) and
(d).

2 Dataset Formulation

Our dataset for this study consists of 38 dactyl images, 12 belonging to Eriphia
gonagra and 26 belonging to Menippe mercenaria. Figure 1 (a) and (b) show
representative left minor dactyls of these two species. We first use medial axis
techniques, used for shape recognition algorithms in computer vision, to find the
shock graph of each dactyl outline. Next, these shock graphs are converted into
a first-order logic representation capturing the connections, distances and angles
between the nodes in each graph.

2.1 Shock Graphs

We begin with the dataset from Agnew [1], where each dactyl image was scaled
and aligned using the SHAPE software [5]. To create relational features for each
dactyl and expose the underlying skeleton of the images, we chose to convert
each image into a shock graph [4] using the flux skeleton implementation of
ShapeMatcher [7]. A shock graph is created from a 2D image by first converting
the image into an outline. This outline is then thinned along the normal vector
according to the calculated flux at each point. Where these normal vectors meet,
edges, end points and branch points can be found when looking at the image
pixels.

Shock graphs have been used in computer vision as a technique for object
recognition; when combined with algorithms for graph similarity, they can help
identify when an object has been rotated or distorted over time and space.
Sample shock graphs for each species can be found in Figure 1 (c) and (d);
note that the top bump in Eriphia gonagra creates an edge not seen in Menippe

34

Predicate Type Predicate Name
Head eriphia(+example).
Basic hasNode(+example, -node).

hasEdge(+example, -edge, -node, -node).
angle(+edge, +edge, -float).
distance(+node, +node, -float).
(+float)>(+float).
(+float)<(+float).
(+float)=<(+float).
(+float)>=(+float).

Acute obtuse(+float).
acute(+float).

Full interiorNode(+node).
between0and20(+float).
. . .
between280and300(+float).

Table 1. Background knowledge and modes generated from shock graph repre-
sentation.

mercenaria graphs. Also note the difference in length and angle of the bottom
bump in M. mercenaria. We believe this shape representation can be used to
qualitatively understand the phenotypic variations present between these two
species.

2.2 First-order representation and Aleph

Aleph [9] is a top-down ILP covering algorithm, written completely in Prolog.
As input, Aleph takes background knowledge in the form of either intensional or
extensional facts, a list of modes declaring how literals can be chained together,
and a designation of one literal as the head predicate to be learned. We chose our
head predicate to be the smaller class of Eriphia gonagra dactyls, and investigate
three levels of background knowledge, shown in Table 1.

First, our basic extentional facts are based on the shock graph, such that
we create two predicates, hasNode and hasEdge, to connect the nodes and edges
with each example. We also calculate the angle between each adjacent edge, the
distance between any two nodes in the graph, and include the predicates of >,
<, >= and =< to compare these angles and distances.

The next level of background knowledge, acute, includes intensional defini-
tions for acute, floating-point numbers less than 90, and obtuse, floating-point
numbers greater than 90. Finally, the full background knowledge level includes
a predicate for designating nodes as being adjacent to two other nodes with
interiorNode, and between predicates to generalize floating-point numbers to
into bins of size 20, ranging from 0 to a maximum of 300 because of the maximum
image size.

35

eriphia(A) :-
hasEdge(A,B,C,D), hasEdge(A,E,D,F), hasEdge(A,G,F,H), distance(D,H,I),
distance(F,C,J), J<I, hasEdge(A,K,F,L), distance(L,H,M),
J<M, distance(L,C,N), J<N, hasEdge(A,O,P,Q),
distance(Q,H,R), M<R, distance(L,Q,S), J<S.

Fig. 2. Sample rule learned from fold 0, which covered 9 positive and 0 negative
training examples, and 3 positive and 0 negative testing examples.

closer muscle
attachment point

pivot point

opener muscle
attachment point

tip

F

D

C

P
Q

H

L

Fig. 3. One possible match of the the nodes C, D, F, H, L, P and Q from the
rule in Figure 2 when applied to the first Eriphia gonagra example.

3 Experimental Results

We divided the data of 38 examples into five folds of roughly equal size, dis-
tributing the positive and negative examples separately to ensure a distribution
in each subfold comparable to the complete dataset. In Aleph, we used the in-
duce method of exploring and removing seed examples, with the heuristic search
method and m-estimate evaluation function, setting m to 20. Other parameter
settings changed were to have a minimum accuracy of 0.2, a search depth of 10, a
variable-chaining length of 20, a maximum clause length of 20, and a maximum
search nodes explored of 20,000.

Figure 2 shows a sample rule learned from fold 0 using only the basic back-
ground knowledge. This rule captures all of the positive Eriphia gonagra exam-
ples and none of the negative examples, in both the training set and testing set.
It includes a sequence of connected nodes, C to D to F to H, where the distance
between nodes C and F, called J, is less than other calculated distances in this
rule. A corresponding distance J is learned in almost all folds, and when this
rule is applied to the positive examples, as seen in Figure 3, node C frequently
corresponds to the closer muscle insertion point and H to the tip point.

36

Algorithm Accuracy Precision Recall F1 Score
Basic 89.4 90.0 75.0 81.8
Acute 86.8 88.8 66.6 76.2
Full 81.6 72.7 66.6 69.6

All Pos 31.6 31.6 100.0 48.0
All Neg 68.4 - 0.0 -

Table 2. Pooled results from five-fold cross-validation experiments, comparing
Basic, Acute and Full background knowledge.

We believe natural selection could be acting on the distances in this learned
relationship between these areas of the shock graph. Because Menippe feeds
almost exclusively on hard-shelled prey and Eriphia is more of an opportunistic
generalist, Menippe should have claws with stronger biting forces than Eriphia
[11]. Our learned rule discusses the length and angle of the closer muscle insertion
point in relation to the tip. This relationship is directly related to the mechanical
advantage of the claw, such that a shorter length in E. gonagra will result in
weaker closing strength.

We compare the results of using Aleph and each of the three levels of back-
ground knowledge (basic, acute and full) with two baseline algorithms, one which
classifies all examples as positive, and another which classifies all examples as
negative. The true positive, false positive, true negative and false negative results
across the five testsets are pooled to find the overall accuracy, precision, recall
and F1 score for each algorithm. These results are reported in Table 2, and we
can see Aleph clearly outperforms the baseline algorithms.

When comparing the different levels of background knowledge, we find that
simpler is better. The heuristic search employed by Aleph incorporates the ad-
ditional background knowledge predicates into our learned rules, however, these
rules have a lower testset performance and tend to overfit, scoring lower than
the basic background knowledge across all evaluation metrics.

4 Conclusions and Future Work

This research demonstrates the feasibility of learning relational features to distin-
guish between decapod dactyl shapes. By combining techniques from computer
vision and ILP, we can learn general rules that are informative to both biologists
and paleobiologists, and find that we can limit overfitting by restricting ourselves
to a simple representation of the data.

Recent work by Macrini et al. [8] extends shock graphs to bone graphs to
decrease their brittle dependency on noise variations of the initial shape. We
plan to replace shock graphs with bone graphs as the basis for learning, and
expect to see increases in our performance as well as more general features.

Suard et al. [10] have investigated kernel methods applied to shock graphs.
They propositionalize many features of the graphs to create their kernels for
the purpose of shape retrieval and image clustering, as opposed to our research

37

of learning explanatory and discriminatory patterns using the relational graph
descriptions. Although our findings point to less background knowledge instead
of more, we plan to investigate some of their features and hopefully increase the
understandability of our rules without sacrificing their generalization.

Our current dataset is quite small, with test folds having only 2 or 3 positive
examples. We plan to further investigate this approach with a larger dataset
consisting of 970 major and minor dactyls from nine xanthoid crab species. This
dataset will allow us to evaluate whether this method can be used to distinguish
dactyls of several closely related species. Also, because many of the dactyls of
these species change shape with growth, we can quantify those allometric trans-
formations and identify dactyl sizes where species level differences emerge.

5 Acknowledgements

We would like to thank the authors of the software packages Aleph, SHAPE and
ShapeMatcher for the availability of their code.

References

1. J. G. Agnew. Dactyls Reveal Evolutionary Patterns in Decapod Crustaceans. PhD
thesis, Louisiana State University - Baton Rouge, 2008.

2. J. G. Agnew and L. C. Anderson. Phenotypic differences among sibling species,
hybrids and fossils of the stone crab menippe. In Geological Society of America
Annual Meeting, volume 34, page 399, 2002.

3. J. G. Agnew and L. C. Anderson. Inferring diet of crabs using wear patterns on
claws. In Geological Society of America Annual Meeting, volume 38, page 442,
2006.

4. P. Dimitrov, C. Phillips, and K. Siddiqi. Robust and efficient skeletal graphs. In
Computer Vision and Pattern Recognition, 2000.

5. H. Iwata and Y. Ukai. SHAPE: A computer program package for quantitative
evaluation of biological shapes based on elliptic fourier descriptors. The Journal
of Heredity, 93(5):384–5, 2002.

6. F. Kuhl and C. R. Giardina. Elliptic fourier features of a closed contour. Computer
Graphics Image Processing, 18:236–258, 1982.

7. D. Macrini. Indexing and matching for view-based 3-d object recognition using
shock graphs. Master’s thesis, University of Toronto, July 2003.

8. D. Macrini, K. Siddiqi, and S. Dickinson. From skeletons to bone graphs: Medial
abstraction for object recognition. In Computer Vision and Pattern Recognition,
2008.

9. A. Srinivasan. The Aleph Manual Version 5.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/, 2003.

10. F. Suard, A. Rakatomamonjy, and A. Bensrhair. Mining shock graphs with kernels.
Technical Report AR-06-01, University of Rouen, Dec 2006.

11. A. B. Williams. Shrimps, lobsters, and crabs of the Atlantic coast of the eatern
United States, Maine to Florida. Smithsonian Institution Press, Washington, D.C.,
1984.

38

Estimating the Parameters of Probabilistic
Databases from Probabilistically Weighted
Queries and Proofs [Extended Abstract]

Bernd Gutmann1, Angelika Kimmig1, Kristian Kersting2, and Luc De Raedt1

1 Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
POBox 2402, BE-3001 Heverlee, Belgium {firstname.lastname}@cs.kuleuven.be

2 Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany
kristian.kersting@iais.fraunhofer.de

Abstract. We introduce the problem of learning the parameters of the
probabilistic database ProbLog. Given the observed success probabilities
of a set of queries, we compute the probabilities attached to facts that
have a low approximation error on the training examples as well as on un-
seen examples. Assuming Gaussian error terms on the observed success
probabilities, this naturally leads to a least squares optimization prob-
lem. Our approach, called LeProbLog, is able to learn both from queries
and from proofs and even from both simultaneously. This makes it flexi-
ble and allows faster training in domains where the proofs are available.
Experiments on real world data show the usefulness and effectiveness of
this least squares calibration of probabilistic databases.1

1 Introduction

Many real-world application today depend on managing enormous volumes of
uncertain data. Such ”dirty” databases arise for example when integrating data
from various sources, when analyzing social, biological, and chemical networks,
within privacy-preserving data mining where only aggregated data is available,
and within pervasive computing. These are only some of the many real-world
applications showing the abundance of uncertain data and the need for prob-
abilistic databases, i.e., generalizations of traditional relational databases that
can deal with uncertainty.

Over the last years, the statistical relational learning community has devoted
a lot of attention to learning both the structure and parameters of probabilistic
logics, cf. [1, 2], but so far seems to have devoted little attention to the learning of
probabilistic database formalisms. Probabilistic databases [3, 4] associate prob-
abilities to facts, indicating the probabilities with which these facts hold. This
information is then used to define and compute the success probability of queries
1 A longer version of this paper has been accepted at the European Conference

on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD 2008) under the title “Parameter Learning in Probabilistic
Databases: A Least Squares Approach”

39

or derived facts or tuples, which are defined using background knowledge (in the
form of predicate definitions). As one example, imagine a life scientist mining
a large network of biological entities in an interactive querying session. The bi-
ological network is a probabilistic graph, in which the edges are represented
by probabilistic facts about the biological entities [4]. Interesting questions can
then be asked about the probability of the existence of a connection between
two nodes, or the most reliable path between them.

The key contribution of the present paper is the introduction of a novel
setting for learning the parameters of a probabilistic database from examples
together with their target probability. The task then is to find those parame-
ters that minimize the least squared error w.r.t. these examples. The examples
themselves can either be queries or proofs, where a proof is a conjunction of all
facts in the database needed to proof a query by SLD-resolution. This learning
setting is then incorporated in the probabilistic database ProbLog [4], though
it can easily be integrated in other probabilistic databases as well. This yields
the second key contribution of the paper, namely an effective learning algorithm
called LeProbLog (Least square estimation for ProbLog).

Within the probabilistic database community, parameter estimation has re-
ceived surprisingly little attention. Nottelmann and Fuhr [5] consider learning
probabilistic Datalog rules in a similar setting where the underlying distribu-
tion semantics is similar to ProbLog. However, their setting and approach also
significantly differ from ours. A single probabilistic target predicate only is esti-
mated whereas we consider estimating the probabilities attached to definitions
of multiple predicates. Their approach employs the training probabilities only.
Specifically, they generate training examples labeled with 0/1 randomly whereas
we use the observed probabilities directly. Finally, the probabilistic database set-
ting differs from the usual statistical relational learning approach in that there
is no underlying generative model as for instance at PRISM programs [6].

We proceed as follows. After reviewing ProbLog in Section 2, we will de-
fine the parameter estimation problem for probabilistic databases and introduce
our least-squares approach LeProbLog for solving it. Before concluding, we will
present the results of an extensive set of experiments on a real-world data set.

2 ProbLog

In this work, the probabilistic database employed is ProbLog, a simple proba-
bilistic extension of Prolog introduced in [4]; alternative formalisms that could be
used include those of [3] or [5]. We repeat the main ideas of ProbLog here, see [4]
for details. A ProbLog program consists of a set of labeled facts pi :: ci together
with a set of definite clauses encoding background knowledge (BK). Each ground
instance (that is, each instance not containing variables) of such a fact ci is true
with probability pi, where all probabilities are assumed mutually independent.
The corresponding ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪ BK defines
a probability distribution over sets of facts L ⊆ LT = {c1, · · · , cn} as follows:

P (L|T) =
∏

ci∈L
pi

∏
ci∈LT \L

(1− pi).

40

Based on this distribution, the success probability Ps(q|T) of a query q in a
ProbLog program T is defined as

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) , (1)

where P (q|L) = 1 if there exists a θ such that L |= qθ, and P (q|L) = 0 otherwise.
In other words, the success probability of query q corresponds to the probability
that the query q is provable in a randomly sampled logic program. Alternatively,
it can be calculated based on the set of all proofs of query q, see [4] for details.
The probability of a specific proof, also called explanation, corresponds to that
of sampling a logic program L that contains all the facts needed in that proof.
The explanation probability Px(q|T) is then defined as the probability of the
most likely explanation or proof of the query q:

Px(q|T) = maxe∈E(q) P (e|T) = maxe∈E(q)

∏
ci∈e

pi (2)

where E(q) is the set of all explanations for query q [7]. Finally, the k-probability
Pk(q|T) approximates the success probability by restricting the set of proofs used
in the calculation to the k most likely proofs. Note that P1(q|T) = Px(q|T).

3 Parameter Learning in Probabilistic Databases

Data added to a probabilistic database is often uncertain, e.g. information ex-
traction algorithms yield results with probabilities. Furthermore, there is uncer-
tainty about how to explain the data, e.g. there is a connection between genes
and diseases but the exact dependency is unknown. This results in a learning
task which can be formulated as following:

Definition 1 (Parameter Learning in Probabilistic Databases). Given
a set of training examples {qi, p̃i}M

i=1, M > 0, where each qi ∈ H is a query or
proof and p̃i is the k-probability of qi, find a function h : H → [0, 1] with low
approximation error on the training examples as well as on unseen examples. H
comprises all parameter assignments for a given database T .

This framework allows to naturally combine learning from entailment and
learning from proofs, two learning settings that so far have been considered
separately. In ProbLog, proofs correspond to conjunctions of probabilistic facts,
and can be seen as a conjunction of queries. Therefore, a learning algorithm can
use examples of both forms, (atomic) queries and proofs, at the same time. The
error function that we want to minimize is the mean squared error:

MSE(T) =
1
M

∑
1≤i≤M

(
Ps(qi|T)− p̃i

)2
. (3)

To do so, we use a standard gradient descent approach. To obtain the gradient
of the MSE, one has to apply the sum and chain rule to Eq. (3)

∂MSE(T)
∂pj

=
2
M

∑
1≤i≤M

(
Ps(qi|T)− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ Ps(qi|T)
∂pj︸ ︷︷ ︸

Part 2

. (4)

41

Algorithm 1 Evaluating the gradient of a query efficiently by traversing the
corresponding BDD, calculating partial sums, and adding only relevant ones.

function Gradient(BDD b, fact to derive for nj)
(val, seen) = GradientEval(root(b), nj)
If seen = 1 return val · σ(aj) · (1− σ(aj))
Else return 0

function GradientEval(node n, target node nj)
If n is the 1-terminal return (1, 0)
If n is the 0-terminal return (0, 0)
Let h and l be the high and low children of n
(val(h), seen(h)) = GradientEval(h, nj)
(val(l), seen(l)) = GradientEval(l, nj)
If n = nj return (val(h)− val(l), 1)
ElseIf seen(h) = seen(l) return (σ(an) · val(h) + (1− σ(an)) · val(l), seen(h)))
ElseIf seen(h) = 1 return (σ(an) · val(h), 1)
ElseIf seen(l) = 1 return ((1− σ(an)) · val(l), 1)

To ensure that all pj stay between 0 and 1 during gradient descent, we repa-
rameterize the search space and express each pj ∈]0, 1[in terms of the sigmoid
function pj = σ(aj) := 1/(1 + exp(−aj)) applied to aj ∈ R. Part 1 can be cal-
culated by a ProbLog inference call computing (1). Part 2 can be calculated as
following

∂Ps(qi|T)
∂aj

= σ(aj) · (1− σ(aj)) ·
∑

S⊆LT

L|=qi

δjS

∏
cx∈S
x6=j

σ(ax)
∏

cx∈LT \S
x6=j

(1− σ(ax)).

where δjS := 1 if cj ∈ S and δjS := −1 if cj ∈ LT \ S. It is derived by first
deriving the gradient ∂P (S|T)/∂pj for a fixed subset S ⊆ LT of facts, which is
straight-forward, and then summing over all subsets S where qi can be proven.
Going over all subprograms S in the last equation is infeasible. But there is an
efficient algorithm to compute Ps(qi|T) relying on BDDs [4]. We updated this
towards the gradient as shown in algorithm 1. LeProbLog combines the BDD-
based gradient calculation with a standard gradient descent search. Starting from
parameters a = a1, . . . , an initialized randomly, the gradient ∆a = ∆a1, . . . ,∆an

is calculated, parameters are updated by subtracting the gradient, and updating
is repeated until convergence. When using the k-probability with finite k, the
set of k best proofs may change due to parameter updates. After each update,
we therefore recompute the set of proofs and the corresponding BDD.

4 Experiments

We set up experiments to investigate the following questions:

Q1 Does our approach reduce the mean squared error on training and test data?
Q2 Is LeProbLog able to recover the original parameters?

42

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50

ro
ot

 M
S

E
T

es
t

Iteration

Asthma graph, update proofs every iteration, k=5

90 train/10 test examples
270 train/30 test examples
450 train/50 test examples

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0 50 100 150 200 250 300

M
A

D
F

ac
ts

Iteration

Asthma graph, update proofs every iteration, k=5

90 train/10 test examples
270 train/30 test examples
450 train/50 test examples

Fig. 1.
√

MSETest (left) and MADfacts (right) for asthma using the 5 best proofs
(k = 5) (Q1 and Q2)

Q3 Does the algorithm perform better when parts of the training data are given
as proof? (For instance the parse tree for a sentences when learning proba-
bilistic grammars, or the most likely path in a probabilistic graph)

We extracted a graph around asthma disease from a collection of databases. We
obtained a set of related genes by searching Entrez for human genes annotated
with asthma; the asthma phenotype is from OMIM. Weights were assigned to
edges as described in [8]. We used 7 randomly chosen asthma genes for graph ex-
traction. The resulting graph contains 127 nodes and 241 edges. From this graph
we sampled 500 random node pairs (a,b) and estimated the query probability
for path(a,b) using P5, the probability of the 5 best proofs (for Q1, Q2). We
also sampled 300 node pairs and calculated P1 for path(a,b), the probability of
the best path between a and b, and used it to answer Q3. We use both the root
mean squared error on the test data and the mean absolute difference MADfacts

between learned and original fact probabilities to assess the results.

Q1, Q2: Sanity Check We attach probabilities to queries in the training set
based on the best k = 5 proofs. The same approximation is used in the gradient
descent algorithm. The left graph of Figure 1 shows the evolvement of the root
mean squared error. LeProbLog reduces the MSE on both training and test data,
with significant differences in all cases (two-tailed t-test, α = 0.05). These results
affirmatively answer Q1. The MADfacts error is reduced as can be seen in the
right plot of Figure 1. Again, all differences are significant (two-tailed t-test,
α = 0.05). Using more training examples results in faster error reduction. This
answers Q2 affirmatively.

Q3: Learning from Proofs and Queries To investigate the effect of using
both proofs and queries as examples, we compute the best proof and its prob-
ability for 300 examples. For each example, we either use the query or the best
proof, both with the probability of the best proof. Learning uses k = 1. We use
proofs for 0, 50, . . . , 300 examples and queries for the remaining ones. Figure 2
shows the results of this experiment. The curve on the left side indicates that
the error per fact (MADfacts) goes down faster in terms of iterations when in-
creasing the fraction of proofs. The curve on the right side shows that the root
MSE on the test set decreases. These results answer Q3 affirmatively.

43

 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 5 10 15 20 25 30 35 40

M
A

D
F

ac
ts

Iteration

Asthma graph, update proofs every iteration, k=1

0% proofs
33% proofs
66% proofs

100% proofs

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

15/64/63/62/61/6 0

er
ro

r

Fraction of training data given as proof

Asthma graph, update proofs every iteration, k=1

rootMSEtest
MADFacts

Fig. 2. MADfacts and
√

MSETest after 40 iterations on the asthma graph when differ-
ent fractions of the data are given as proof (Q3)

5 Conclusions

We have introduced an approach to learning the parameters of the probabilis-
tic database ProbLog and successfully shown it at work on a real biological
application. Interesting directions for future research include conjugate gradient
techniques and regularization-based cost functions. Those enable domain experts
to successively refine probabilities of a database by stating training examples.

Acknowledgments

Angelika Kimmig and Bernd Gutmann are supported by the Research Foundation-
Flanders (FWO-Vlaanderen), Kristian Kersting by a Fraunhofer ATTRACT fel-
lowship. This work is supported by the GOA project 2008/08 Probabilistic Logic
Learning and uses HPC resources http://ludit.kuleuven.be/hpc.

References

1. Getoor, L., Taskar, B., eds.: Statistical Relational Learning. The MIT press (2007)
2. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive

Logic Programming - Theory and Applications. Volume 4911 of LNAI. Springer
(2008)

3. Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In:
Proceedings of VLDB. (2004) 864–875

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In Veloso, M., ed.: IJCAI. (2007) 2462–2467

5. Nottelmann, H., Fuhr, N.: Learning probabilistic datalog rules for information clas-
sification and transformation. In: CIKM, ACM (2001) 387–394

6. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Intell. Res. (JAIR) 15 (2001) 391–454

7. Kimmig, A., De Raedt, L., Toivonen, H.: Probabilistic explanation based learning.
In: ECML. (2007) 176–187

8. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: DILS. (2006) 35–49

44

Propositionalizing the EM algorithm by BDDs

Masakazu Ishihata1, Yoshitaka Kameya1, Taisuke Sato1, and Shin-ichi Minato2

1 Graduate School of Information Science and Engineering,
Tokyo institute of Technology

{ishihata,kameya,sato}@mi.cs.titech.ac.jp
2 Graduate School of Information Science and Technology,

Hokkaido University
minato@ist.hokudai.ac.jp

Abstract. We propose an EM algorithm working on binary decision
diagrams (BDDs). It opens a way to applying BDDs to statistical infer-
ence in general and machine learning in particular. We also present the
complexity analysis of noisy-OR models.

1 Introduction

Binary decision diagrams (BDDs) have been popular as a basic tool for com-
pactly representing boolean functions [1, 2]. In this paper3 we present yet an-
other application of BDDs. We propose a new EM algorithm that works on
BDDs. Since the EM algorithm is a fundamental parameter learning algorithm
for maximum likelihood estimation in statistics [4], our proposal opens a way
to apply BDDs to statistical learning in general and to machine learning in
particular.

2 The EM algorithm

We here describe our unsupervised learning setting and review the expectation-
maximization (EM) algorithm [4]. First of all, we assume our problem domain is
modeled with k boolean random variables X1, X2, . . . , Xk, each taking 1 (true)
and 0 (false) independently of each other. Let F be a boolean function composed
of these k variables, and assume only the value of F is observable whereas those
of the Xi’s are not. Hereafter, to make notations simple, F is treated as a boolean
random variable as well that takes the value of (the function) F . We then call F
an observable variable, and the Xi’s basic variables. The EM algorithm proposed
in this paper aims to estimate the probabilities of basic variables being true from
the observed values of F .

Let φ be an assignment of the set of basic variables X = {X1, X2, . . . , Xk}.
φ maps each variable X ∈ X to its value x ∈ {0, 1}. We assume X is partitioned
3 This is a shortened version of [3], which deals with zero-suppressed BDDs (ZBDDs)

as well as BDDs.

45

into S, sets of i.i.d. variables, and each partition s ∈ S has a parameter θs,x,
a common probability of X ∈ s taking x. We use Φ to stand for the set of
all assignments. Since the value F = f ∈ {0, 1} is uniquely determined by φ,
F is a function F (φ) = f of assignments. Hence the set of assignments which
make F = f is written as F−1(f) = {φ ∈ Φ | F (φ) = f}. We introduce
σs,x(φ) = |{X ∈ s | φ(X) = x}| to denote the total number of i.i.d. variables in
the partition s that takes a value x by φ. The EM algorithm we develop for the
setting described above consists of two steps, the expectation step (E-step) and
the maximization step (M-step), defined as follows:

– E-step: Compute the conditional expectation Eθ[σs,x(·) | F =f] by
ηx

θ [s]/Pθ (F =f), where:

ηx
θ [s] =

∑

φ∈F−1(f)

σs,x(φ)
∏

s′∈S

∏

x′∈{1,0}
(θs′,x′)σs′,x′ (φ) (1)

Pθ (F =f) =
∑

φ∈F−1(f)

∏

s∈S

∏

x∈{1,0}
(θs,x)σs,x(φ). (2)

– M-step: Update θ to θ̂ by θ̂s,x ∝ Eθ[σs,x(·) | F =f].

3 BDDs and the EM algorithm

A BDD is a rooted directed acyclic graph representing a boolean function
as a disjunction of exclusive conjunctions. It has two terminal nodes, 1 (true)
and 0 (false). Each nonterminal node n is labeled with a binary random vari-
able denoted by Label(n), and has two outgoing edges called 1-edge and 0-edge,
indicating that Label(n) takes 1 and 0, respectively. Chx(n) stands for a child
node of n, connected by the x-edge (x ∈ {0, 1}).

A reduced ordered BDD (ROBDD) is a BDD which is a unique representation
of the target boolean function. Fig. 1 illustrates some different representations
of a boolean function F = (A ∨ B) ∧ C̄. Fig. 1 (a) is a truth table, in which a
row corresponds to an assignment φ for X = {A,B, C}. One way to obtain the
ROBDD for F (Fig. 1 (d)) is to consider a binary decision tree (BDT) (b) and
apply two reduction rules, the deletion rule and the merging rule, as many times
as possible to reach (d).

Consider a BDT like the one in Fig. 1 (b). In a BDT, there is a unique path
πφ from the root to a terminal for an assignment φ, in which every basic variable
appears once as a node label. We rewrite Eq. 1 to Eq. 3 so that ηx

θ [s] is computed
on a BDD:

ηx
θ [s] =

∑

πφ:φ∈F−1(f)

∑

n′∈πφ:Ln′∈s

1φ(Ln′)=x

∏
n∈πφ

(θ[Ln])φ(Ln)(θ[Ln])
1−φ(Ln) (3)

Here n ∈ πφ says that the node n is on the path πφ. Ln is a shorthand for Label(n)
and [Ln] is the partition to which Ln belongs. 1φ(Ln′)=x = 1 if φ(Ln′) = x is
true, and 0 otherwise.

46 ��� ��� ��� ��� ���
�� �� �

����			 			
 		
	
	

 	
		

	
 	

	

 	
��� �� ����
 ��
 ��
 ��

� � �
Fig. 1. Examples of (a) a truth table, (b) a binary decision tree (BDT), (c) a BDD
which is ordered but is not reduced, (d) the ROBDD, for F = (A ∨B) ∧ C̄.

4 The BDD-EM algorithm

We here present the BDD-EM algorithm which is an EM algorithm working
on BDDs. There are four auxiliary procedures for the procedure BDD-EM(), i.e.
IterateEM(), GetBackward(), GetForward() and GetExpectation().

1: Procedure: BDD-EM()
2: Initialize all parameters θ;
3: repeat
4: IterateEM();
5: until the parameters θ converge;
6: end

1: Procedure: IterateEM()
2: // E-step
3: GetBackward();
4: GetForward();
5: GetExpectation();
6: // M-step
7: for each s ∈ S do
8: θs,1 ∝ η1

θ[s]/Pf
θ [F];

9: θs,0 ∝ η0
θ[s]/Pf

θ [F];
10: end for
11: end

1: Procedure: GetBackward()

2: B1
θ[1] = 1, B1

θ[0] = 0;

3: B0
θ[1] = 0, B0

θ[0] = 1;

4: N = Par(1) ∪ Par(0);
5: // Par(n): the set of parents of n.
6: while N 6= φ do
7: n = argmaxn′∈N Ord (n′)
8: // Ord (n) is the index of Label(n)
9: // in the variable order.

10: X = Label(n);
11: B1

θ[n] = θ[X]B1
θ[Ch1(n)]

12: +θ[X̄]B1
θ[Ch0(n)];

13: B0
θ[n] = θ[X]B0

θ[Ch1(n)]
14: +θ[X̄]B0

θ[Ch0(n)];
15: N = N\{n} ∪ Par(n);
16: end while
17: end

Backward and forward probabilities: We compute backward and forward
probabilities like those in hidden Markov models. The procedure GetBack-
ward() calculates backward probabilities for each node in the BDD representing
F . A backward probability B1

θ[n] (resp. B0
θ[n]) is the sum of the probabilities

of all paths from node n to 1 (resp. 0). We set B1
θ[1] = 1 and B0

θ[0] = 1
respectively. They are calculated from terminals to the root. Contrastingly the
procedure GetForward() calculates forward probabilities for each node from
the root to terminals. A forward probability Fθ[n] is the sum of the probabilities

47

1: Procedure: GetForward()
2: InitializeF();
3: Fθ[root] = 1;
4: N = {root};
5: while N 6= φ do
6: n = argminn′∈N Ord (n′);
7: X = Label(n);
8: Fθ[Ch1(n)] += Fθ[n]θ[X];
9: Fθ[Ch0(n)] += Fθ[n]θ[X̄];

10: N = N\{n} ∪ {Ch1(n), Ch0(n)};
11: end while
12: end

1: Procedure: GetExpectation()
2: InitializeEta();
3: for each n ∈ N do
4: X = Label(n);
5: e1

n = Fθ[n]Bf
θ [Ch1(n)]θ[X];

6: e0
n = Fθ[n]Bf

θ [Ch0(n)]θ[X̄];

7: η1
θ

ˆ
[X]
˜

+= e1
n, kη0

θ

ˆ
[X]
˜

+= e0
n;

8: for each Z ∈ Del1Y (n) do
9: η1

θ

ˆ
[Z]
˜

+= e1
nθ[Z];

10: η0
θ

ˆ
[Z]
˜

+= e1
nθ[Z̄];

11: end for
12: for each Z ∈ Del0Y (n) do
13: η1

θ

ˆ
[Z]
˜

+= e0
nθ[Z];

14: η0
θ

ˆ
[Z]
˜

+= e0
nθ[Z̄];

15: end for
16: end for
17: end

1: Procedure: GetExpectation*()
2: InitializeEta();
3: for each n ∈ N do
4: X = Label(n);
5: e1

n = Fθ[n]Bf
θ [Ch1(n)]θ[X]

6: e0
n = Fθ[n]Bf

θ [Ch0(n)]θ[X̄]

7: η1
θ

ˆ
[X]
˜

+= e1
n;

8: η0
θ

ˆ
[X]
˜

+= e0
n;

9: X ′ : Ord (X ′) = Ord (X) + 1;
10: ζ[X ′] += e1

n + e0
n;

11: ζ[Label(Ch1(n))] −= e1
n;

12: ζ[Label(Ch0(n))] −= e0
n;

13: end for
14: X = X;
15: X = argminX′∈X Ord (X ′);
16: z = ζ[X];
17: X = X\{X};
18: while X 6= φ do
19: X = argminX′∈X Ord (X ′);
20: η1

θ

ˆ
[X]
˜

+= zθ[X];
21: η0

θ

ˆ
[X]
˜

+= zθ[X̄];
22: z += ζ[X];
23: X = X\{X};
24: end while
25: end

Fig. 2. Improved GetExpectation()

of all paths from the root to node n. The procedure InitializeF() initializes
Fθ[n] = 0 for all n.

Conditional expectations: The procedure GetExpectation() updates ηx
θ

[
[X]

]
which is defined in Section 2 for each X ∈ X. The procedure InitializeEta()
sets each ηx

θ

[
[X]

]
= 0. In GetExpectation(), f ∈ {1, 0} is the observed value

of F , and N is the set of all nodes in the BDD.
Note that in order to compute probabilities properly, we need to recover

deleted nodes. So, to denote the nodes deleted by the deletion rule, Del1Y (n) and
Del0Y (n) are introduced in GetExpectation(). DelxY (n) (x ∈ {1, 0}) stands
for the set of labels (i.e. variables) of deleted nodes between n and Chx(n). So
we have DelxY (n) = {X ∈ V(δY) | Label(n) ≺ X ≺ Label(Chx(n))}. What
we actually use for the computation of conditional expectations is not GetEx-
pectation() however, as it incurs some inefficiency, but GetExpectation*()
shown in Fig. 2 which processes computation of the deleted nodes much more
efficiently (details omitted).

48

5 Time complexities for noisy-OR models

The time complexity of building BDDs is NP-hard in general [5]. However,
there are efficient techniques to build BDDs using the Apply operation [2] and
those to find good variable orderings, be they dynamic or static [5, 6]. So building
BDDs can be done efficiently in practice. In this section, we evaluate the time
complexity of both building BDDs and running the BDD-EM algorithm for
noisy-OR models.4

A noisy-OR model represents a relation between multiple causes and an
effect. Let F be an observable variable representing an effect, and C1, C2 and C3

basic variables representing possible causes which make F true. While the logical
OR relation is represented as F ⇔ C1∨C2∨C3, the noisy-OR relation allows for
a situation where C1 is true but F is false. For this noisy-OR model, we introduce
inhibition variables, I1,I2 and I3, which inhibit F to be true with probabilities
θ[I1] = P (F =0 | C1 =1, C2 =0, C3 =0), θ[I2] = P (F =0 | C1 =0, C2 =1, C3 =0)
and θ[I3] = P (F =0 | C1 =0, C2 =0, C3 =1), respectively. An N -input noisy-OR
model between F and C1, C2, . . . , CN is described by:

F = (C1 ∧ Ī1) ∨ (C2 ∧ Ī2) ∨ · · · ∨ (CN ∧ ĪN).

Fig. 3 shows a BDD representing F under the variable ordering Ord such that
Ci ≺ Cj , Ii ≺ Ij (i < j) and Ci ≺ Ik (i ≤ k). We construct a BDD from
F using the Apply operation, denoted by Apply(δX , δY , 〈op〉), that builds a
BDD representing X〈op〉Y where δX and δY represent the boolean functions
X and Y , respectively. Although the time complexity of Apply(δX , δY , 〈op〉) is
O(NXNY) in general, where NX (resp. NY) is the number of nodes in the BDD
representing X (resp. Y), we can see an application of Apply(·) for an N -input
noisy-OR model takes just O(1). So the BDD is obtained by applying the Apply
operation N times, and the time complexity becomes O(N) under Ord . Also the
time complexity of the E-step is O(N) because |N| = 2N and |X| = 2N .���� ���� ���� ���� �� 			

Fig. 3. A BDD representing the noisy-OR model.

4 We confirmed the BDD-EM algorithm properly converges by numerical experiments.

49

6 Related work and concluding remarks

We have presented an EM algorithm that works on BDDs. Our work is con-
sidered as a succession to the previous work done by Minato et al. [7]. It shows
how to compile BNs into ZBDDs to compute probabilities but probability learn-
ing is left untouched. In [3], we supplemented a necessary algorithm to apply
ZBDDs to EM learning.

The introduction of BDDs solves a long-standing problem of PRISM [8],
a logic-based language for generative modeling. It employs a propositionalized
data structure called explanation graphs similar to decomposed BDDs to repre-
sent boolean formulas in disjunctive normal form. The current PRISM however
assumes the exclusiveness condition that the disjuncts are exclusive to make
sum-product probability computation possible. Since the proposed algorithms
are applicable to explanation graphs as well, it allows PRISM to abolish the
exclusiveness condition.

ProbLog is a recent logic-based formalism that computes probabilities via
BDDs [9]. A ProbLog program computes the probability of a query atom from a
disjunction of conjunctions made up of independent probabilistic atoms by con-
verting the disjunction to a BDD and applying the sum-product computation to
it. 5 Since our BDD-EM algorithm works on BDDs, integrating it with ProbLog
for probability learning seems an interesting future research topic.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6) (1978) 509–
516

2. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8) (1986) 677–691

3. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the EM algorithm
by BDDs. Technical Report TR08-0004, Dept. of Computer Science, Tokyo Institute
of Technology (2008)

4. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. J. of the Royal Statistical Society B 39 (1977) 1–38

5. Drechsler, R., Sieling, D.: Binary decision diagrams in theory and practice. Int’l J.
on Software Tools for Technology Transfer 3 (2001) 112–136

6. Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed
edges. Proc. ACM/IEEE Design Automation Conf. (1990) 52–57

7. Minato, S., Satoh, K., Sato, T.: Compiling Bayesian networks by symbolic prob-
ability calculation based on Zero-suppressed BDDs. In: Proc. of IJCAI’07. (2007)
2550–2555

8. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. of Artificial Intelligence Research 15 (2001) 391–454

9. De Raedt, L., Angelika, K., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discoverry. In: Proc. of IJCAI’07. (2007) 2468–2473

5 It should be noted that a special treatment is required for the computation of con-
ditional expectations (see [3] for details).

50

Using Bio-Pathways in Relational Learning

Matěj Holec1, Filip Železný1, Jǐŕı Kléma1, Jǐŕı Svoboda1 and Jakub Tolar2

1Czech Technical University, Prague
e-mail: {holecm1, zelezny, klema, svoboj1}@fel.cvut.cz

2University of Minnesota, Minneapolis
e-mail: tolar003@umn.edu

Abstract. In the present work we compile expression and pathway data
related to a specific biological classification problem, into a relational
database in Prolog, providing benchmarking material for ILP experimen-
tation. We also review the principal pitfalls arising in the attempts to
connect the two sources of knowledge through the relational formalism.

1 Introduction

In the last ten years, gene expression data measured by high-throughput tech-
nologies such as DNA microarrays [2] have become an important challenge for
machine learning. The typical approaches include the construction of classifiers
for tissue or disease class from the expression data (the paper [3] representing
the first significant success story), or using clustering algorithms for discovering
previously unknown classes characterized by distinguished expression profiles.

To boost the explanatory power of gene expression based classifiers, relevant
biological background knowledge must be integrated into the learning process.
Inductive logic programming (ILP) here thus offers itself as a suitable tool for
data analysis. The review paper [5] indicated several ways in which relevant ge-
nomic background knowledge, such as primary gene structure (the order of DNA
bases in the gene), could be exploited. The paper [7] presented an application
of ILP for inducing relational descriptions of groups of co-expressed genes. The
descriptions were first-order conjunctions addressing genes’ joint relationships to
functions, processes or cellular locations formalized by the gene ontology 1. The
descriptions also pertained to mutual gene relationships derived from another
piece of background knowledge – the database of known gene interactions.

In extensive discussions of the results of the study [7] with biologists, we
perpetually received the feedback that Gene Ontology terms, acting as the pri-
mary vocabulary for expressing classifiers, are overly general to allow for any
serious biological interpretation, let alone experimental validation. The similar
held for rules conditioned on gene-interaction assumptions. Offering instead to
use a language addressing the properties of gene primary structure, we seemed
to have jumped to the opposite extreme, in that this level of information would
be too specific to allow interpretation in terms of systems biology.
1 http://www.geneontology.org/

51

In this work we try to exploit as background knowledge the descriptions
of known biochemical pathways (metabolic, gene regulatory, signalling) which
appear to possess just the right level of generality for a biologist. In their simplest
form abstracting from reaction stochiometry and kinetics, pathways may be
seen as directed graphs with labeled nodes representing compounds (enzymes,
metabolites, etc.) and labeled edges standing for various relationships among
them (inhibition, activation, reaction product, etc.). Previous work in ILP [6]
exists, where metabolic networks were constructed or completed from empirical
data. We are however not aware of previous ILP research exploiting pathway
descriptions as background knowledge incorporated for sakes of gene-expression
based classification.

In the general area of bioinformatics, pathways are already recognized as units
exploitable for prediction tasks in gene expression mining. However, the technical
means actually provided for their exploitation in current gene expression analysis
systems2 are surprisingly stone-age. In particular, given a sample of expression
values and a pathway, the systems calculate the “pathway expression”. This
is the average of the expressions of genes which code for enzymes present in
the pathway. The researcher then looks for the pathways most over- or under-
expressed for a given set of samples, compared to a control sample group.

This approach offends biological intuition in several ways, out of which the
most important is that a pathway rarely activates as a whole. Usually, it is
proper subgraphs of the pathway graphs whose expression may be specific for
a given biological condition. In fact, the very division of the cell processes into
separate units called pathways is rather arbitrary and has been guided by human
convenience rather than any systematic method of network clustering. The recent
paper [4] demonstrated a systematic way to extract pathway subgraphs called
fully coupled fluxes (FCF). It was shown that FCF’s comply better than pathways
to the intuitive notion of “working units” as the correlation of gene expression
in FCF’s is larger than in pathways.

ILP systems have in principle all the necessary means to identify the pathway
fragments relevant for a given classification task, without much human interven-
tion. With this paper we thus wish to stimulate ILP researchers to explore ways
in which this can be done, i.e. how to best exploit pathway information as back-
ground knowledge for gene-expression based classification. Note that this task
is more ambitious than ordinary search for over(under)-expressed pathway sub-
graphs. For example, recursion may prove as a suitable syntactic instrument to
express that paths of certain properties in pathway graphs are typically activated
in a given biological condition.

2 Synthesis of the ILP input data

The biological problem motivating the ILP task is to distinguish between two
types of cell tissues produced in bone marrow important in blood forming, so
2 the Expression Profiler available from the European Bioinformatics Institute, or the

DAVID system provided by the US National Center for Biotechnology Information

52

called stromal cells and hematopoietic cells. The full biological background of this
problem is out of the scope of this short paper. In the machine learning perspec-
tive, the problem can be formalized as classification or knowledge extraction. The
former seeks to classify the tissue samples into two distinct classes/cell types.
The latter aims to identify and interpret emerging molecular patterns, i.e. gene
sets whose expression and/or coregulation differentiate between the cell types.
In this paper we confine ourselves to classification.

The usual way of classifying gene expression data falls in attribute-value
learning as tissue samples can be characterized by an invariable probe/gene set.
However, in this experiment we use samples from four different species. In par-
ticular, from human, macaque, mouse and rat. The instant reason is that any
single organism does not provide representative samples in both of the classes.
More importantly, learning and generalizing over genomic properties of different
species is of fundamental importance in the study of biological and evolution-
ary principles [1]. In any case, the tissue expression vectors cannot be directly
matched as they are measured by different arrays using diverse probe (and thus
gene/attribute) sets.

In this paper we propose alternative “working units” whose expression can
be figured out and matched in different species – fully coupled fluxes. The vari-
ous gene vector spaces are transformed into a uniform FCF space in which the
classification is carried out. This approach not only allows to generalize beyond
species, but also introduces a vocabulary of terms more robust than the original
probes, respectively genes. The following subsections give a detailed description
of the original data and their Prolog counterparts as well as construction of the
abstract FCF attributes.

2.1 Gene Expression Data

We searched the Gene Expression Omnibus (GEO)3, a public gene expression
data library, for expression samples from various experiments involving different
organisms. Irrespectively of the objectives of these different experiments, we
selected those which included one of the mentioned tissue types among their
measured samples. We were using only the measurements acquired by different
Affymetrix DNA microarrays (chips).

We obtained 268 biological samples measured by 8 different arrays. 150 sam-
ples represent stromal cells while 118 samples correspond to hematopoietic cells.
163 samples were human, 11 of macaque, 8 of rat and 97 murine. Each GEO
sample has a XML annotation that gives basic information about it. Among
others, the annotation gives CellType which in our case can be hematopoietic
or stromal. Further, several allied samples can be acquired within the same ex-
periment, GDSno carries its identification. SampleID characterizes the sample,
TissueState distinguishes normal and treated tissues, Organism determines the
species and MArrayID gives the identification of the used chip. The annotations

3 http://www.ncbi.nlm.nih.gov/geo/

53

were parsed and stored into the Prolog predicate array. The predicate as well as
a particular fact are shown below:

array(CellType,GDSno,SampleID,TissueState,Organism,MArrayID,Comment).
array(hematopoietic,’GDS2718’,’GSM169465’,’normal’,’Mus musculus’,
’GPL1261’,’GCOS 1.4 software (Affymetrix)’).

Measurements were available as plain text files where rows contain microarray
probe identifiers and corresponding expression values. They can easily be trans-
formed into a list of Prolog facts, where SampleID characterizes the sample,
AffyID identifies the probe and ExpressionValue gives the expression measured
on the given probe in the given sample:

e(SampleID, AffyID, ExpressionValue).
e(’GSM101111’, ’AFFX-BioB-M at’, 1016.3).

2.2 Pathway Data

Kyoto Encyclopedia of Genes and Genomes (KEGG)4 is a collection of man-
ually drawn pathway maps representing common knowledge on the molecular
interaction and reaction networks. KEGG stores pathways as XML files with a
strictly defined structure. We transformed the four species specific KEGG XML
files to Prolog facts, the transformations preserved as many graph features as
possible (in fact, only visual representation and position of the elements were
neglected). The predicate entry represents vertices, the predicate relation cor-
responds to edges. The argument Organism gives the species (’hsa’ stands for
homo sapiens). PathwayID identifies the reference pathway – a unique pathway
of the given function shared by various organisms, KeggNodeID determines its
vertex. ListOfEntrezIDs provides a list of genes that map on the given vertex
within the specific organism. The genes are given by identifiers that are used by
Entrez5 – the integrated, search and retrieval system developed and maintained
by National Center for Biotechnology Information (NCBI)5. NodeType speci-
fies the type of vertex (e.g. gene product, group of gene products, compound or
map). Interaction or relation is basically an oriented edge among nodes given
by BeginNodeID and EndNodeID. A more detailed description can be found in
KEGG Markup Language4.

entry(Organism, PathwayID, KeggNodeID, ListOfEntrezIDs, NodeType).
entry(’hsa’, 04520,1, [hsa:4089], ’gene’).

relation(Organism, PathwayID, BeginNodeID, EndNodeID, TypeOfRelation,
SubTypeName, SubTypeValue).
relation(’hsa’, 04520, 14, 16, ’pprel’, [’activation’,’phosphorylation’],
[’-->’,’+p’]).

4 http://www.genome.jp/kegg/, http://www.genome.jp/kegg/docs/xml/
5 http://www.ncbi.nlm.nih.gov/, http://www.ncbi.nlm.nih.gov/sites/gquery

54

2.3 Data Processing – Fully Coupled Fluxes

The above-mentioned representation enables to merge the species dedicated
pathway data along the enzymes exhibiting the same behavior. In other words,
the orthologous genes involved in the same vertex and having a similar function
in the pathway can be mapped across all of the species under consideration.
However, to improve robustness we use linear pathway subgraphs instead of ver-
tices – FCF’s. FCF is the longest possible chain of vertices in which non-zero
vertex activation implies a certain (non-zero) activation in its successors. FCF’s
make the abstract attributes which substitute the original probes/genes.

The transformation proceeds in the following steps. First, the probes are as-
signed EntrezIDs, i.e. the probes are matched with genes. Prevailingly, there are
multiple probes mapped to single EntrezID. The conversion predicate affy2entrez
extracted from corresponding BioConductor libraries6 maps AffyIDs and En-
trezIDs introduced earlier:

affy2entrez(MArrayID,AffyID,EntrezID).
affy2entrez(’GPL1261’,’1452692 a at’,72900).

Second, the activity of enzymes can be inferred from the predicates affy2entrez,
e and entry. The activity is considered in terms of expression of the underlying
genes, respectively probes. Obviously, this step involves one of the major diffi-
culties. There is many-to-many relationship between array probes and pathway
vertices, respectively enzymes. Moreover, the relationship varies across chips. It
is also advisable to consider dependencies among contextual enzymes – the same
enzyme can be produced by different genes in different contexts. That is why,
this enumeration is delayed until FCF’s are constructed. Third, the FCF’s are
found on basis of relation – the predicate flux is introduced:

flux(FCFID,PathwayID,ListOfKeggNodeIDs).
flux(flux9,04520,[6,7,8,9,10,11,12,13,14,15,16,17,18,19]).

Last, the activity of FCF’s can be enumerated in every sample and used to
classify them. This step is decomposed into two substeps. Initially, flux interpre-
tations have to be found. These interpretations aim to find the most plausible
definition of FCF’s in all chips. For each flux, enzyme and chip, the correspond-
ing interpretation picks the “optimal” probe. Correlation of expression values
underlies the process of selection – the selected probes show the highest mean
correlation in the given FCF within all samples measured by the given chip. The
predicate fi gives the Prolog definition of flux interpretation in the given chip:

fi(MArrayID,FCFID,ListOfAffyIDs,CorrelationOfAffyIDs)
fi(’GPL1261’,flux0,[’1451002 at’,’1450048 a at’],0.86).

Having the flux interpretations, it is straightforward to calculate FCF activity
in every sample. It is given by the mean expression of the probes taken from
the appropriate interpretation. The overview of entities, predicates and their
relations is given in Figure 1. For the sake of lucidity, we do not explicitly

6 http://bioconductor.org/packages/1.9/data/annotation/

55

Fig. 1. Overview of entities, predicates and their relations.

mention other necessary and implemented features – missing value treatment or
normalization of raw expression data.

3 Conclusions

The proposed ILP task introduces a new way to mine heterogeneous genomic
data. It allows to generalize beyond genes as well as species. There are manifold
direct implications to gene expression mining. Considering biological viewpoint,
no targeted assay has yet been conducted to measure the expression profiles of
the two types of tissues in a single experimental setup. The general methodol-
ogy provides means to increase robustness and explanatory power of molecular
classifiers. We have already obtained basic mining results enabled by the devel-
oped representation, although not yet with an ILP system. There were found
FCF’s with plausible biological interpretation that exhibit a statistically signif-
icant fold-change (ratio between the mean activity in both classes). Principal
component analysis done in FCF’s feature space confirmed that fluxes capture
the difference between stromal and hematopoietic cells. The Prolog knowledge
base is available on request.

Acknowledgements

This work was supported by the grant 1ET101210513 “Relational Machine Learn-
ing for Analysis of Biomedical Data” funded by the Czech Academy of Sciences
and by the Czech Technical University grant CTU0814413. The Czech-USA trav-
els were covered by Czech Ministry of Education through the project ME910.

References

1. S. Bergmann, J. Ihmels, and N. Barkai. Similarities and Differences in Genome-Wide
Expression Data of Six Organisms. PLoS Comput Biol, 2(1):e9, 2003.

56

2. W. Dubitzky, M. Granzow, and Berrar D.P. Fundamentals of Data Mining in Ge-
nomics and Proteomics. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

3. T. Golub, D. Slonim, P. Tamayo, and et al. Molecular classification of can-
cer: Class discovery and class prediction by gene expression monitoring. Science,
286(5439):531–537, October 1999.

4. R.A. Notebaart, B. Teusink, R.J. Siezen, and B. Papp. Co-Regulation of Metabolic
Genes Is Better Explained by Flux Than Network Distance. PLoS Comput Biol,
4(1):e26, 2008.

5. D. Page and M. Craven. Biological applications of multi-relational data mining.
SIGKDD Explor. Newsl., 5(1):69–79, 2003.

6. A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S. Muggleton. Abduction and
induction for learning models of inhibition in metabolic networks. In ICMLA ’05:
Proc of the Fourth Int Conf on Machine Learning and Applications, pages 233–239,
Washington, DC, USA, 2005.

7. I. Trajkovski, F. Železný, N. Lavrač, and J. Tolar. Learning relational descriptions
of differentially expressed gene groups. IEEE Trans. Sys Man Cyb C, 38(1):16–25,
2008.

57

Combining answer caching with smartcall
optimization in mining frequent DL-safe queries

Joanna Józefowska1, Agnieszka ÃLawrynowicz1, and Tomasz ÃLukaszewski1

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 2, 60-965 Poznan, Poland

{jjozefowska, alawrynowicz, tlukaszewski}@cs.put.poznan.pl

Abstract. Several query transformations have been proposed to speed
up the execution of data mining algorithms in ILP systems. Many of
them exploit the property that clauses are refined in a systematic way,
which allows to save computation already done in the previous step.
In this paper we empirically investigate query transformation technique
that combines answer caching with smartcall optimization. The proposed
technique is implemented in the setting of frequent pattern discovery in
a hybrid knowledge base, combining description logics with disjunctive
rules, where patterns have the form of conjunctive, DL-safe queries.

1 Introduction

Many approaches to inductive logic programming perform the search on hy-
pothesis space, starting with a general hypothesis and systematically refining
it. Hence, more specific hypothesis are very similar to their ”parents” and what
follows, the computations involved in testing the validity of the consecutive hy-
potheses may be very similar. In this context, we propose and emipirically inves-
tigate query transformation technique, based on the idea of caching and reusing
intermediate results of previous computations. We implemented this technique
in the frequent pattern mining setting, where patterns are represented as atom
sets in the form of conjunctive, DL-safe queries over combined knowledge base
represented in description logics (DL) with disjunctive, positive rules.

2 Problem setting

Representation of data and patterns We assume mining patterns in a combined
knowledge base (KB, P), where KB is description logics component and P is
a program containing a set of (disjunctive) rules. Description logics knowledge
base KB is divided, as usual, into intensional part (terminological one, a TBox)
that contains axioms describing general domain knowledge and extensional part
(assertional one, an ABox) that contains instance assertions. We assume that
all the rules in P are DL-safe [3]. Hence, the formalism used in our approach is
that of DL-safe rules, introduced in [3], however with some restrictions imposed

58

which are as described next. The subset of description logics assumed in our ap-
proach is SHIF . In [3], there is the subset SHOIN (D) assumed. SHOIN (D)
corresponds to OWL DL variant of OWL1, a standard ontology language for the
Web, while SHIF(D) to lighter version named OWL-Lite. SHIF is SHIF(D)
without datatypes.

Example 1 (Example knowledge base (KB, P)). Given is a knowledge base (KB, P)
describing bank services, presented below. familyAccount is the only non-DL-
predicate in (KB, P).

Terminology in KB
Client ≡ ∃ isOwnerOf A client is defined as an owner of something.
> v ∀ isOwnerOf.(Account t CreditCard) The range of isOwnerOf is a disjunction of

Account and CreditCard.
> v ∀ isOwnerOf−.Person The domain of isOwnerOf is Person.

relative ≡ relative− The role relative is symmetric.
> v ∀ relative.Person The range of relative is Person.

Account v ∃ isOwnerOf− All accounts have an owner.

> v ∀ hasMortgage.Mortgage The range of hasMortgage is Mortgage.

> v ∀ hasMortgage−.Account The domain of hasMortgage is Account.

> v≤ 1 hasMortgage− A mortgage can be associated up to one ac-
count.

Account ≡ ¬ Person Account is disjoint with Person.
Account ≡ ¬ CreditCard Account is disjoint with CreditCard.
Account ≡ ¬ Mortgage Account is disjoint with Mortgage.
Person ≡ ¬ CreditCard Person is disjoint with CreditCard.
Person ≡ ¬ Mortgage Person is disjoint with Mortgage.
Mortgage ≡ ¬ CreditCard Mortgage is disjoint with CreditCard.

Assertions in KB
Person(Anna). Anna is a person.
isOwnerOf(Anna,a1). Anna is an owner of a1.
hasMortgage(a1,m1). M1 is associated to a1.
relative(Anna,Marek). Anna is a relative of Marek.

Person(Jan). Jan is a person.
isOwnerOf(Jan,cc1). Jan is an owner of cc1.
CreditCard(cc1). Cc1 is a credit card.

Person(Marek). Marek is a person.
isOwnerOf(Marek,a1). Marek is an owner of a1.

Rules in P
familyAccount(x)← Account(x), isOwner(y,x), familyAccount is an account that is

isOwner(z,x), relative(y,z) co-owned by at least two relatives.

The patterns being found in our approach have the form of conjunctive
queries over combined knowledge base (KB, P). The answer set of the query
contains individuals of a reference concept Ĉ. We assume that the queries are
positive, that is do not contain negative literals. Moreover, we assume that the
queries are DL-safe, that is all variables in such a query are bound to individuals
explicitly occurring in the knowledge base, even if they are not returned as part
of the query answer.
1 http://www.w3.org/TR/owl-features/

59

Definition 1 (Pattern). Given is a combined knowledge base (KB, P). A pattern
Q is a conjunctive, positive DL-safe query over (KB, P) of the following form:

Q(key) =?− Ĉ(key), B1, ..., Bn

B1,...,Bn represent atoms of the query (where predicates are either atomic concepts,

simple roles or non-DL-predicates). q(key) denotes that variable key is the only one

variable whose bindings are returned in the answer (distinguished one). x1,...,xm rep-

resent the variables of the query which are not a part of the answer (existential ones).

A trivial pattern is the query of the form: Q(key) =?− Ĉ(key).

We assume that the queries posses linkedness property and are range-restricted
both with regards to variable key. Note, that conjunctive queries, with regards
to the work presented in [1], have been extended here from the ones over KB to
the ones over (KB, P). What follows, the conjunctive queries, as presented in
this paper, can contain intensional predicates from Disjunctive Datalog program
P , (like familyAccount defined in Example 1 and employed in Example 2). It
means also that the patterns can contain n-ary predicates.

Example 2 (Example patterns). Consider the knowledge base (KB,P) from Ex-
ample 1. Assuming that Client is the reference concept Ĉ, the following patterns,
queries over (KB, P), may be built:
Qref (key) =?− Client(key)

Q1(key) =?− Client(key), isOwnerOf(key, x)

Q2(key) =?− Client(key), isOwnerOf(key, x), familyAccount(x)

where Qref is a trivial query, reference query , that counts the number of in-
stances of the reference concept.

Frequent pattern mining Our formulation of frequent pattern mining is closest
to the one defined in SPADA [2]. First we are going to define the support of the
pattern.

Definition 2 (Support). A support of query Q with respect to the knowledge base

(KB, P) is defined as the ratio between the number of instances of reference concept Ĉ
that satisfy query Q and the total number of instances of reference concept Ĉ.

Consider the queries from Example 2. The reference query has 3 items in its
answer set that is 3 individuals from (KB,P) that are deduced to be Client.
Query Q2, for example, has 2 items in its answer set that is the clients that
are co-owners of at least one account with their relatives (Anna, Marek). The
support of query Q2 is then calculated as: support(Ĉ,Q, KB) = 2

3 ≈ 0.66

Definition 3 (Frequent pattern discovery). Given a knowledge base (KB, P),
a set of patterns in a language L in a form of queries Q that all contain a reference
concept Ĉ as a predicate in one of the atoms in the body, a minimum support threshold
minsup specified by the user and assuming that queries with support s are frequent in
(KB, P) given Ĉ if s≥minsup, the task of frequent pattern discovery is to find the set
F of frequent queries.

604 Joanna Józefowska, Agnieszka ÃLawrynowicz, Tomasz ÃLukaszewski����������	
��������
�� ���	 ������
�������
�	 ����������	������
���
��
�	 �������
�	 ������
�������
�	 �
������
��
�	�����
������
��
�	��������������
�	�����
������
��
�	 ��������
�	
� ���� � �� �� ��������
�	��

Fig. 1. A part of the trie constructed for the knowledge base from Example 1, Client
as a reference concept and minsup=0.2.

Similarly to our work presented in [1], a trie data structure, introduced in [4], is
used to systematically generate patterns. The trie data structure is a tree where
each path from the root to a leaf contains candidate queries. Nodes in a trie
correspond to the atoms of the query. An example of a trie is given in Figure
1. The labels with numbering on archs in Figure 1 correspond to two ways in
which atoms can be added to the end of the query: (1) as dependent atoms, that
is atoms that could not have been added at an earlier position, as they use at
least one new variable of the last atom of the query, and (2) as copies of right
brothers of a given atom in a trie. The trie is searched depth first.

3 Query transformation based on smartcall optimization
and answer caching

Our proposed method introduces special predicates to an assertional part of a
knowledge base to store the answers of previous, frequent queries. Each frequent
query Q1 is transformed to a query Q2 with all of the relevant variables of Q1 as
distinguished ones. ”Relevant” means that not all the variable bindings have to
be materialized at each step, only those that may have been affected by adding
new literal to a query. Relevancy is computed based on the idea of so-called
smartcall transformation [5]. In smartcall transformation, a query Q is parti-
tioned according to the equivalence relation which is the transitive closure of the
”shares undistinguished variables with” relation. Then, while testing refinements
Q,Ri of frequent query Q, parts of Q for which the success is independent of
the success of Ri (that is parts of Q that are not connected to Ri via undistin-
guished variable chains) need not be tested again. We use this idea to identify
the subsets of variables that have to be materialized, due to their connection
with the variables in an atom newly introduced to a query. Last depth at which
given variable bindings were materialized is stored in a hash list.

Each tuple in the result of Q2 is materialized in the following way. For
each variable vi in Q2, except the key one, an assertion is created, of the
form: $sup d vi(a, b), where d denotes depth of a query in a trie, a-value of

61

the key variable, b-value of the given variable vi in a tuple. For the key vari-
able the assertion has the form: $key d(a) (see: Algorithm 2). A trie is gener-
ated recursively depth first. The assertions, introduced by some node, stay in
a knowledge base until all of it’s children are recursively expanded. The asser-
tional part of knowledge base from Example 1, after materializing the results
of frequent patterns from the trie in Figure 1, up to the pattern Q(key) =
?− Client(key), isOwnerOf(key, x1), familyAccount(x1), looks as follows:

Updated assertions in KB
Person(Anna). $key 1(Anna). $key 2(Anna). $key 3(Anna).
isOwnerOf(Anna,a1). $sup 2 x1(Anna,a1). $sup 3 x1(Anna,a1).
hasMortgage(a1,m1).
relative(Anna,Marek).

Person(Jan). $key 1(Jan). $key 2(Jan).
isOwnerOf(Jan,cc1). $sup 2 x1(Jan,cc1).
CreditCard(cc1).

Person(Marek). $key 1(Marek). $key 2(Marek). $key 3(Marek).
isOwnerOf(Marek,a1). $sup 2 x1(Marek,a1). $sup 3 x1(Marek,a1).

Then, evaluating queries with regards to the new assertional part of a knowledge
base is processed like is presented in Algorithm 1.

Algorithm 1 evaluateCandidate(Q1(x,y), d, lastMaterializationDepthsList)

1. foreach variable zi, except key one, appearing in both: last(Q1) (last atom of Q1)
and in the preceding atoms of Q1 do

2. retrieve last depth d(zi), where bindings of zi were materialized, from the hash
list lastMaterializationDepthsList

3. construct query Q2(x, z), of the form: Q(x) =?−[$key (d−1)(x)], [$sup (d(z1)) z1(x, z1),
..., $sup (d(zk)) zk(x, zk)], last(Q1)

4. evaluate query Q2

The example, candidate queries: Q1(key) =?−Client(key), isOwnerOf(key, x1),
familyAccount(x1), hasMortgage(x1, x3) and Q2(key) =? − Client(key),
isOwnerOf(key, x1), familyAccount(x1), Account(x1) look as follows after trans-
formation: Q′

1(key) =?−$sup 3 x1(key, x1), hasMortgage(x1, x3) and Q′2(key) =
?− $sup 3 x1(key, x1), Account(x1) respectively. For creating subsequent mate-
rialized results previous materialized results are used as in Algorithm 2.

Algorithm 2 materializeResults(Q1(x,y), d, lastMaterializationDepthsList)

1. determine variables zi connected to last(Q1) via body variable chain

2. foreach variable zi do

3. retrieve last depth d(zi), where bindings of zi were materialized, from the hash
list lastMaterializationDepthsList

4. construct query Q2(x ∪ z, ∅) of the form: Q(x, z1, ..., zk) =?− $key (d− 1)(x),
$sup (d(z1)) z1(x, z1), ..., $sup (d(zk)) zk(x, zk), last(Q1)

5. evaluate query Q2(x ∪ z, ∅)
6. add relation $key d(x), a set of key variable bindings in the query result, to KB

7. foreach zi

8. compute relation $sup d i(x, zi), a set of 2-tuples selected from the query result,
and add it to KB

62

For example, the pattern Q(key) =? − Client(key), isOwnerOf(key, x1),
familyAccount(x1) that added the assertions $key 3(Anna), $sup 3 x1(Anna,a1)
$key 3(Marek) and $sup 3 x1(Marek,a1) to KB, would be transformed to the
query Q′(key, x1) =?− $key 2(key), $sup 2 x1(key, x1), familyAccount(x1).

4 Empirical evaluation

Our implementation is written in Java. As the reasoner on a combined knowledge
base (KB, P) we use KAON22. In Figure 4 some of our experimental results on
three benchmarks are presented3.

LUBM, minsup=0.3, reference Concept=Person

C P C P

OA MR MR FINANCIAL-GOLD, minsup=0.2, reference Concept=Client

1 1 1 1 1 1,0 1,0 100,0% C P C P

2 66 6 66 6 14,9 8,7 171,1% OA MR MR

3 265 31 199 25 133,8 104,7 127,8% 1 1 1 1 1 1,0 1,0 100,0%

4 1416 193 1151 162 3308,0 3104,0 106,6% 2 8 6 8 6 3,3 3,9 84,8%

3 78 24 70 18 54,7 56,9 96,2%

4 182 63 104 39 238,1 198,4 120,0%

SWRC-AFB, minsup=0.2, reference Concept=Person 5 448 125 266 62 1023,5 701,3 145,9%

C P C P 6 612 182 164 57 2201,4 1385,0 158,9%

OA MR MR 7 801 208 189 26 3123,5 1987,5 157,2%

1 1 1 1 1 1,0 1,0 100,0% 8 853 215 52 7 2426,3 2220,1 109,3%

2 88 3 88 3 19,5 11,6 167,4% 9 872 216 19 1 3582,2 2254,4 158,9%

3 259 14 171 11 146,5 115,8 126,5%

4 873 98 614 84 2291,3 1642,7 139,5% C-candidates, P-patterns

D
e

p
th Time(s) Speedup(%)

Up to depth At depth

D
e

p
th

Up to depth

D
e

p
th

Up to depth

Speedup(%)

Speedup(%)

Time(s)

Time(s)

At depth

At depth

Fig. 2. Experimental results. OA - original algorithm, MR - materialized results used.

A trie was generated up to the specified maximum depth values. The runtimes
are the times of a whole trie generation for each maximum depth (maximum
length of patterns). Using materialized results of previous queries (MR) allowed
to achieve speedups for all knowledge bases.

References

1. Józefowska J., ÃLawrynowicz A., ÃLukaszewski T. (2006) Frequent pattern discovery
in OWL DLP knowledge bases, In Proc. of EKAW 2006, 287-302

2. Lisi F.A., Malerba D. (2004) Inducing Multi-Level Association Rules from Multiple
Relation, Machine Learning Journal, 55, 175-210

3. Motik B., Sattler U., Studer R. (2004) Query Answering for OWL-DL with Rules.
In Proc. of ISWC 2004, 549-563

4. Nijssen S., Kok J.N. (2001) Faster Association Rules for Multiple Relations. In Proc.
of the IJCAI’01, 891-897

5. Santos Costa V., Srinivasan A., Camacho R., Blockeel H., Demoen B., Janssens
G., Struyf J., Vandecasteele H. and Van Laer W. (2002) Query transformations
for improving the efficiency of ilp systems. Journal of Machine Learning Research
4:465-491

2 http://kaon2.semanticweb.org/
3 For description of datasets see:

http://www.ecmlpkdd2007.org/CD/workshops/PRICKLWM2/P Joz/p7Final.pdf

63

Probabilistic Local Pattern Mining

Angelika Kimmig and Luc De Raedt

Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
POBox 2402, BE-3001 Heverlee, Belgium {firstname.lastname}@cs.kuleuven.be

Abstract. We study local pattern mining in the context of probabilistic
relational databases, developing algorithms for probabilistic variants of
both frequent and correlated pattern mining that use principles of statis-
tical relational learning. As probabilistic selection criteria, we introduce
both a likelihood function and a probabilistic frequency. We report on
experiments on a challenging biological network mining task.

1 Introduction

Local pattern mining traditionally aims at identifying patterns that satisfy cer-
tain constraints w.r.t. a given database [8]. Numerous works have been devoted
to local pattern mining since the introduction of item-set mining, cf. [1]. Promi-
nent approaches search for all such patterns (frequent pattern mining [1]) or the
best k patterns (correlated pattern mining [9]). Transferring local pattern min-
ing techniques to probabilistic databases allows to account for uncertainty, which
often arises naturally, e.g. in scientific data or robotics. This requires changing
the membership relation determining when a query matches a tuple from de-
terministic to probabilistic. This work investigates the mining of local relational
patterns in probabilistic databases. It is motivated by and empirically evaluated
in a large biological database containing information about known or predicted
relationships for various types of objects [10, 7, 3]. We employ ProbLog [3] to rep-
resent the database, but the techniques and principles are directly transferable
to other probabilistic formalisms. As ProbLog is a direct extension of Prolog,
our work builds upon existing work in multi-relational data mining and induc-
tive logic programming, where local pattern mining is known under the names
of query mining [5] and query flocks [11]. We adapt both correlated and frequent
pattern mining, introducing two types of probabilistic membership functions: a
kind of likelihood criterion as well as a probabilistic frequency measure.

2 Query Mining

Query mining upgrades traditional local pattern mining to the representations
of multi-relational databases [5]. We use Datalog to represent databases and
queries, abbreviating vectors of variables as X. We assume a designated table
ID containing the set of tuples or examples to be characterized using queries,

64

and restrict the language L of patterns to the set of conjunctive queries of the
form

r(X) : −ID(X), l1, ..., ln (1)

where the li are positive atoms or conjunctive conditions. Additional syntactic
or semantic restrictions, called bias, can be imposed on the form of conjunctive
queries by explicitly specifying the language L, cf. [11, 4, 5].

Frequent Query Mining aims at finding all queries satisfying a selection pred-
icate φ. It can be formulated as follows, cf. [5, 4]:

Given a language L containing queries of the form (1), a database D including
the designated relation ID, and an anti-monotonic selection predicate φ

Find all queries q ∈ L such that φ(q,D) = true.

A prominent example of an anti-monotonic selection predicate is minimum fre-
quency, requiring a minimum number of tuples covered. Anti-monotonicity is
based on a generality relation between patterns. We employ OI-subsumption [6],
as the corresponding notion of subgraph isomorphism is favorable within the in-
tended application in network mining.

Correlated Pattern Mining [9] uses both positive and negative examples,
given as two designated relations ID+ and ID− of the same arity, to find the
top k patterns, that is, the k patterns scoring best w.r.t. a function ψ. The
function ψ employed is convex, e.g. measuring a statistical significance criterion
such as χ2, cf. [9], and measures the degree to which the pattern is statistically
significant or unexpected. The task of correlated pattern mining is defined as:

Given a language L containing queries of the form (1), a database D including
the designated relations ID+ and ID−, and a correlation function ψ

Find argk maxq∈L ψ(q,D)

Multi-relational query miners such as [5, 4] often follow a level-wise approach
for frequent query mining [8], where at each level new candidate queries are
generated from the frequent queries found on the previous level. In contrast to
Apriori, instead of a “joining” operation, they employ a refinement operator ρ
to compute more specific patterns, and also manage a set of infrequent queries
to take into account the specific language requirements imposed by L. To search
for all solutions, it is essential that the refinement operator is optimal w.r.t. L,
i.e. ensures that there is exactly one path from the most general pattern to every
pattern in the search space. This can be achieved by restricting the refinement
operator to generate queries in a canonical form, cf. [4].

Morishita and Sese [9] adapt Apriori for finding the top k patterns w.r.t. a
boundable function ψ, i.e. for the case where there exists a function u (different
from a global maximum) such that ∀g, s ∈ L : g ¹ s → ψ(s) ≤ u(g). Again,
at each level candidate queries are obtained from those queries generated at the
previous level that qualify for refinement, but here, this requires that such a
query either belongs to the current k best queries, or is still promising, that is,
has an upper-bound higher than the value of the current k-th best query.

65

3 Probabilistic Query Mining

The framework for query mining as outlined above can directly be adapted
towards the probabilistic case. While the overall structure of the algorithms re-
mains the same, two key components change: the database D is probabilistic,
and the selection predicate φ or the correlation measure ψ is based on the prob-
abilities of queries. In principle, any formalism defining such probabilities could
be used. We employ ProbLog [3], as it is a very simple yet powerful logic.

A ProbLog program T consists of a set of labeled facts pi :: ci together with
a set of definite clauses. Each ground instance of such a fact ci is true with
probability pi, where all probabilities are assumed mutually independent. The
program therefore naturally defines a probability distribution P (L|T) over logic
programs L ⊆ LT = {c1, · · · , cn}. It can be used to specify two types of query
probabilities:

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) (2)

Px(q|T) = maxe∈E(q) P (e|T) = maxe∈E(q)

∏
ci∈e

pi (3)

where P (q|L) = 1 if there exists a θ such that L |= qθ, and P (q|L) = 0 oth-
erwise, and E(q) is the set of all explanations or proofs for query q [7]. The
success probability Ps(q|T) thus corresponds to the probability that q is prov-
able in a randomly sampled logic program, the explanation probability Px(q|T)
to that of sampling all clauses needed in the most likely proof. Evaluating Ps

is computationally hard. In [3], an approximation algorithm is proposed that
repeatedly computes an upper and a lower bound on Ps until their difference
becomes sufficiently small. Px can easily be calculated using a best-first search.

To define probabilistic selection predicates, we use either Ps(q(t)|D) (2) or
Px(q(t)|D) (3) as the probabilistic membership function P (t|q,D). Note that P
is anti-monotonic: if q1 ¹ q2 then P (t|q1,D) ≥ P (t|q2,D). As in the case of the
traditional frequency function, which can be seen as the sum of a deterministic
membership relation over all tuples, a selection predicate can naturally be ob-
tained by combining a minimum threshold with the aggregated probabilities of
all tuples t in the relation ID, aggt∈ID(P (t|q,D)) > c. As typical functions used
in correlated pattern mining such as χ2 rely on hard 0-1 decisions, they cannot
easily be employed here. Instead, we modify the aggregation function to account
for the class of each example, i.e. increase with increasing probability of positive
examples, but decrease with increasing probability of negative examples. Note
that this includes using unclassified instances, as in frequent pattern mining,
as special case with ID+ = ID and ID− = ∅. Choosing sum as aggregation
function results in a probabilistic frequency pf (4) also employed by [2] in the
context of item-set mining, whereas product defines a kind of likelihood LL (5).
Notice that using the product in combination with a non-zero threshold implies
that all positive examples must be covered with non-zero probability. We there-
fore introduce a softened version LLn (6) of the likelihood, where n < |ID+|

66

examples have to be covered with non-zero probability. This is achieved by re-
stricting the set of tuples in the product to the n highest scoring tuples in ID+,
thus integrating a deterministic (anti-monotonic) selection predicate into the
probabilistic one. More formally, the three functions used are defined as follows:

pf(q,D) =
∑

t∈ID+

P (t|q,D)−
∑

t∈ID−
P (t|q,D) (4)

LL(q,D) =
∏

t∈ID+

P (t|q,D) ·
∏

t∈ID−
(1− P (t|q,D)) (5)

LLn(q,D) =
∏

t∈n(ID+)

P (t|q,D) ·
∏

t∈ID−
(1− P (t|q,D)) (6)

Here, n(ID+) contains the n highest scoring tuples in ID+. Note that when-
ever the membership function P is monotone, combining one of these functions
with a minimum threshold leeds to monotone selection predicates w.r.t. OI-
subsumption. In correlated pattern mining, omitting the scores of negative ex-
amples provides an upper bound in all cases.

4 Implementation and Experiments

Our implementation of both frequent and correlated pattern mining in Yap-
5.1.2 starts from the (non-probabilistic) frequent query mining system c-armr
of [4], but employs a modified canonical form ordering literals primarily on their
arguments. ProbLog is used to evaluate probabilistic membership. As in c-armr,
the bias can be defined using type and mode restrictions as well as background
knowledge. To deal with classified examples, we keep track of patterns that
are infrequent, but cannot be pruned based on their upper bound. To increase
pruning, we modified the search strategy for correlated pattern mining to use
the score of the kth best pattern so far as threshold.

We perform experiments in the context of the weighted biological database
of [10], concentrating on the 142 human genes in our database known to be
related to Alzheimer disease according to Entrez. As the known practical limita-
tions of frequent pattern mining are inherited in the probabilistic case, we focus
on correlated pattern mining. We study the following questions:

Q1 How do Ps and Px differ in performance?
Q2 Can the top queries discriminate unseen positive and negative examples?
Q3 Does the correlated pattern miner perform effective pruning?
Q4 Can the correlated pattern miner use the full network?

We used the full graph G0 of around 1M nodes and 6M edges, as well as two
connected subgraphs G1 (658 nodes, 3544 edges) and G2 (3364 nodes, 17666
edges) around Alzheimer disease also used in [7]. Each graph is represented as
a probabilistic table of typed edges and a deterministic table of labeled nodes.
The refinement operator adds literals of the form edge(X,Y,e), edge(X,Y) (ab-
breviating edge(X,Y,_)) and node(X,n) where X and Y are variables of type

67

LLs LLs
n pfs LLx LLx

n pfx

(a) .95/.95/.94 .57/.28/.07 .66/.41/.16 1/1/.96 1/1/1 1/1/1

(b) .13 .70 .77 .91 .79 .78

Table 1. Fraction of completed runs for k = 1/5/20 (a) and fraction of positives ranked
before first negative, averaged over completed runs with at least 5 pairs of examples (b).

node name, X already appears in the pattern, and e and n are constants de-
noting labels. The bias further states that labels are mutually exclusive, that
edge(X,Y,e) implies edge(X,Y), and how to invert labels when using edges
backwards. This ensures that edges in patterns map to database entries inde-
pendent of direction. Training examples are gene nodes annotated (positive)
resp. not annotated with AD (negative) randomly picked from G1. We use 100
datasets with 1 to 10 examples of each class. q(X):-id(X),node(X,’Gene’) is
used as most general query. We approximate Ps by the lower bound of the ap-
proximation algorithm with interval width δ = 0.1 and a timelimit of 60 sec for
the evaluation of each individual bound. We use the likelihood LL (5) and the
probabilistic frequency pf (4). For m ≥ 5 pairs of examples, we also consider the
softened likelihood LLn (6) with n = dm/2e, indicating the probability used by
superscripts where needed. Experiments are performed on a cluster, requesting
at least 1GB of memory, with a timelimit of 23:20 hours per run.

To answer Q1 and Q2, we use G1 with k = 1, 5, 20. Table 1 illustrates the
performance in terms of the fraction of successful runs. Unsuccessful runs are
due to the timelimit for Px and to exhausting memory for Ps. To compare
Ps and Px in terms of their results, we use the best pattern (omitting id(X))
to retrieve covered examples from G2, and rank those using the corresponding
P , excluding training examples. In case of equally likely patterns, we choose
the most specific one, and break remaining ties randomly. We found that all
patterns return several positive examples first. Table 1 also shows that, except
for the very general patterns obtained by LLs, a large fraction of all positive
examples is returned before the first negative one. Together, these results show
that the best patterns are indeed able to distinguish the unseen positive from
the unseen negative examples, thus answering Q2 positively. Combining resource
requirements and results, the answer to Q1 is that using Px is more favorable.

Mining on G2 with pfx on average examines up to 200 patterns for k = 1 and
at most 2500 for k = 50. Given more than 2M queries of length at most 4, this
clearly answers Q3 affirmatively. Using pfx on the full graph G0 with datasets
of size ten, runs for k = 1 took 7 to 149 minutes on a 2.2GHz 4GB machine, with
an average of 64 minutes. For k = 5, the timelimit was reached. Although prob-
abilistic relational query mining is computationally challenging, large networks
can thus in principle be used for small values of k. This answers Q4 affirma-
tively, but improving the efficiency of the ProbLog engine is clearly necessary
and actually part of our current work.

68

5 Conclusions and Related Work

We extended local pattern mining towards a probabilistic relational framework
by providing a frequent as well as a correlated pattern mining algorithm, with
scoring functions aggregating probabilities. Results on challenging biological net-
work mining tasks show that correlated pattern mining with pfx is most effective
in terms of both function and efficiency. Although a very large network can be
used, improving the efficiency is needed and actually underway.

Our work builds upon existing multi-relational data mining systems such
as c-armr [4]. As far as we are aware, the only existing approach to mining
probabilistic data is that of [2], who study frequent item-set mining using ex-
pected support, corresponding to the probabilistic frequency of Equation (4),
but neither consider relational data nor correlated pattern mining. Probabilistic
explanation based learning (PEBL) [7] is a related approach in that it also re-
sults in a set of patterns. However, it is also significantly different: patterns are
obtained by generalizing the logical structure of proofs of the examples w.r.t. a
domain theory defining a target predicate. PEBL thus searches a highly con-
strained space of possible patterns, and hence, it is more efficient to use, but
also more restricted.

Acknowledgments A. Kimmig is supported by the Research Foundation Flanders
(FWO Vlaanderen). This work is supported by the GOA project 2008/08 Proba-
bilistic Logic Learning; it uses HPC resources http://ludit.kuleuven.be/hpc.

References

1. R. Agrawal et al. Fast discovery of association rules. In Advances in Knowledge
Discovery and Data Mining, p. 307–328. The MIT Press, 1996.

2. C. K. Chui et al. Mining frequent itemsets from uncertain data. In PAKDD, vol. 4426
of LNCS, p. 47–58. Springer, 2007.

3. L. De Raedt et al. ProbLog: A probabilistic Prolog and its application in link
discovery. In IJCAI, p. 2462–2467, 2007.

4. L. De Raedt and J. Ramon. Condensed representations for inductive logic program-
ming. In KR, AAAI Press, p. 438–446, 2004.

5. L. Dehaspe et al. Finding frequent substructures in chemical compounds. In KDD,
p. 30–36. AAAI Press, 1998.

6. F. Esposito et al. Ideal refinement under object identity. In ICML, p. 263–270.
Morgan Kaufmann, August 2000.

7. A. Kimmig et al. Probabilistic explanation based learning. In ECML, vol. 4701 of
LNCS, p. 176–187. Springer, 2007.

8. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

9. S. Morishita and J. Sese. Traversing itemset lattice with statistical metric pruning.
In PODS, p. 226–236. ACM Press, 2000.

10. P. Sevon et al. Link discovery in graphs derived from biological databases. In DILS,
vol. 4075 of LNCS, p. 35–49. Springer, 2006.

11. S. Tsur et al. Query flocks: A generalization of association-rule mining. In SIGMOD
Conference, p. 1–12, 1998.

69

HiFi: Tractable Propositionalization through
Hierarchical Feature Construction

Ondřej Kuželka and Filip Železný

Intelligent Data Analysis Research Group
Dept. of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

{kuzelo1,zelezny}@fel.cvut.cz

Abstract. We present a novel propositionalization algorithm HiFi based
on constructing first-order features with hierarchical structure. Unlike
state-of-the-art algorithms, HiFi simultaneously constructs features and
computes their extensions, while this merged operation takes time poly-
nomial in the maximum feature length and in the total number of fea-
tures. Moreover, all features produced by HiFi are the smallest in their
semantic equivalence class. In our preliminary experiments we show run-
time improvements with respect to a state-of-the-art propositionalization
algorithm.

1 Introduction

This paper addresses the problem of propositionalization, i.e. converting struc-
tured descriptions of learning examples into attribute-value descriptions. A ma-
jor stream of state-of-the-art approaches to propositionalization [3, 2, 5] is based
on constructing features in the form of queries. A set of generated features then
plays the role of the attribute set for the new representation. The range of all pos-
sible features is, for a given learning problem, usually constrained by declaring
a language of admissible features. However, this popular form of propositional-
ization suffers from two sources of complexity: i) finding features complying to
the specified language constraints and ii) computing extension of the generated
features, i.e. determining for which examples they are true. These sub-problems
usually introduce two exponential (in n) time complexity factors into proposi-
tionalization (RSD [5] or SINUS [2]). This paper mainly shows how both of these
intractability sources can be simultaneously removed (reduced to polynomial-
time) if one only works with hierarchical features.

In [7] it was shown that certain constraints imposed on the feature language
enable to reduce the feature construction problem to the problem of satisfying a
(polynomially large) set of propositional Horn clauses, which is a tractable prob-
lem. One of such sufficient constraints is the hierarchical structure of features.
In this work we additionally remove the second source of complexity (finding
extensions) for hierarchical features. For this we exploit the fact that verifying
subsumption between a feature and an example can be reduced to a constraint

70

satisfaction problem, which in case of a hierarchical feature can be efficiently
solved using a method known as directed arc consistency checking.

It would be thus theoretically straightforward to implement a propositional-
ization algorithm by two subsequent problem reductions (HornSAT and CSP).
This would be impractical namely due to the overhead incurred by represen-
tation conversions and by the implied separation of feature construction from
extension computation. HiFi works in the polynomial bound but brings further
benefits by avoiding explicit reductions and by merging the mentioned two stages
of propositionalization. A further advantage of HiFi is that it only produces re-
duced features; i.e. of all semantically equivalent features it only produces the
smallest. We omit proofs, which will appear in an extended account of this work

2 Preliminaries

Most algorithms in inductive logic programming rely on a generality relation
between clauses. While it would be natural to say that C is more general than
D whenever C entails D (written C |= D), the entailment relation is undecidable
and thus is typically approximated by θ-subsumption.

Definition 1 (Subsumption, equivalence, reduction). Let C and D be
clauses and let there be a substitution θ such that lits(Cθ) ⊆ lits(D). We say
that C θ-subsumes D (written C ¹θ D). If further D ¹θ C, we call C and D θ-
equivalent (written C ≈θ D). We say that C is θ-reducible if there exists a clause
C ′ such that C ≈θ C ′ and |C| > |C ′|. A clause C ′ is said to be a θ-reduction of
C if C ≈θ C ′ and C ′ is not θ-reducible.

It is a NP-complete problem to decide θ-subsumption between two clauses and
co-NP-complete to decide θ-reduction [4].

Following up on established approaches to propositionalization, we further
constrain the language bias for features. We do this through the notion of a
feature template.

Definition 2 (Template). A template τ is a pair (γ, µ) where γ is a ground
function-free query and µ is a subset of all arguments in τ . Arguments of τ
contained in µ are called input arguments, the other arguments are called output
arguments. Let clause C ¹θ γ. An occurence of variable v at the i-th argument of
literal l in C is called an input occurrence (w.r.t. τ and θ) if the i-th argument
of literal λC,γ,θ(l) is an input argument, otherwise it is an output occurrence
(w.r.t. τ and θ). A literal in C containing only output variables is called a root
of C (w.r.t. τ and θ).

Definition 3 (Feature). Let τ = (γ, µ) be a template and n ∈ N . A query f
containing no constants or functions is a feature correct w.r.t τ and n if |f | ≤ n,
f ¹θ γ and for every input (output, respectively) occurrence of a variable in f
there is also an output (input) occurrence of the same variable in f , where both
occurrences are taken w.r.t τ and θ.

71

Note that a θ-reduction of a correct feature may not be a correct feature
itself. This may represent a problem because, to avoid redundancy, we would
like to work with reduced features. In the next section we will show how to
reduce hierarchical features while maintaining correctness.

3 Hierarchical Features

In this section, we define hierarchical features and list some of their properties
regarding θ-reduction and CSP representations.

Definition 4 (Hierarchical feature). A template τ = (γ, µ) is hierarchical
if every literal in γ has at most one input argument and there is a partical
irreflexive order ≺ on constants in γ such that c ≺ c′ whenever c (c′) occurs at
an input (output) argument of γ. A feature correct w.r.t. a hierarchical template
is a hierarchical feature if it has exactly one root.

Graphically, a hierarchical feature f corresponds to a unique tree graph Tf with
vertices vi corresponding to literals li. There is an edge between vi and vj iff a
variable has an output occurrence in li and an input occurrence in lj . Consider
a subtree Sf of Tf . A query q consisting of literals corresponding to vertices in
Sf is called a subfeature of f , and q’s literal corresponding to the root of Sf is
its subroot (w.r.t. f).

The next definition introduces Hθ-subsumption and Hθ-reduction. Infor-
mally, Hθ-subsumption requires that θ maps literals at a given depth in one
clause to literals at the same depth in the other clause.

Definition 5 (Hθ-reduction). We say that hierarchical feature f Hθ-subsumes
hierarchical feature g (written f ¹Hθ g) iff there is a substitution θ such that
fθ ⊆ g and for every literal l ∈ lits(f) there is a literal lθ ∈ lits(g) such that
depthf (l) = depthg(l). If further g ¹Hθ f , we call f and g Hθ-equivalent (writ-
ten f ≈Hθ g). We say that f is Hθ-reducible if there is a hierarchical feature
f ′ such that f ≈Hθ f ′ and |f | > |f ′|. Hierarchical feature f ′ is said to be a
Hθ-reduction of f if C ≈Hθ f ′ and f is not Hθ-reducible.

Clearly, Hθ-reducibility implies θ-reducibility, but not vice versa. The next
lemma provides the basic means to detect Hθ-reducibility of a hierarchical fea-
ture.

Lemma 1. A hierarchical feature f is Hθ-reducible if and only if it has sub-
features f1, f2 whose respective subroots share the same input variable, and
f1 ¹Hθ f2.

As a consequence of the lemma above, it is possible to decide reducibility of a
hierarchical feature f in time polynomial in the size of f .

Lemma 2. A constraint graph induced by a subsumption problem f ¹θ e where
f is a hierarchical feature, has constraints only over those pairs of variables
corresponding to literal pairs where the shared FOL variable is used as an output
in one of them and as an input in the other one.

72

Algorithm 1 computeDomain(root, example)

1: Input: Root of the constraint graph root, Example e;

2: rootDomain ← { all literals built on the same predicate symbol }
3: for ∀child ∈ children(root) do
4: childDomain ← computeDomain(child)
5: remove all values from rootDomain for which there are no values in childDomain such that

the corresponding constraint would be satisfied
6: end for

return rootDomain

Lemma 2 allows us to reduce the problem of deciding θ-subsumption for hi-
erarchical features to problem of solving a tree-structured constraint satisfac-
tion problem. It is known that such CSP problems are efficiently soluble [1].
Here we follow an algorithm based on directed-arc-consistency. The basic idea
of the directed-arc-consistency method is that when we filter all domains of
CSP-variables in such a way that domains of these variables contain only values
consistent with filtered domains of their children, then it is possible to find a so-
lution by assigning values from the filtered domains to CSP-variables proceeding
from root to leaves (Algorithm 1).

4 The Propositionalization Algorithm

In this section, we design a propositionalization algorithm HiFi, which runs in
time polynomial in the maximum feature size and in the number of generated
features. HiFi merges the two usual phases of propositionalization, i.e. feature
construction and extension computation. Specifically, the core algorithm accepts
a learning example and a feature template. It produces all features complying
to the template and subsuming the example. These features are obtained by
combinatorial composion of subfeatures, which act as the primitive building
blocks. One of the advantages of this assembly approach is that subsumption
of the given example can already be checked for individual subfeatures; if it
is refuted for a given subfeature, this subfeature is not used in the subsequent
feature assembly.

The algorithm exploits the partial irreflexive order, which is imposed on types
of arguments by Def. 4. Due to existence of this order it is possible to sort all
declared predicates l ∈ γ topologically with respect to a graph induced by the
partial order. When the topological ordering is found, it is possible to organize
generation of features in such a way that subfeatures are built iteratively by
combining smaller subfeatures into larger ones. We illustrate this through an
example.

Example 1. Consider the following template

τ = car(−c) ∧ load(+c,−l) ∧ triangle(+l) ∧ box(+l).

The toplogical order of literals l ∈ τ then corresponds to (box(+l), triangle(+l),
load(+c,−l), car(−c)). Now, we take the first declared literal box(+l) and build

73

the set of all possible subfeatures with box(+l) as its subroot Sbox(+l) = {box(L)}.
Similarly, for triangle(+l) we have Striangle(+l) = {triangle(L)}. The third de-
clared predicate load(+c,−l) has outputs. Thus, subfeatures with this predicate
in the subroots are obtained by all possible graftings of the already generated
subfeatures onto the load/2 subroot. This results in

Sload(+c,−l) = {load(C, L) ∧ triangle(L), load(C, L) ∧ box(L), . . .

. . . load(C, L) ∧ box(L) ∧ triangle(L)}.
The set Scar(−c) is then created similarly as Sload(+c,−l). Note that so far we
have not considered that a maximum allowed size of a feature is specified.

Generating features in this manner can be conveniently combined with com-
putation of θ-subsumption. Brief inspection of Algorithm 1 reveals that in order
to compute domain of a literal, which is a subroot of some subfeature, we only
need to know the domains of its children. However, the domain of any literal
l can be computed when l is added as a subroot of some subfeature to the set
of already generated subfeatures and then it can be reused many times. Due to
Lemma 1 we can also decide Hθ-reducibility for any subfeature s in polynomial
time and remove s from the set of already generated features if it is found re-
ducible. What remains to explain is how HiFi deals with the maximum declared
feature size, which is answered by the following lemma.

Lemma 3. Let m denote number of declared predicates and let a denote maxi-
mum arity of the predicates. Then, for all declared predicates p, we can find sizes
of the smallest features Fmin containing p in time O(m2 + m · a).

Due to Lemma 3, which allows us to decide whether a subfeature may be ex-
tended to a correct feature with size less than n, and due to the fact that no
feature f has more than n subfeatures, the number of generated subfeatures can
be bounded at any time of HiFi’s run by n·C(n), where C(n) is the total number
of correct features w.r.t. τ . Brief combinatorial reasoning then implies that HiFi
indeed runs in time polynomial in the maximum feature length and in the total
number of features.

Theorem 1. Let τ be a hierarchical template and n be maximum feature size,
then HiFi finishes in time polynomial in the total number of features and in n.

5 Experiments

Here we evaluate HiFI in comparison to a state-of-the-art propositionalization
algorithm RSD [5]. Due to limited space, we perform experiments only in one
relational domain. In this experiment the same language bias is applied for HiFi
and RSD. The experiments pertain to class-labeled CAD data (product struc-
tures) described in [6], consisting of 96 CAD examples each containing several
hundreds of first-order literals. Table 1 displays the results. J48 refers to leave-
one-out predictive accuracies of J48 decision trees built using the generated

74

features. The results indicate that for large features HiFi outperforms RSD by
several orders of magnitude. However, for very small features HiFi’s more com-
plicated algorithms cause some overhead, which manifests itself in RSD being
faster for small sizes.

Length 6 7 8 9 10 11 12 13 14

HiFi [s] 12 14 15 15 30 53 115 261 618

RSD [s] 0.5 1.5 8 45 310 1749 12324 n.a. n.a.

J48 [%] 88.54 87.5 94.79 93.75 95.83 94.79 91.66 91.66 92.7

Table 1. Propositionalization results on CAD data.

6 Conclusions

We have presented a novel propositionalization algorithm HiFi based on con-
structing first-order features with hierarchical structure. Our experiments indi-
cate that HiFi performs substantially faster than state-of-the-art propositional-
ization system RSD [5]. Experiments with more datasets and comparing HiFi to
other ILP algorithms should be done in future work.

Acknowledgements

This work is supported by the Grant Agency of the Czech Republic through the project

201/08/0486 Merging Machine Learning with Constraint Satisfaction.

References

1. R. Barták. Theory and practice of constraint propagation. In Proceedings of the
3rd Workshop on Constraint Programming for Decision and Control (CPDC2001),
pages 7–14, 2001.

2. M.-A. Krogel, S. Rawles, F. Železný, P. A. Flach, N. Lavrač, and S. Wrobel. Com-
parative evaluation of approaches to propositionalization. In Procs. of the 13th
International Conf. on Inductive Logic Programming, pages 197–214, 2003.

3. N. Lavrač and P. A. Flach. An extended transformation approach to inductive logic
programming. ACM Transactions on Computational Logic, 2(4):458–494, 2001.

4. J. Maloberti and E. Suzuki. An efficient algorithm for reducing clauses based on con-
straint satisfaction techniques. In ILP, volume 3194 of Lecture Notes in Computer
Science, pages 234–251. Springer, 2004.

5. F. Železný and N. Lavrač. Propositionalization-based relational subgroup discovery
with RSD. Machine Learning, 62(1-2):33–63, 2006.

6. M. Žáková, F. Železný, J. Garcia-Sedano, C. Masia Tissot, N. Lavrač, P. Křemen,
and J. Molina. Relational data mining applied to virtual engineering of product
designs. In Procs of the 16th Int. Conference on Inductive Logic Programming,
volume 4455 of LNAI, pages 439–453. Springer, 2007.

7. F. Železný. Efficient sampling in relational feature spaces. In Proceedings of the
15th Int. Conf. on Inductive Logic Programming, pages 397–413. Springer, 2005.

75

Learning Conceptual Predicates for
Teleoreactive Logic Programs

Nan Li, David J. Stracuzzi, and Pat Langley

School of Computing and Informatics, Arizona State University
Tempe, Arizona 85281 USA

{nan.li.3|david.stracuzzi|langley}@asu.edu

Abstract. Teleoreactive logic programs provide a formalism for describ-
ing conceptual and skill knowledge that is organized hierarchically. How-
ever, manual construction of the conceptual clauses is tedious and often
requires expert knowledge. In this paper, we present an approach to
defining new conceptual predicates from successfully solved problems.
We provide experimental results that demonstrate these concepts im-
prove the usefulness of skills learned from the same solutions.

1 Introduction

Teleoreactive logic programs encode both declarative and procedural knowledge
into hierarchical first-order knowledge bases [1] using a syntax similar to the
first-order Horn clauses in Prolog. The term “teleoreactive” [2] refers to the
formalism’s support for reactive execution of the goal-oriented skills over time.
Teleoreactive logic programs are often created manually using expert knowledge,
but this approach is both tedious and time-consuming.

There has been a growing body of work on learning teleoreactive logic pro-
grams, hierarchical task networks, and related structures [1, 3]. An important
subtask involves acquiring the preconditions for the learned procedural clauses.
These determine when specific clauses apply, and therefore guide the system to
select procedures that take it toward the goal. In this paper, we report an ap-
proach to defining new predicates that encode these preconditions in ways that
improve the behavior of learned skills over that of previous methods.

2 A Review of Teleoreactive Logic Programs

Teleoreactive logic programs incorporate ideas from traditional logic program-
ming, but differ in that they carry out action over time. The formalism combines
techniques from goal-driven and reactive control, and it incorporates constraints
that make learning of hierarchical structures tractable. In this section, we briefly
review the basic assumptions and operational procedures that Langley and Choi
[1] introduced in their early work on this topic.

Programs in this framework distinguish conceptual and procedural knowl-
edge. The conceptual knowledge base comprises a hierarchy of first-order Horn

76

Table 1. Sample conceptual clauses from freecell solitaire.

;; cards ?c1 and ?c2 are of different color, rank of ?c2 is one larger than ?c1
((stackable ?c1 ?c2)

:percepts ((card ?c1 color ?co1 val ?v1)
(card ?c2 color ?co2 val ?v2))

:tests ((not (equal ?co1 ?co2))
(= ?v2 (+ 1 ?v1))))

;; card ?c may be placed onto card ?dc, and ?cb is the card below ?c
((movable ?c ?dc ?cb)

:percepts ((card ?c) (card ?dc) (card ?cb))
:relations ((clear ?c) (clear ?dc)

(moved-onto ?c ?cb) (stackable ?c ?dc)))

clauses with negation that provide a vocabulary to describe the agent’s envi-
ronment. Each conceptual clause consists of a head, which states its predicate
and arguments, and a body that describes the conditions under which the pred-
icate is true, as Table 1 demonstrates. Procedural knowledge, stated as a set of
skill clauses, is similar to hierarchical strips operators [4]. Each skill clause has a
head that refers to the skill’s goal, a start condition that must be satisfied before
it can execute, an action or subgoal field that describes how to achieve the goal,
and an effects field that describes the situation after successful execution. The
predicate in a clause head may appear in a subgoal, so the framework support
recursive programs. Table 2 shows sample skill clauses from the freecell domain.
Notice how predicates such as movable refer to the concepts defined in Table 1.

Teleoreactive logic programs perform two primary operations during each
execution cycle. First, the interpreter carries out bottom-up inference to deter-
mine a belief state based on the agent’s percepts and conceptual knowledge.
Second, the interpreter retrieves the first unsatisfied top-level goal and attempts
to find an applicable path through the skill hierarchy. Such a path starts from

Table 2. Sample skill clauses from freecell solitaire.

;; Clear card ?cb by moving the card ?c on top of it to card ?dc
((clear ?cb ?c ?dc)

:percepts ((card ?c) (card ?dc) (card ?cb))
:start ((movable ?c ?dc ?cb))
:actions ((*sendtocol ?c ?dc))
:effects ((clear ?cb) (moved-onto ?c ?dc) (clear ?c)))

;; Move card ?c on to card ?dc
((moved-onto ?c ?dc)

:percepts ((card ?c) (card ?dc) (card ?cb))
:start ((precondition-moved-onto s8 ?c ?dc))
:subgoals ((movable ?c ?dc ?cb)

(clear ?cb ?c ?dc))
:effects ((effect-moved-onto s8 ?c ?dc))

77

the agent’s goal, which is an instance of a known concept, and descends through
the hierarchy such that the preconditions of each skill clause match and the
bindings of each subgoal unify with those of its parent.

If no applicable skill path exists, a problem solver decomposes the goal by
chaining backward using domain knowledge. The problem solver only back-
chains over concept definitions and primitive skills, which refer to executable
actions rather than subgoals. To chain off of a skill, the interpreter retrieves
a skill that contains the current goal in its effect and attempts to achieve the
preconditions for that skill. Similarly, when chaining off a concept, the system
uses its definition to decompose the current goal into multiple subgoals.

Whenever the problem solver achieves a goal or subgoal, it constructs a new
skill clause. The head of the skill is a generalized version of the goal that replaces
constants with variables. If chaining off a skill achieved the goal, the new skill’s
subgoals are the precondition concept from the chained skill, plus the subgoals
of the chained skill in order of execution. The precondition of the new skill is
the precondition of the skill that achieved the first subgoal. If chaining off a
concept achieved the goal, the new skill’s subgoals are the subconcepts that
were unsatisfied at the start of problem solving.

When the system encounters a similar situation in the future, its interpreter
will test whether the new skill clause appears in an applicable path through
the skill hierarchy, in which case it will execute that path. Experimental stud-
ies suggested that this approach to learning hierarchical skills rapidly replaced
problem solving, which often required extensive backtracking, with reactive ex-
ecution, which often led directly to the goal.

3 Learning and Using Conceptual Predicates

Langley and Choi’s [1] skill-learning method produced encouraging results, but
analysis suggested it has two drawbacks. First, skill clauses produced from solu-
tions obtained via chaining off of concepts tend to have overly general precon-
ditions because they ignore the preconditions of skill clauses that achieve the
subgoals. Second, skill clauses constructed for goals achieved via skill chaining
tend to have overly specific preconditions, since they consider only the particular
primitive skills used to achieve the first subgoal and ignore other skill clauses
that may achieve that subgoal.

We have addressed these issues by developing an extended approach which
defines new conceptual predicates that better reflect a learned skill clause’s ap-
plicability. Preconditions and effects define abstractions of the world before and
after the skill executes. We can expand the system’s knowledge about the world
by constructing new predicates that encode these abstractions effectively.

The new approach introduces two kinds of terms: specialized predicates and
generalized predicates. Each specialized precondition/effect is associated with
a skill clause and describes the situations in which that skill applies/produces.
The system uses specialized preconditions during execution to determine which
skill to apply next. A generalized precondition/effect is associated with a goal

78

and encodes a disjunction over the specialized preconditions/effects from all skill
clauses that achieve the goal. Our approach uses generalized preconditions and
effects during learning to determine the specialized precondition and effect for a
new skill that admits all possible uses of that skill, as detailed below.

The input to our method is a skill clause, built by the skill learner, which
contains a goal and a list of subgoals. If the system achieved the goal by chaining
off a concept, it first retrieves the generalized preconditions and effects associ-
ated with the subgoals. It then uses macro-operator composition [5] to compute
the preconditions and effects by combining the generalized preconditions and ef-
fects of the subgoals. Finally, the system introduces new precondition and effect
predicates using these two combined terms as their definitions. Similarly, if the
system achieved the goal by chaining off a skill, the specialized precondition of
the new skill is the generalized precondition of the first subgoal, S1. Similarly,
the specialized effect of the learned skill clause is the effect of the original skill.

Irrespective of whether the problem solver used concept or skill chaining to
achieve the goal, the algorithm updates the generalized predicates corresponding
to the new specialized predicates by adding the precondition/effect predicates
as disjunctive terms. This informs the interpreter that the given goal can be
achieved in a new situation and lets it apply learned skill clauses to goals under
circumstances in which it would otherwise have ignored them.

4 Experimental Evaluation

Our key claim is that expanding the representation of teleoreactive logic pro-
grams by defining new conceptual predicates improves the ability of learned
skills to achieve goals and reduces their reliance on problem solving. To test
this claim, we carried out an experiment that compared the new approach with
the one that Langley and Choi [1] reported and with Mooney’s [5] method for
learning a non-hierarchical macro-operators. The latter determines precondi-
tions using an analytic techniques similar to the one we described for computing
specialized preconditions, but without introducing new predicates. We used the
same inference, execution, and problem-solving modules in each case.

We presented each system with 100 randomly selected problems from the
freecell domain [6]. For each problem, a system first tried to achieve the goal
by executing its existing skills. If this failed, it called on the problem solver
and learned new skill clauses, using one of the above three methods, whenever
this achieved a goal or subgoal. We measured system behavior as the number
of top-level goals achieved by execution without resorting to problem solving.
Other metrics such as CPU time are secondary to our objectives. We provided
the systems with initial knowledge bases (40 conceptual clauses and 13 primitive
skills) sufficient to solve problems by execution that were one step away from
the goal. We tested the system on problems with 8, 16 and 24 cards.

Figure 1 displays the cumulative number of goals achieved without problem
solving by the three systems. Macro-operator learning fares the worst, while our
predicate creation method learns more rapidly than Langley and Choi’s tech-

79

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

0 20 40 60 80 100
0

20

40

60

80

100

Number of problems encountered

C
um

ul
at

iv
e

go
al

s
ac

hi
ev

ed

Perfect behavior
Concept Learning
No Concept Learning
Macro Learning

(a) (b) (c)

Fig. 1. Cumulative number of goals achieved for the freecell solitaire domain on prob-
lems involving (a) eight cards, (b) 16 cards, and (c) 24 cards.

nique on tasks with 16 and 24 cards. Analysis of individual runs shows that
the older approach often acquires overly general preconditions, which leads the
system to execute skills that do not achieve the goal. The concept learner mit-
igates this drawback by learning more specific preconditions. Conversely, the
macro-operator method collects too many relations among cards, which leads to
overly specific preconditions that keep the interpreter from executing relevant
skills. We conclude that, on average, the new mechanism creates more appropri-
ate preconditions for skill clauses that reduce the chance of selecting irrelevant
learned skills and increase the chance of selecting relevant ones.

5 Concluding Remarks

In this paper, we reviewed teleoreactive logic programs, along with an initial ap-
proach to learning them from problem solutions. We also identified some draw-
backs with this scheme and described an extension for defining new conceptual
predicates to produce more appropriate preconditions on learned skill clauses.
An experiment demonstrated that the new mechanism learned more rapidly than
either the initial technique, which formed overly general conditions, or a method
based on macro-operators formation, which formed overly specific ones.

Our predicate creation algorithm has superficial similarities to work on pred-
icate invention [7], but our approach is analytic while the latter was driven by
empirical regularities. More closely related is research on representation change
in problem solving and game playing [8, 9], which also relied on goal-driven ana-
lytical learning. However, our approach differs from these efforts by supporting
incremental learning that is interleaved with problem solving, by acquiring recur-
sive precondition concepts that aid generalization, and by working jointly with a
method for constructing hierarchical skills that support reactive execution. Also
relevant is recent work on learning hierarchical methods from problem solutions
and action models [10–12], which shares many features but does not construct
new conceptual predicates that extend the representation language.

The main claim of this paper is that the analytic creation of new concep-
tual predicates produces more appropriate preconditions for learned skill clauses,

80

which in turn let a teleoreactive interpreter achieve more goals through execu-
tion, without the need for problem solving. However, the results we have re-
ported remain preliminary and suggest several avenues for additional research.
For example, we should replicate out experimental studies in other domains,
both to demonstrate generality and better understand the quality of the learned
preconditions. We must also combine the predicate learner with an evaluation
mechanism that lets the system determine which of the new concepts are useful.
Finally, we should augment the framework to acquire skills for achieving these
invented concepts, thus closing the loop on conceptual and procedural learning.

6 Acknowledgements

The authors would like to thank Dongkyu Choi and Tolga Konik for helpful
discussions and suggestions concerning this work. This material is based on re-
search sponsored by ONR under grant N00014-08-1-0069 and by DARPA under
agreement FA8750-05-2-0283.

References

1. Langley, P., Choi, D.: A unified cognitive architecture for physical agents. In:
Preceedings of the Twenty-First National Conference on Artificial Intelligence,
Boston, AAAI Press (2006)

2. Nilsson, N.: Teleoreactive programs for agent control. Journal of Artificial Intelli-
gence Research 1 (1994) 139–158

3. Ilghami, O., Nau, D.S., Muñoz–Avila, H., Aha, D.W.: Camel: Learning method
preconditions for HTN planning. In: Proceedings of the Sixth International Confer-
ence on AI Planning and Scheduling, Toulouse, France, AAAI Press (2002) 131–141

4. Fikes, R., Nilsson, N.: Strips: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2 (1971) 189–208

5. Mooney, R.J.: A General Explanation-Based Learning Mechanism and its Appli-
cation to Narrative Understanding. Morgan Kaufmann, San Mateo, CA (1990)

6. Bacchus, F.: AIPS ’00 planning competition. AI Magazine 22 (2001) 47–56
7. Muggleton, S.: Predicate invention and utility. Journal of Experimental and The-

oretical Artificial Intelligence 6(1) (1994) 121–130
8. Utgoff, P.E.: Shift of Bias for Inductive Concept Learning. PhD thesis, Department

of Computer Science, Rutgers University, New Brunswick, NJ (1984)
9. Fawcett, T.: Knowledge-based feature discovery for evaluation functions. Compu-

tational Intelligence 12(1) (1996)
10. Reddy, C., Tadepalli, P.: Learning goal decomposition rules using exercises. In

Fisher, D., ed.: Proceedings of the Fourteenth International Conference on Machine
Learning, Nashville, TN, Morgan Kaufmann (1997)

11. Nejati, N., Langley, P., Konik, T.: Learning hierarchical task networks by observa-
tion. In: Proceedings of the 23nd International Conference on Machine Learning,
Pittsburgh, PA, ACM (2006)

12. Hogg, C., Muñoz-Avila, H., Kuter, U.: HTN-MAKER: Learning HTNs with min-
imal additional knowledge engineering required. In: Proceedings of the Twenty-
Third Conference on Artificial Intelligence, Chicago, AAAI Press (2008)

81

Predicting Gene Coexpression
from Pathway Relations

Karel Mouĺık and Filip Železný

Intelligent Data Analysis Research Group
Dept. of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

e-mail: {moulik1,zelezny}@fel.cvut.cz

Abstract. We address the problem of learning to predict the coexpres-
sion of gene pairs, given background knowledge consisting of the descrip-
tions of biological pathways in which the genes are involved. We formalize
this as a non-standard graph-mining problem and devise an algorithm
to solve it. Our experiments conducted on yeast gene expression data
indicate an under-fitting tendency of the algorithm, calling for a more
expressive formalism, such as ILP, to be employed for this biologically
significant problem.

1 Introduction

As the amount of facts we can systematically store about life’s biological nature
steeply increases, various approaches come to stage offering us ways of reusing
the facts in order to mine new knowledge. An effort aimed at discovering the
principles of gene coexpression is one of the examples. The particular research
question we tackle here is whether the coexpression of gene pairs can be explained
in terms of gene-gene relations implied by known biochemical pathways.

Pathways are representations of cellular processes pertaining to metabolism,
gene regulation, signalling, etc. They usually take the form of directed graphs
with labeled vertices and labeled edges. Vertices represent chemical compounds
such as proteins and protein complexes. These often can be mapped to genes or
gene sets by which their structure is encoded. Edges stand for various kinds of
relations such as inhibition or activation.

Efforts to explain coexpression by relations derived from pathways receive
due attention in biology research. It was for example shown that the correlation
of activity between two genes decreases monotonically with the network dis-
tance among the two genes in a pathway [6]. In [2] an idea was introduced that
gene corregulation can be accurately predicted using so called “flux coupling”
in metabolic pathways. A metabolic flux can be viewed as a path between two
nodes in the metabolic pathway graph, such that this path represents a directed
current of metabolites with rare in-fluxes and no ex-fluxes. It was shown that
gene couples interconnected by a flux are more probable to be active at the same
time.

82

The study [6] went further to propose so called network motives (roughly
corresponding to graph patterns in data mining terminology) which were empiri-
cally found powerful at explaining coregulation. The obvious assumption of this
approach is that certain structural patterns indeed exist that are present in a
significant number of pathways. One may legitimately challenge this assumption
on the grounds of the diversity of processes described by the respective path-
ways. This point of doubt is mitigated by the recent study [1] showing strong
similarities in network content not only across different species but also within
the pathways of a single organism.

To summarize, numerous papers have been published hypothesising about
gene coexpression from the pathway structure perspective. To our best knowl-
edge, however, in all cases the usual life-science research methodology has been
followed, in that a hypothesis is coined first by expert intuition, and computa-
tional means are used only later to test the hypothesis against empirical gene
expression data.

In this work we want approach the problem in a reversed way. We will try
to induce the pattern of gene coexpression automatically, based on positive and
negative samples of coexpressed genes (i.e. on pairs of genes that, respectively,
indeed are coexpressed and those that are not) and pathway descriptions acting
as background knowledge.

2 Experimental Data

To obtain learning examples for gene coexpression, we relied on study [3] which
provides a correlation matrix for the expression of genes of the yeast genome. The
first 800 most correlated gene pairs with at least 6 facts known about both the
genes in the pair were selected as the set of positive samples of the coexpression
relation. The 800 least correlated samples subject again to the former constraint
were selected as the negative set.

Background knowledge, i.e. graphs describing pathways, was extracted from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [5]. KEGG is a man-
ually updated collection of pathways for many organisms. Formally, their struc-
ture corresponds to hypergraphs. In a hypergraph, a single edge can connect any
number of nodes. The nodes are genes, enzymes or compounds, the edges are
reactions or further relations in between them. A certain type of enzyme-enzyme
relation, indicating two enzymes catalyzing successive reaction steps, is an ex-
ample of an edge connecting 3 nodes: the two enzymes and a compound shared
with two successive reactions.

In order to make the representation suitable for pattern searching we merged
the set of pathway hypergraphs into a single oriented graph, called the integrated
pathway. This change of representation, where multiple biological (hyper)graphs
are joined into a single graph with rather rich semantics (i.e. a large alphabet
for labels), is popular in current systems biology research and is represented e.g.
by the popular Ingenuity Networks software. Our particular approach was as
follows.

83

a

is product of

has product called

b

(a) Subgraph corre-
sponding to an edge
connecting 2 nodes in
hypergraph.

a

b c

d

e
(b) Subgraph corre-
sponding to an edge
connecting 5 nodes in
hypergraph.

a

(c) Subgraph corre-
sponding to an edge
expressing an unary
relation.

Fig. 1. Hypergraph to graph conversion

Fig. 2. An abstract example of the task addressed. Coexpressed genes (vertices) are
inside circles. The coexpression pattern to be discovered here is “genes connected by a
path consisting of thick continuous edges.”

For each gene, compound and enzyme to be found in pathways a single unique
node was created. For edges connecting 2 nodes A and B in some pathway, two
oriented edges were added to corresponding nodes in the oriented graph: the first
expressing the original relation A→ B, the second for inverted one, i.e. A← B;
see figure 1(a) (the duality of edges will be enlightened later in this article). For
edges connecting x > 2 nodes an auxiliary anonymous node was created and
x ∗ 2 edges were connected to it (x of them leading from the auxiliary node to
nodes corresponding to hypergraph and x in the opposite direction). This can
be viewed as a sort of decomposition into graph edges; see figure 1(b). For edges
expressing an unary relation a single edge was added to corresponding node in
the oriented graph as you can see in figure 1(c).

3 Predicting Coexpression

Here we want to obtain an initial assessment of the feasibility of the problem
approached by our work. For simplicity we first rely on means of limited expres-
sivness and formalize the problem in the graph mining framework.

84

Established graph mining algorithms typically aim at discovering an as large
as possible graph homomorphic to subgraphs present in a sufficient number of
example graphs. The nature of our problem however requires a different formu-
lation.

Figure 2 presents a simple example of the pattern discovery task we want
to address. The exemplified pattern obviously can be easily transcribed into a
first-order logic as:

Corregulated(x, y)← Green(x, y)

Corregulated(x, y)← Green(x, z) ∧ Corregulated(z, y)

In the elected graph framework we need to design a special construct able to
express a pattern that in first-order logic would acquire a recursive form. For
this purpose we define the string of edges concept.

Definition 1. A string of edges in between nodes gs and ge is a succession
of edge types t0t1t2...tn such that it is possible to start in gs, move along an
oriented edge of type t0 from gs to x0, from which node x1 can be reached via an
oriented edge of type t1 and so on till ge is reached.

Definition 2. The coexpression graph mining task. We are given an ori-
ented graph M representing an integrated pathway and a set G of gene identifiers.
We shall assume that labels of all gene nodes g ∈M are from G. We are further
given a set of positive examples E+ ⊂ G×G (coexpressed gene pairs) and neg-
ative examples E− ⊂ G × G (non-coexpressed genes), E+ ∩ E− = ∅. A desired
result of our envisioned graph mining algorithm is a string of edges γ such that

1. For as many as possible (g1, g2) ∈ E+ and as few as possible (g1, g2) ∈ E−

there is an edge string γ in between g1 and g2.
2. γ is as short as possible.

The algorithm (Alg. 1) we propose to solve the stated problem follows the
usual artificial intelligence cookbook in that it is essentially a best-first heuristic
search algorithm, which reduces its search space by exploiting the constraint
that only a certain set of lengths of edge strings exists between the two genes in
question. As the heuristic measuring the quality of edge strings we use weighted
relative accuracy (WRAcc) [4] and we adhere to the weighted covering strategy
[4] for the gradual removal of covered examples.

4 Preliminary Results

Table 1 summarizes the predictive accuracy of our algorithm estimated through
10-fold cross-validation. Given the balanced sample we worked with, the majority
vote accuracy is 0.5.

85

Algorithm 1 searchForPatterns(sampleSet,maxLength,maxQSize)

1: Input: Set of samples sampleSet, Maximum allowed edge string length
maxLength, Maximum priority queue length maxQSize;

2: Initialize a priority queue Q; Set its maximum length to maxQSize
{Q is a priority queue of 3-tuples [node,edge string,length] ordered by the quality
of edge strings (in terms of the WRAcc heuristic, see main text).}

3: Set BEST to nothing.
{BEST is a best so far edge string found.}

4: Select a gene pair [GS,GE] that was not yet covered from positive part of
sampleSet.

5: L← All possible lengths of edge strings from GS to GE up to maxLength.
6: for ∀l ∈ L do
7: Add 3-tuple [GS,e,l] to Q (e being an empty edge string).
8: end for

9: while Q is not empty do
10: A← Top(Q) (N ← A[0]; ES ← A[1]; D ← A[2])
11: Pop(Q)
12: for ∀E ∈ {E ∈ edges| E is incident to N and leads to X that is in distance

D − 1 from GE} do
13: if D−1 < 0 and ES is better* than BEST (in terms of the WRAcc heuristic,

see main text) then
14: BEST←ES
15: else
16: Add 3-tuple [X,NES,D − 1] to Q, where NES is ES elongated by edge E
17: end if
18: end for
19: end while

20: Write BEST to output and increment coverage of each pair BEST covers.

21: If there is an uncovered positive gene pair in sampleSet goto step 2.

5 Conclusions and Future Work

We presented a graph mining approach for the prediction of gene coexpression
from biological pathway data and tested it on data integrated from a yeast gene
expression database and the KEGG database of pathways. We designed a graph
pattern concept which overcomes one of the expressivness limitations of graphs
vis-a-vis first-order logic. In particular, through the proposed edge-string pattern
type we can, to a limited extent, express paths in graphs. The most imporant
empirical observations gained from a 10-fold cross-validation procedure are (i)
relatively small predictive accuracy: up to 64% compared to 50% of the baseline
majority vote accuracy, and (ii) extremely small differences between training
and testing accuracies. These two observations suggest that we are far on the

86

Ruleset size TrnPre TstPre TrnGPre TstGPre TrnAcc TstAcc TrnGAcc TstGAcc

10 0.696 0.692 0.632 0.634 0.582 0.583 0.640 0.640

9 0.703 0.699 0.641 0.638 0.586 0.583 0.648 0.641

8 0.701 0.696 0.636 0.634 0.565 0.563 0.626 0.623

7 0.704 0.702 0.648 0.649 0.573 0.572 0.628 0.630

6 0.712 0.702 0.655 0.659 0.561 0.558 0.617 0.612

5 0.715 0.713 0.682 0.665 0.556 0.555 0.618 0.607

4 0.741 0.749 0.676 0.656 0.556 0.553 0.599 0.593

3 0.720 0.733 0.706 0.707 0.562 0.560 0.616 0.615

2 0.742 0.715 0.729 0.728 0.541 0.541 0.566 0.569

1 0.723 0.738 0.723 0.738 0.586 0.577 0.586 0.577

Table 1. Gene coexpression pattern ruleset preliminary results:

Ruleset size = the number of rules written to output
TrnPre = average precision of a rule in train set (crossvalidated)
TstPre = average precision of a rule in test set (crossvalidated)
TrnAcc = average accuracy of a rule in train set (crossvalidated)
TstAcc = average accuracy of a rule in test set (crossvalidated)
TrnGPre, TrnGAcc, TstGPre, TstGAcc measures for ruleset size i are related to a
single classifier which consists of all the rules 1 . . . i, and predicts that the two genes
are coexpressed whenever one of these rules so predicts.

under-fitting end of the bias-variance trade-off and they literally call for using
a more expressive formalism for this task of high biological significance. We are
happy to forward this message to the ILP community.

Acknowledgement The authors are supported by the Czech Academy of Sci-
ences through the project 1ET101210513 Relational Machine Learning for Biomed-
ical Data Analysis and the Czech Technical University grant CTU0814413.

References

1. Cootes A. A., Muggleton S. H., and Sternberg M. J.E. The identification of similar-
ities between biological networks: Application to the metabolome and interactome.
JMB, 2007.

2. Notebaart R. A., Teusink B., Siezen R. J., and Papp B. Co-regulation of metabolic
genes is better explained by flux coupling than by network. PLOS Computational
Biology, 2008.

3. Zhang B. and Horvath S. A general framework for weighted gene co-expression
network analysis. Statistical Applications in Genetics and Molecular Biology, 2005.

4. Železný F. and Lavrač N. Propositionalization-based relational subgroup discovery
with rsd. Machine Learning, 2005.

5. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama
T., Kawashima S., Okuda S., Tokimatsu T., and Yamanishi Y. Kegg for linking
genomes to life and the environment. Nucleic Acids Research, 2008.

6. Kharchenko P., Church G. M., and Vitkup D. Expression dynamics of a cellular
metabolic network. Molecular Systems Biology, 2005.

87

TopLog: ILP using a logic program declarative
bias

Stephen H. Muggleton, José C. A. Santos and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College, London
{shm,jcs06,atn}@doc.ic.ac.uk

Abstract. This paper introduces a new Inductive Logic Programming
(ILP) framework called Top Directed Hypothesis Derivation (TDHD).
In this framework each hypothesised clause must be derivable from a
given logic program called top theory (>). The top theory can be viewed
as a declarative bias which defines the hypothesis space. This replaces
the metalogical mode statements which are used in many ILP systems.
Firstly we present a theoretical framework for TDHD and show that a
standard SLD derivation can be used to efficiently derive hypotheses from
>. Secondly, we present a prototype implementation of TDHD within a
new ILP system called TopLog. Thirdly, we show that the accuracy and
efficiency of TopLog, on several benchmark datasets, is comparable with
the accuracy and efficiency of a state of the art ILP system like Aleph.

1 Introduction

In this paper we introduce a new approach to providing declarative bias called
Top-Directed Hypothesis Derivation (TDHD). The approach extends the use
of the ⊥ clause in Mode-Directed Inverse Entailment (MDIE) [5]. In Inverse
Entailment ⊥ is constructed for a single, arbitrarily chosen training example.
Refinement graph search is then constrained by the requirement that all hy-
pothesised clauses considered must subsume ⊥. In TDHD we further restrict the
search associated with each training example by requiring that each hypothesised
clause must also be entailed by a given logic program, >.

The > theory can be viewed as a form of first-order declarative bias which
defines the hypothesis space, since each hypothesised clause must be derivable
from >. The use of the > theory in TopLog is also comparable to grammar-based
declarative biases [2, 4]. However, compared with a grammar-based declarative
bias, > has all the expressive power of a logic program, and can be efficiently
reasoned with using standard logic programming techniques.

The SPECTRE system [1] employs an approach related to the use of >.
SPECTRE also relies on an overly general logic program as a starting point.
However, unlike the TopLog system described in this paper, SPECTRE proceeds
by successively unfolding clauses in the initial theory. TDHD is also related to
Explanation-Based Generalisation (EBG) [3]. However, like SPECTRE, EBG
does not make the key MDHD distinction between the > theory and background
knowledge. Moreover, EBG is viewed as a form of deductive learning, while the
clauses generated by TDHD represent inductive hypotheses.

88

This paper is arranged as follows: Section 2 provides a theoretical framework
for TDHD. This framework is then used as the basis for Hypothesis Generation
in TopLog as described in Section 3. Experiments comparing speed and accuracy
of TopLog and Aleph are given in Section 4. In Section 5 we conclude and discuss
further work.

2 Theoretical framework

MDIE was introduced in [5] as the basis for Progol. The input to an MDIE system
is the vector SMDIE = 〈M, B, E〉 where M is a set of mode statements, B is a
logic program representing the background knowledge and E is set of examples.
M can be viewed as a set of metalogical statements used to define the hypothesis
language LM . The aim of the system is to find consistent hypothesised clauses
H such that for each clause h ∈ H there is at least one positive example e ∈ E
such that B, h |= e.

The input to an TDHD system is the vector STDHD = 〈NT,>, B,E〉 where
NT is a set of “non-terminal” predicate symbols, > is a logic program rep-
resenting the declarative bias over the hypothesis space, B is a logic program
representing the background knowledge and E is a set of examples.

The following three conditions hold for clauses in >: (a) each clause in >
must contain at least one occurrence of an element of NT while clauses in B
and E must not contain any occurrences of elements of NT , (b) any predicate
appearing in the head of some clause in > must not occur in the body of any
clause in B and (c) the head of the first clause in > is the target predicate and
the head predicates for other clauses in > must be in NT .

The aim of a TDHD system is to find a set of consistent hypothesised clauses
H, containing no occurrence of NT , such that for each clause h ∈ H there is at
least one positive example e ∈ E such that the following two conditions hold:
(1) > |= h and (2) B, h |= e.
Due to space limitation we omit the proof of the following theorem.

Theorem 1. Given STDHD = 〈NT,>, B, E〉 assumptions (1) and (2) hold only
if for each positive example e ∈ E there exists an SLD refutation R of ¬e from
>, B, such that R can be re-ordered to give R′ = DhRe where Dh is an SLD
derivation of a hypothesis h for which (1) and (2) hold.

According to Theorem 1, implicit hypotheses can be extracted from the refuta-
tions of a positive example e ∈ E. Let us now consider a simple example.

Example 1. Let STDHD = 〈NT,>, B, E〉 where NT , B , e and > are defined as
follows:

NT = {$body}
B = b1 = pet(lassy)←
e = nice(lassy)←

> =




>1 : nice(X)← $body(X)
>2 : $body(X)← pet(X)
>3 : $body(X)← friend(X)

Given the linear refutation R = 〈¬e,>1,>2, b1〉, we now construct the re-ordered
refutation R′ = DhRe where Dh = 〈>1,>2〉 derives the clause h = nice(X) ←
pet(X) for which (1) and (2) hold.

89

3 System Description

TopLog is a prototype ILP system developed by the authors to implement the
TDHD described in section 2. It is fully implemented in Prolog and is ensured
to run at least in YAP, SWI and Sicstus Prolog. It is publicly available at
http://www.doc.ic.ac.uk/∼jcs06 and may be freely used for academic purposes.

3.1 From mode declarations to > theory

As the user of TopLog may not be familiar with specifying a search bias in
the form of a logic program, TopLog has a module to build a general > theory
automatically from user specified mode declarations. In this way input compati-
bility is ensured with existing ILP systems. Below is a simplified example of user
specified mode declarations and the automatically constructed > theory.

modeh(mammal(+animal)).
modeb(has milk(+animal)).
modeb(has eggs(+animal)).

> =





>1 : mammal(X)← $body(X).
>2 : $body(X)← .%emptybody
>3 : $body(X)← has milk(X), $body(X).
>4 : $body(X)← has eggs(X), $body(X).

Fig. 1. Mode declarations and a > theory automatically constructed from it

The above illustrated > theory is extremely simplified. The actual implemen-
tation has stricter control rules like: variables may only bind with others of the
same type, a newly added literal must have its input variables already bound.

It is worth pointing out that the user could directly write a > theory specific
for the problem, potentially restricting the search better than the generic >
theory built automatically from the mode declarations.

3.2 TopLog Learning Algorithm

The TopLog learning algorithm consists of three major steps: 1) hypotheses
derivation for each positive example, 2) coverage computation for all unique
hypotheses, H, derived in previous step, 3) construct the final theory, T , as the
subset of H that maximizes a given score function (e.g. compression).

Hypotheses derivation In TopLog, contrary to MDIE ILP systems, there is
no construction of the bottom clause but rather an example guided generaliza-
tion, deriving all hypotheses that entail a given example with respect to the
background knowledge.

The hypothesis derivation procedure is composed of two distinct steps. In
the first step an example is proved from the background knowledge and the >
theory. That is, the > theory is executed having the example matching the head
of its start clause (i.e. >1). This execution yields a proof consisting of a sequence
of clauses from the > theory and background knowledge.

For instance, using the > theory from figure 1 and B = b1 = has milk(dog) to
derive refutations for example e = mammal(dog), the following two refutations
would be yielded: r1 = 〈¬e,>1,>2〉 and r2 = 〈¬e,>1,>3, b1,>2〉.

90

In the second step, Theorem 1 is applied to r1 and r2 deriving, respec-
tively, the clauses h1 = mammal(X) from 〈>1,>2〉 and h2 = mammal(X) ←
has milk(X) from 〈>1,>3,>2〉.
Coverage computation Each h ∈ H is individually tested with all the ex-
amples (positives and negatives) to compute its coverage (i.e. the examples it
entails). The positive examples that were used to derive h do not need to be
tested for entailment as it is guaranteed by the hypothesis derivation procedure
that h entails them.

Constructing the final theory The final theory to be constructed, T , is a
subset H ′ of H that maximizes a given score function (e.g. compression, coverage,
accuracy). Each h ∈ H has associated the set of examples from which it was
derived, Egh, and the set of examples which it entails, Ech.

The compression score function (the default) evaluates T as the weighted
sum of the examples it covers (positive examples have weights > 0 and negative
examples < 0) minus number of literals in T . This is the minimum description
length principle and is analogous to Progol’s and Aleph’s compression measure.
T is constructed using a greedy approach where at each step the hypothesis, if
any, that maximizes current T ′ score is added to the next round.

Efficient cross-validation Prior to N fold cross-validation all possible hy-
potheses are derived and their coverage is computed on all examples. This is the
most time consuming step. Then, examples are randomly assigned a fold and N
theories are built each using a distinct combination of N − 1 folds as training
and one fold as testing.

Hypotheses generated exclusively from examples in the test set are not eligi-
ble for the theory construction step. Also, the merit of an hypothesis is evaluated
only taking into account the hypothesis coverage on examples belonging to the
training folds. At the end of cross-validation, N fold average training and test
accuracies and standard deviations are reported.

It is not possible to do efficient cross-validation with Aleph or Progol as no
relationship exists between hypotheses and the examples that generated it.

4 Experimental Evaluation

Materials In order to empirically evaluate TopLog we used four datasets: mu-
tagenesis [7], carcinogenesis [6], alzheimers-amine [9] and DSSTox [10] mainly
because they are well known to the ILP community and are good examples of
practical problems where relational knowledge is important.

In these datasets the purpose is to characterize an active molecule (for the
problem at hand). It is given examples of molecules that exhibit the property
(i.e. positives) and examples of molecules that do not exhibit the property (i.e.
negatives) together with background knowledge.

The task of the ILP system is to find a theory that entails as most of the
positive examples while entailing as few of the negative examples as possible.

91

Methods TopLog was compared with Aleph because Aleph is a MDIE ILP
system and is also implemented in YAP Prolog. The experiments were performed
on a Intel Core 2 Duo @ 2.13 GHz with 2Gb of RAM using Ubuntu Linux with
kernel version 2.60.3. Aleph current version (5.0) is publicly available at [8]. The
four datasets may be freely downloaded from TopLog’s webpage as well. Both
TopLog and Aleph were executed on the latest YAP (version 5.1.3).

Aleph and TopLog were executed with as close as possible settings to ensure
a fair test. Clause length (i.e. maximum literals in the body of an hypothesis) was
set to 4 (except in DSSTox where it was set to 10), noise set to 100%, evaluation
function set to compression, and number of search nodes (i.e. hypotheses) per
example set to 1000.

Aleph was called both with induce and induce max settings. The difference
is that induce (the default), after finding a compressive clause for an example,
retracts all positive examples covered by that clause while induce max does not.
TopLog also does not retract any example during the search and thus one should
compare TopLog times with induce max times rather than induce.

Results and Discussion The table below the time column has the running
time, in CPU seconds, the ILP system took to build the model in the training
data (Train column) and the total time it took to build the models for the
ten folds (CV column). We distinguish between the two times to highlight the
benefits of the efficient cross validation in TopLog. The accuracy column has the
average (over the ten folds) percentage of correct predictions made by the model
with the respective standard deviation.

Aleph with induce Aleph with induce max TopLog
Times Times Times

Dataset CV Accuracy Train CV CV Accuracy Train CV CV Accuracy Train CV

Mutagenesis 77.2%±9.2% 0.4s 4s 68.6%±11.4% 2s 17s 70.2%±11.9% 0.4s 0.5s

Carcinogenesis 60.9%±8.2% 6s 54s 65.1%±8.6% 29s 245s 64.8%±6.9% 7.0s 7.4s

Alzheimers 67.2%±5.0% 5s 40s 72.6%±6.2% 18s 156s 70.4%±5.6% 17s 16s

DSSTox 70.5%±6.5% 30s 253s 71.3%±3.4% 82s 684s 71.7%±5.6% 3.4s 3.6s
Table 1. Accuracy and time comparison between Aleph and TopLog

If we only consider the training time, TopLog is always faster than Aleph
with the induce max setting. Comparing with the induce setting the advantage
is not clear (e.g. in Alzheimers Aleph is much faster than TopLog but in DSSTox
the reverse occurs). Considering cross validation then TopLog is clearly faster.
Although this may seem a side point, built-in efficient cross validation is im-
portant in practical applications in order to assess properly the model accuracy.
The accuracies are identical with none being statistically significantly different.

5 Conclusions and Future work

The key innovation of the TDHD framework is the introduction of a first order >
theory. We prove that SLD derivation can be used to efficiently derive hypotheses
from >. A new general ILP system, TopLog, is described implementing TDHD.

92

The empirical comparison demonstrates that the new approach is competitive,
both in predictive accuracy and speed, with a state of the art system like Aleph.
Below we discuss future work and some limitations of TopLog.

Parallelization Due to the way hypotheses are built in TopLog, where the con-
struction of the set of hypotheses that covers one example is independent of the
construction of the hypotheses set for the other examples, it is straightforward
to parallelize TopLog main algorithm by dividing the number of examples by
the number of processors available.

Sample hypothesis space Currently the hypothesis space is searched accord-
ing to the > theory automatically constructed from the user mode declarations.
Although this approach seems to work well in practice, for some problems pos-
sible clusters of interesting hypotheses may not be considered.

Acknowledgments

We thank James Cussens for illuminating discussions on the TDHD framework
and Vı́tor Santos Costa for a great Prolog system and prompt help in fixing
YAP’s problems allowing us to stretch it to the limits. The first author thanks the
Royal Academy of Engineering and Microsoft for funding his present 5 year Re-
search Chair. The second author was supported by a Wellcome Trust Ph.D. schol-
arship. The third author was supported by the BBSRC grant BB/C519670/1.
We are indebted to three anonymous referees for valuable comments.

References

1. H. Boström and P. Idestam-Almquist. Specialisation of logic programs by pruning
SLD-trees. In S. Wrobel, editor, Proceedings of the Fourth Inductive Logic Pro-
gramming Workshop (ILP94), pages 31–48, Bonn, 1994. GDM-studien Nr. 237.

2. W. Cohen. Grammatically biased learning: Learning logic programs using an ex-
plicit antecedent description language. Artificial Intelligence, 68:303–366, 1994.

3. S.T. Kedar-Cabelli and L.T. McCarty. Explanation-based generalization as reso-
lution theorem proving. In P. Langley, editor, Proc. of the Fourth Int. Workshop
on Machine Learning, pages 383–389,Los Altos, 1987. Morgan Kaufmann.

4. S. Džeroski and L. Todorovski. Discovering dynamics: From inductive logic pro-
gramming to machine discovery. Journal of Int. Inf. Systems, 4(1):89–108, 1995.

5. S.H. Muggleton. Inverse entailment and Progol. NGC, 13:245–286, 1995.
6. A. Srinivasan, , R.D. King S.H. Muggleton, and M. Sternberg. Carcinogenesis

predictions using ILP. In Proceedings of the Seventh International Workshop on
ILP, pages 273–287. Springer-Verlag, Berlin, 1997. LNAI 1297.

7. A. Srinivasan, S. Muggleton, R. King, and M. Sternberg. Mutagenesis: ILP exper-
iments in a non-determinate biological domain. In S. Wrobel, editor, Proceedings
of the Fourth International Inductive Logic Programming Workshop. Gesellschaft
fur Mathematik und Datenverarbeitung MBH, 1994. GMD-Studien Nr 237.

8. Ashwin Srinivasan. The Aleph Manual. University of Oxford, 2007.
9. R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to

structure: an examination of ILP successes. New Gen. Comp., 13:411–433, 1995.
10. A.M. Richard and C.R. Williams. Distributed structure-searchable toxicity

DSSTox public database network: A proposal. Mutation Research, 499:27–52. 2000.

93

Mutlirelatonal GUHA Method and Genetic Data

Martin Ralbovský, Alexander Kuzmin, Jan Rauch

Department of Information and Knowledge Engineering,
University of Economics, Prague, W. Churchill Sq. 4, 130 67 Praha 3, Czech Republic

martin.ralbovsky@gmail.com, alexander.kuzmin@gmail.com, rauch@vse.cz

Abstract. The paper presents multirelational GUHA method, focusing
on multirelational association rules. Background and principles of the
method are introduced together with comparison with related methods.
New implementation in the Ferda tool is presented and initial experi-
ments in the genetic domain are shown.

Keywords: GUHA method, Multirelational GUHA, 4FT, virtual attribute, Ferda,

genetic data

1 Introduction

The GUHA method is one of the first methods of exploratory data analysis,
which has been in development since the mid-sixties. It is a general mainframe
for retrieving interesting knowledge from data. The method has firm theoretical
foundations based on logics, especially observational calculi and statistics [3].
Figure 1 shows the main principle of the method.

Fig. 1. The GUHA method

GUHA method is realized by GUHA procedures such as the 4FT proce-
dure, located in the middle of the figure. A GUHA task consists of data and
a simple definition of a possibly large set of relevant patterns defined with the

94

aid of observational calculi, which are inputs to the procedure. The procedure
automatically generates all the relevant patterns and verifies them against the
provided data. Patterns that are true and do not logically follow from the other
true output and more simple patterns are called prime patterns. We call them
also hypotheses as in [3]. The most known GUHA procedure is the ASSOC (4ft-
miner, 4FT) procedure for mining generalized association rules [11, 12], based
on different approach than the mainstream apriori algorithm [1].

In its initial form, procedures of the GUHA method were designed to mine
over one relation only. In [10], proper theory for the multirelational form of
the method was developed. However, until recently this form lacked suitable
implementation and data to prove usability. We present in this paper recent
implementation of the multirelational GUHA in the Ferda system [5] and we also
start experiments with genetic data where the method seems to be perspective.

The paper is structured as follows: section 2 explains main principles of mul-
tirelational GUHA and briefly introduces the new implementation of the method.
Section 3 compares our method to other mainly ILP methods and section 4 de-
scribes the initial experiments with genetic data. Finally section 5 concludes the
paper.

2 Principles of Multirelational Mining with GUHA

Because of the short format of the paper, we explain only basics of the principles
without going into detail. For more details, see [10, 4]. The multirelational GUHA
method currently supports star-scheme of the database with one master table
and several detail tables. The key term is virtual attribute, which is attribute
from detail data table, that is created during the process of GUHA pattern
verification and is treated as normal attribute of master table although not
physically stored. The most interesting type of virtual attribute is the hypotheses
attribute. Hypotheses attribute is defined by the GUHA (sub)task on the detail
table. Value of the attribute corresponds to validity of a GUHA pattern for subset
of records of the detail table that ”belongs” to the master record. Validity can
be expressed as boolean value or (in the future) generally as a real number.
One GUHA (sub)task in on the detail table usually generates large amount of
hypotheses attributes.

We present an example of the hypotheses attribute from the banking do-
main1. The used GUHA procedure is 4FT for association rules mining: there
are two tables concerning clients of a bank. The master table contains infor-
mation about clients’ accounts and the detail table contains information about
transactions of individual clients. One client in the master table can have several
transactions in the detail table. Example of hypotheses attribute can be client
that often pays by credit card, which can be formally written as

ClientID ≈ Payment(CreditCard).
1 We think that banking domain is more comprehensible than the genetic domain to

the non-expert.

95

Fig. 2. Example of multirelational task setting

The situation is shown in figure 2. It is obvious, that this rule may be very useful
as an attribute in the master table concerning clients’ accounts. We name the
virtual attribute ClientPayingByCreditCard. Then one can examine status of
a client based on client’s payments and address. Example of such generalized
association rule is

District(SouthEast)&ClientPayingByCreditCard

≈ Status(good).

There are two experimental implementation of relational GUHA method,
one in the frame of LISp-Miner system [11] and the second one in the Rel-Miner
system [4], but they are not used any more due to various reasons. The new
implementation in the Ferda system [5] takes advantage of visual and modular
environment, which makes the complex task setting comprehensible to the user.
Figure 3 shows a sample multirelational task in Ferda. All the implementations
of relational GUHA do not use apriori, they are based on representation of
analyzed data by strings of bits [11].

3 Related Methods

The most known KDD technique for discovering knowledge from multirelational
data is inductive logic programming (ILP). Principle of propositionalization ap-
proaches in ILP [6] is very close to principle of hypotheses attribute. Below is
list of main differences:

– Propositioned attributes of ILP are conjunctions of (possibly negated) lit-
erals of predicate logic. In contrary, hypotheses attributes are formulas of
observational calculus, enabling to represent i.e. implication or statistical
significance of the attribute.

– In practical cases, multirelational GUHA is limited to star-scheme of the
database. Relations in ILP does not have this restriction.

The WARMR algorithm [2] performs ILP propositionalization and then searches
for association rules in apriori -like manner. Detailed comparison of WARMR and

96

Fig. 3. The Ferda environment

multirelational GUHA can be found in [4]. Another approach based on apriori
[9] adapts support and confidence measures and calculates them on multiple ta-
bles without joining them. The RELAGGS system [7] works in similar manner: it
calculates aggregations of records of columns from tables bound by foreign keys.
Because the method is based on database joins, it is not unable to calculate the
expressive GUHA patterns on the detail tables.

4 Mining over Genetic Data

The big problem throughout the history of multirelational GUHA was to find
suitable domain to prove the usefulness of the method. The first attempts were
made in the banking domain - dataset Barbora was used2. These attempts were
unsuccessful.

During this spring, we initiated cooperation with Czech Technical Univer-
sity (CTU) concerning mining genetic data. Team from CTU lead by F. Zelezny
compiled genetic dataset from publicly available datasets. The dataset contains
genetic measurements acquired from Affymetrix DNA microarrays3 from hu-
2 Used in the PKDD 1999 Discovery challenge, see http://lisp.vse.cz/challenge.
3 National Center for Biotechnology Information GEO Datasets http://www.ncbi.

nlm.nih.gov

97

man, mouse and rat for two different types of cells: hematopoetic and stromal,
both of which are involved in blood cells production in bone marrow. The gene
measurements were enriched with gene semantics involving information about
pathways (maps representing molecular interaction and reaction networks) and
fully-coupled-fluxes (FCF), linear pathway subgraphs4.

The longterm scientific goal is to examine how does the expression of genes in
FCF correlate with types of cells (and possibly other characteristics) [8]. Because
the expressiveness of hypotheses attribute, multirelational GUHA is especially
fit for this purpose. We have tried initial experiments with hypotheses attributes
such as high expression of genes in FCF showing promising results: one of the
experiments included examination of 500K gene measurements concerning 500
FCF’s. With procedure 4FT we obtained 1394 hypotheses out of 3187 verifica-
tions. All the hypotheses were in form:

[FluxID(α) ≈1 GeneLevel(β)] ≈1 CellType(γ)

Where ≈1 stands for Conf = 100%. However following work need to be done
in order to obtain scientifically sound results:

– Proper discretization: GUHA has ways to handle numeric data. Yet these
ways are unsuitable mainly because of the fact that expressions of different
genes have different ranges, but are contained in one attribute. We need to
build a new genome expression table based on discrete values directly from
Affymetrics DNA microarrays.

– Scaling: It is the first time that multirational GUHA has been used with
data of such a large size and we have experienced performance problems.
Effective ways to handle results of queries, which by far exceed the capacity
of operating memory need to by found and implemented.

– Chip handling: The probes measuring one gene are placed on several chips.
It remains an open question how much does this fact influence the gene
measurement.

5 Conclusion

We present multirelational extension of the GUHA method of exploratory anal-
ysis. Like other methods such as ILP propositionalization, the principle is to
enrich a data table with attributes taken from other data tables. The advantage
of multirelational GUHA lies in providing an expressive language for virtual
attributes based on observational calculus.

We also present recent implementation of multirelational GUHA method in
the Ferda system and possible and promising usage of the method in genetic ex-
periments. At present, we do not yet have any scientifically sound genetic results,
the paper states next steps to be made in order to achieve them. Nonetheless,
usage of multirelational GUHA seems to be suitable for exploratory analysis of
complex data over multiple tables such as genetic data.
4 Taken from KEGG genome database, http://www.genome.jp.kegg

98

Acknowledgements

This work was supported by the project MSM6138439910 of the Ministry of
Education of the Czech Republic and grant 201/08/0802 of the Czech Science
Foundation. We thank and acknowledge contribution of our research colleagues
Matěj Holec, Filip Železný and Jǐŕı Kléma from Czech Technical University for
providing the genetic data and guidance in the genetic domain.

References

1. Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.: Fast discovery of
association rules. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.,
eds.: Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park
(1996) p. 307 – 328

2. Dehaspe L., De Raedt L.: Mining Association Rules in Multiple Relations. In Pro-
ceedings of the 7th International Workshop on Inductive Logical Programming,
Volume 1297, LNAI, pp. 125–132, Springer-Verlag, 1997

3. Hájek P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foun-
dations for a General Theory. Springer-Verlag: Berlin - Heidelberg - New York,
1978.

4. Karban T.: Relational Data Mining and GUHA. in Richta K., Snášel V., Pokorný
J.(eds.): Proceedings of the 5th annual workshop DATESO 2005(Databases, Texts,
Specifications and Objects), ISBN:80-01-03204-3, pp.103–112

5. Kováč M., Kuchař T., Kuzmin A., Ralbovský M.: Ferda, New Visual Environment
for Data Mining. Znalosti 2006, Conference on Data Mining, Hradec Králové 2006,
p. 118 – 129 (in Czech)

6. Kramer S., Lavrač N., Flach P.: Proposionalization Approaches to Relational
Data Mining. In: Džeroski, Lavrač: Relational Data Mining, ISBN 3-540-42289-
7, Springer Verlag 1998, pp. 262–291

7. Krogel M.-A., Rawles S., Železný F., Flach P.A., Lavrač N., Wrobel S.: Compara-
tive Evaluation of Approaches to Propositionalization In: Horváth T., Yamamoto
A. (Eds.) Proceedings of the 13th International Conference on Inductive Logic
Programming. LNCS 2835, Springer-Verlag, 2003

8. Notebaar R.A., Teusink B., Siezen R.J., Papp B.: Co-Regulation of Metabolic Genes
is Better Explained by Flux Than Network Distance. PLoS Computational Biology
4(1), 2008: e26 doi:10.1371/journal.pcbi.0040026

9. Pizzi, L.C., Ribeiro, M.X., Vieira, M.T.P.: Analysis of Hepatitis Dataset using
Multirelational Association Rules. ECML/PKDD Discovery Challenge, 2005.

10. Rauch J.: Many Sorted Observational Calculi for Multi-Relational Data Mining.
In: Data Mining Workshops. Piscataway: IEEE Computer Society, 2006 ISBN
0-7695-2702-7 p. 417–422

11. Rauch J., Šimůnek, M.: An Alternative Approach to Mining Association Rules Lin
T Y, Ohsuga S, Liau C J, and Tsumoto S (eds): Foundations of Data Mining and
Knowledge Discovery, Springer-Verlag, 2005 p. 219 – 239

12. Ralbovský M., Kuchař T.: Using Disjunctions in Association Mining. In: Perner
P.: Advances in Data Mining - Theoretical Aspects and Applications, LNAI 4597,
Springer Verlag, Heidelberg 2007

99

On and Off-Policy
Relational Reinforcement Learning

Christophe Rodrigues, Pierre Gérard, and Céline Rouveirol

LIPN, UMR CNRS 7030, Institut Galilée - Université Paris-Nord
first.last@lipn.univ-paris13.fr

Abstract. In this paper, we propose adaptations of Sarsa and regular Q-
learning to the relational case, by using an incremental relational function
approximator RIB. In the experimental study, we highlight how changing
the RL algorithms impacts generalization in relational regression.

1 Introduction

Most works on Reinforcement Learning (RL, [1]) use propositional – feature
based – representations to produce approximations of value-functions. If states
and actions are represented by scalar vectors, the classical numerical approach
to learn value-functions is to use regression algorithms. Recently, the field of
Relational Reinforcement Learning (RRL) has emerged [2] aiming at extending
Reinforcement learning to handle more complex – first order logic-based – repre-
sentations for states and actions. Moving to a more complex language opens up
possibilities beyond the reach of attribute-value learning systems, mainly thanks
to the detection and exploitation of structural regularities in (state, action) pairs.

In this paper, we study how even slight modifications in the RL algorithm em-
ployed may impact significantly on the performance of the relational regression
system. In section 2, we briefly present the RL problem in the relational frame-
work and we present three very similar RRL algorithms: the former Q-RRL [2],
and two regular algorithms upgraded to relational representations: Q-learning
(off-policy) and Sarsa (on-policy). We combine all these RL techniques with the
same relational function approximator: RIB [3]. In section 3, we compare those
algorithms experimentally and show a significant impact on RIB performance.
Indeed, the size of the models learned by RIB decrease, resulting in an overall
reduction of computation time.

2 Relational Temporal Difference

Relational Reinforcement Learning (RRL) addresses the development of RL al-
gorithms operating on relational representations of states and actions.

The relational Reinforcement Learning task can be defined as follows. Given:

– a set of possible states S, represented in a relational format,
– a set of possible actions A, also represented in a relational format,

100

– an unknown transition function T : S × A 7→ S, (this function can be
nondeterministic)

– an unknown real-valued reward function R : S ×A 7→ R,

the goal is to learn a policy for selecting actions π : S → A that maximizes the
discounted return Rt =

∑∞
k=0 γkrt+k+1 from any time step t. This return is the

cumulative reward obtained in the future, starting in state st. Future rewards
are weakened by using a discount factor γ ∈ [0, 1]. In value-based RL methods,
the return is usually approximated thanks to a value function V : S → R or a
Q-value function Q : S ×A → R such that Q(s, a) ≈ E {Rt | st = s, at = a}.

Algorithm 1 Off-policy TD RRL algorithm: Qlearning-RIB (RIB-Q)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB

Ensure: approximation of the action-value function QRIB

initialize Q
loop

choose randomly start state s for episode
repeat

a← πτ
QRIB

(s) (Boltzmann softmax)
perform a; get r and s′ in return
if s′ is NOT terminal then

QRIB(s, a)
learn←−−− r + γ maxa′∈A(s′) QRIB(s′, a′)

else
QRIB(s, a)

learn←−−− r
end if
s← s′

until s terminal
end loop

States are relational interpretations, as used in the “learning from interpre-
tations” setting [4]. In this notation, each (state, action) pair is represented by
a relational interpretation, ie a set of relational facts. The action is represented
by an additional ground fact.

Among other incremental relational function approximators used in RRL [2,
5–7], the RIB system [3] is a quite good performance/efficiency compromise. It
adopts an instance based learning paradigm to approximate the Q-value func-
tion. RIB stores a number of prototypes each associated with a Q-value. These
prototypes are employed to predict the Q-value of unseen examples, using a k-
nearest-neighbor algorithm. It takes advantage of a relational distance adapted
to the problem to solve (see [8] for a distance for the blocks world problem).
RIB handles incrementality since it forgets prototypes that are not necessary to
reach a good prediction performance or have a bad prediction performance.

As opposed to regular Q-learning, in the RRL algorithm introduced in [2],
learning occurs only at the end of episodes, and not at each time step. It stores
full trajectories s0, a0, r1, s1, · · · , sT−1, aT−1, rT , sT . Then, back-propagation

101

of all the time-steps occurs at once only when reaching a terminal state, using
the usual update rule:

Q(st, at)
learn←−−− rt+1 + γ max

a∈A(st+1)
Q(st+1, a)

In order to learn at each time step, we propose (algorithm 1) a regular adap-
tation of Q-learning to a relational framework and use RIB for the relational
regression part.

Algorithm 2 On-policy TD RRL algorithm: Sarsa-RIB (RIB-S)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB

Ensure: approximation of the action-value function QRIB

initialize Q
loop

choose randomly start state s for episode
a← πτ

QRIB
(s) (Boltzmann softmax)

repeat
perform a; get r and s′ in return
a′ ← πτ

QRIB
(s′) (Boltzmann softmax)

if s′ is NOT terminal then
QRIB(s, a)

learn←−−− r + γQRIB(s′, a′)
else

QRIB(s, a)
learn←−−− r

end if
s← s′; a← a′

until s terminal
end loop

In this algorithm, QRIB(s, a) stands for the RIB prediction for the (s, a) pair.
πτ

QRIB
means that the action is chosen according to a policy π derived from the

action values QRIB . The action is selected according to a Boltzmann distribution
with a temperature τ 1.

Q-learning is said off-policy because it learns an optimal Q-value function,
even if it does not always choose optimal actions. With minor modifications, we
propose (algorithm 2) an upgraded version of Sarsa [1], an on-policy algorithm
which learns the Q-value function corresponding to the policy it actually follows.

With these new algorithms, there is no need anymore to keep complete tra-
jectories in memory. In addition, the value function is modified at each time
step. As a consequence, action selection improves along an episode. Although we
expect little performance gain from a strict RL perspective, from an ILP point
of view, these algorithms take full advantage of the incrementality of RIB. This
method changes both the presented samples and their order of presentation to

1 The probability of choosing action a in state s is e
QRIB(a)

τP
b∈A(s) e

QRIB(b)
τ

.

102

the regression algorithm, resulting in a different generalization of the Q-value
function.

3 Experimental study

The experiments are performed on the blocks world problem as described in [9].
Each algorithm (RIB-S, RIB-Q and RIB-RL) is tested for 20 trials, and results
are averaged. The trials are divided into episodes, each starting in a random state
and ending depending on the task to solve (stacking or on(a,b)). The Q-value
function is periodically evaluated during a trial. For each evaluation, 10 episodes
of greedy exploitation without learning are performed, each starting randomly.

In every experiment, the discount factor γ is set to 0.9. Each episode is inter-
rupted after N time steps, depending of the number of blocks in the environment:
N = (nblocks − 1)× 3. All other parameters are set according to [9].

Figure 1 compares the different algorithms facing the on(a,b) problem with
5 and 7 blocks. Table 1 shows the average number of instances used by RIB
after 1000 episodes, indicating the complexity of the model obtained by each
algorithm by each algorithm on the different problems.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 7 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 1. Evolution of the number of time steps to complete an episode

stacking 5 blocks 6 blocks 7 blocks
goal Average σ Average σ Average σ

RIB-RL 21 0 38 0 63 1.0
RIB-Q 19 0.2 32 0.6 51 1.9
RIB-S 19 0 32 0.5 50 1.3

Table 1. Number of prototypes used by RIB after 1000 episodes

Figure 2 compares the different algorithms facing the stacking problem with
5 and 7 blocks. Table 2 shows the average number of instances used by RIB after
1000 episodes (with standard deviation), indicating the complexity of the model
obtained by each algorithm on the different problems.

103

 0

 5

 10

 15

 20

 0 200 400 600 800 1000
T

im
e

st
ep

s

Episode

Task : on(a,b) with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 7 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 2. Evolution of the number of time steps to complete an episode

on(a, b) 5 blocks 6 blocks 7 blocks
goal Average σ Average σ Average σ

RIB-RL 325 3.0 757 18.4 1339 47.7
RIB-Q 254 2.9 566 7.8 1063 18.2
RIB-S 245 4.4 465 17.3 608 17.1

Table 2. Number of prototypes used by RIB after 1000 episodes

The experimental results show that, as one might expect on such a task
where exploration actions do not lead to catastrophic actions, the off-policy TD
algorithms (RIB-RL and RIB-Q) outperform slightly the on-policy one (RIB-
S). Moreover, RIB-Q does not differ that much from the original Q-RRL (here,
RIB-RL), considering the convergence speed wrt the number of episodes. Most
important is the level of performance (computation time) reached by all pre-
sented RRL algorithms. Our adaptations of Q-learning and Sarsa, namely RIB-
Q and RIB-S, don’t provide more examples to the regression system than the
former Q-RRL. Thus, since RIB’s learning is linear in the number of prototypes,
and having less prototypes saves computation time. RIB-S (on-policy) learns
less prototypes for these relatively simple tasks, it explores a smaller portion of
the state space than off-policy algorithms due to its policy, and therefore needs
less prototypes to reach a good predictive accuracy on those states. As a con-
sequence, RIB-S outperforms RIB-Q and RIB-RL as far as computation time
is concerned, demonstrating than despite its slower convergence speed wrt the
number of episodes, Sarsa remains a good candidate for scaling-up.

RIB is instance-based and thus strongly relies on its distance: generalization
only takes place through the distance computation during the k-nearest-neighbor
prediction. The distance used in RIB [9] is well suited for blocks world problems:
it relies on a distance similar to the Levenshtein edit distance between sets of
block stacks, seen as strings. The distance between (state, action) pairs is equal
to 0 for pairs differing only by a permutation of constants that do not occur
in the action literal. This distance also takes into account bindings of variables
occurring in the goal. Without this prior knowledge, the system cannot solve

104

problems like on(a, b), where two specific blocks have to be stacked on each
other.

4 Conclusion

We have observed that even small differences in the RL techniques significantly
influence the behavior of a fixed relational regression algorithm, namely RIB. We
have proposed two RRL algorithms, RIB-Q and RIB-S, and have tested them
on usual RRL benchmarks, showing performance improvements.

This work opens up several new research directions. We plan to adapt more
sophisticated RL algorithms that will provide more useful information to the
relational regression algorithms. We have already made experiments with rela-
tional TD(λ) with eligility traces, without noticing a significant improvement,
neither on the number of prototypes nor on the computation time. A possible
explanation is that the distance is to well fitted to the problem that eligibility
traces are useless in that case. It might be interesting to study how RL may
balance the effects of a misleading distance or even further, how RL may help
in adapting the distance to the problem at hand.

Acknowledgements The authors would like to thank Kurt Driessens and Jan
Ramon for very nicely and helpfully providing the authors with RIB-RL.

References

1. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(1998)

2. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43 (2001) 7–52

3. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proceedings of the Twentieth International Conference on
Machine Learning (ICML 2003). (2003) 123–130

4. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Arti-
ficial Intelligence 70(1–2) (1994) 375–392

5. Driessens, K., Ramon, J., , Blockeel, H.: Speeding up relational reinforcement learn-
ing through the use of an incremental first order decision tree algorithm. In: Pro-
ceedings of the European Conference on Machine Learning (ECML 2001), LNAI vol
2167. (2001) 97–108

6. Driessens, K., Dzeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Proceedings of the 22nd International Conference on
Machine Learning (ICML 2005). (2005) 193–200

7. Gartner, T., Driessens, K., , Ramon, J.: Graph kernels and gaussian processes
for relational reinforcement learning. In: Proceedings of the 13th Inductive Logic
Programming International Conference (ILP 2003), LNCS vol 2835. (2003) 146–163

8. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10) (2001) 765–780

9. Driessens, K.: Relational reinforcement learning. PhD thesis, K. U. Leuven (2004)

105

Learning Complex Ontology Alignments –
A Challenge for ILP Research

Heiner Stuckenschmidt, Livia Predoiu, Christian Meilicke

Computer Science Institute
University Mannheim, Germany

{heiner,livia,christian}@informatik.uni-mannheim.de

Abstract. In this paper, we propose the task of learning complex logical map-
pings between ontologies as a challenging task for ILP research. We motivate the
need for complex ontology mappings using an example, formally define the task
of learning complex mappings and identify a number of challenges for research
on this issue in terms of tractability and uncertainty handling.

1 Background: Ontology Alignment

The integration of information from heterogeneous sources is one of the major chal-
lenges of modern information technology. Researchers from different areas including
databases, knowledge representation and more recently in semantic web technologies
have addressed this problem. Ontologies have been identified as a key technology for
resolving semantic heterogeneity by providing common terms as well as formal specifi-
cations of their intended meaning in some logic. In large distributed environments with
a high number of different information sources, however, it is unlikely that people will
agree on a single ontology as the basis for integrating information. Here, we often face
a situation where multiple ontologies describing the very same domain co-exist. In such
a situation, we first have to integrate the different ontologies before they can serve as a
basis for integrating information.

A common way of integrating different ontologies describing the same or largely
overlapping domains is to use formal representations of semantic correspondences be-
tween their concepts and relations - also referred to as ’ontology mappings’. Manual
approaches for identifying semantic correspondences are often not feasible since real
world ontologies, for example in the medical domain, often contain several thousand
concepts. As a response to this problem, a number of automatic and semi-automatic
tools for generating hypotheses about semantic correspondences have been developed
(see [4] for an overview). A serious limitation of almost all existing tools is the inability
to identify complex mappings. In particular, most systems are only able to identify sim-
ple equivalence statements between class or relation names. The true semantic relation
between elements of different ontologies, however, is often more complex.

In the following section, we give an example that illustrates the need for complex
mappings and the limitations of existing systems. We propose the automatic identifi-
cation of complex mappings between ontologies as an interesting and relevant chal-
lenge for the ILP community. The problem is of great practical importance as ontology

106

Fig. 1. An example of two ontology fragments describing employees and projects of a company.
A labeled square represents a concept, a labeled ellipse a datatype, and a labeled arrow a role.
The subsumption hierarchy of concepts is represented by indentation. Domain and range of a
property are restricted to be the concepts connected by the accordant arrow.

matching is the Achilles heal of important research areas with a high potential impact,
in particular the semantic web and enterprise application integration. Further, as we
will argue below, the use of ILP as a paradigm for addressing the problem is a natu-
ral fit as the goal is to learn complex logical rules based on instances and background
knowledge.

2 An Example Scenario

In the following example we focus on two ontologies describing human resources,
projects and related topics. These ontologies are presented in figure 1. We refer to the
ontologies as O1 (left side of the figure) and O2 (right side), and we use prefix i# to
refer to the entities of Oi. While both ontologies share some essential concepts, they
differ especially with respect to the relations expressed via the properties. In particular
these differences make the alignment process erroneous and require complex corre-
spondences to express the correct semantic relations.

To better understand the capabilities of todays state of the art matching systems,
we aligned these two ontologies with the Falcon-AO matching system [8], one of the
top matching systems participating at the ontology alignment evaluation 2006 and 2007
[3]. As a result Falcon-AO generates two correspondences, namely 1#Project(x) ↔
2#Project(x) and 1#Person(x) ↔ 2#Person(x). Are these correspondences sufficient
to express the semantic relations that we might be interested in? Suppose that we would
like to transfer instance data from O1 to O2. Which projects in O1 have to be classified
as top projects in O2? These are projects with a high level of importance. We could for
example use the following rule for migrating these projects to O2.

2#TopProject(x)← 1#Project(x) ∧ 1#hasImportanceLevel(x, 3) (1)

107

What about the deadline of a project? This relation is modeled via a single datatype
property in O2 while we find a chain of properties in O1. Rule (2) represents this de-
pendency.

2#endsAt(x, z)← 1#endsWith(x, y) ∧ 1#hasDate(y, z) (2)

When we like to know which person are working in which projects, things are getting
even more complicated, because the 1#incorporates property relates both employees
and workgroups to projects. We have to use the two rules to cope with the different
modeling.

2#worksForProject(x, z)← 1#incorporates(x, z) ∧ 1#Employee(z) (3)
2#worksForProject(x, z)← 1#incorporates(x, y) ∧ 1#hasMember(y, z) (4)

We conclude that ontology alignment requires the use of complex and non-trivial cor-
respondences. Otherwise the completeness of the alignment cannot be guaranteed and
the semantic gap between different ontologies cannot be bridged in an appropriate way.

3 Formalization of the Problem

Based on [4] we can formalize the ontology matching problem as follows: Without loss
of generality, we consider the case where we have two first-order theories or ontologies
O1 = T1∪A1 andO2 = T2∪A2 given. The T component of an ontology determines the
terminological knowledge definition and the A component determines the association
of instances with predicates. Each of the ontologies Oi is represented in the language
Li and each of the ontologies has elements that can be defined by means of elements in
the other ontology. Those elements are called the set of matchable elements Q(O) of
the ontology O. Note that the set of matchable elements of an ontology depends of the
other ontology that is involved in the matching process. The task of ontology match-
ing is now to find correspondences between matchable elements in the two ontologies.
Correspondences are 4-tuples {e1, e2, r, n} such that

– n, a number between 0 and 1, expresses the degree of confidence in the correspon-
dence.

– r is a relation between e1 and e2. We only consider implication between formulae
as well as statements of the form e1 = e2 where e1 and e2 are constants. Statements
of the latter form are called instance equivalences.

– each ei is a formula represented in Li. In the spirit of [4], we distinguish between
three levels of expressivity. Given a level 0 correspondence, the formulae ei con-
sist simply of a single predicate. Level 1 corresponds to conjunctions of predicates
on the right hand side of the implication relation ← while the left hand side re-
mains a single predicate. The final level 3 corresponds to arbitrary expressions in
the languages Li.

Based on these definitions, we can now more precisely define the learning task
associated with the creation of complex ontology mappings as the ones described in the
example above.

108

Definition 1 (Learning Task). Given ontologies O1 = T1 ∪A1 and O2 = T2 ∪A2 in
languages L1 and L2. Further given a mappingM that defines implications between
predicates in T1 and T2 as well as equalities between constants in A1 and A2. Then the
complex mapping learning problem is to find a set H of first order sentences such that:

1. Elements of H are of the form: e2 ← e1 where e1 and e2 are defined as above
2. (T1 ∪ T2 ∪M) ∧A1 ∧H |= A2

3. (O1 ∪ O2 ∪M) ∧H 6|= ⊥

From the point of view of Knowledge-Based Inductive Learning, the terminolog-
ical part of the aligned ontologies together with the level 0 mappings and the in-
stance equivalences play the role of background knowledge, while the instance infor-
mation is used as training examples. More precisely, the hypothesis should explain
the occurrence of instances in terms of A2 based on their occurrence in A1. Sup-
pose for example that in A2 we have instance 1#p-1762 with 1#Project(1#p-1762)
and 1#hasImportanceLevel(1#p-1762, 3). If H contains equation 1 we can conclude
that 2#TopProject(1#p-1762). Further suppose that M contains instance equivalence
1#p-1762 = 2#P1762. Finally, we can conclude that 2#TopProject(2#P1762) and thus
give a (partial) explanation of A2. Further, we claim that the overall model consisting of
the two ontologies, pre-existing and learned mappings is consistent to avoid solutions
that trivially satisfy the second condition in the definition.

4 Problems and Challenges

The definition above seems to suggest that learning complex ontology mappings is quite
straightforward as it can be phrased as a standard ILP learning problem. A closer look
reveals, however, that there are a number of practical problems that make the task a
challenging one. In this section we discuss three of these problems that we consider to
be central to the endeavor and could be starting points for research in this area.

Tractability Work in inductive logic programming often focusses on supporting effi-
cient subsets of first-order logic. In particular, there is a focus on first-order horn rules
as a target language for learning and encoding background knowledge. In the context
of ontologies, there is also some work concerned with languages that fall into this cat-
egory (e.g. [6]). However, OWL-Lite and OWL-DL, the primary ontology languages,
are based on expressive description logics SHIF(D) and SHOIN (D), respectively.
It has been shown that disjunctive Datalog is needed to perform the kind of reasoning
needed for testing the second condition of the definition [7]. Even worse, checking the
consistency of the overall model cannot be done by a reduction to disjunctive Datalog
but requires reasoning about a combined model consisting of description logic ontolo-
gies and rule-based mappings. It has been shown that reasoning for such models is
highly intractable even for rather inexpressive ontology and rule languages. So far work
in the ILP community has only addressed much weaker languages (e.g. [9, 10]. Recent
work on a first major revision of the OWL language (OWL 2.0) addresses this prob-
lem and proposes an integration of ontologies and rules that can be reduced to a very
expressive but still decidable description logic SROIQ [5]. While this enables us in

109

principle to test condition 3 in the definition, tractability is still a major issue claiming
for highly optimized learning methods. While existing work on optimizing ILP seems
to focus on the problem of dealing with large instance sets, learning ontology mappings
comes with new challenges with respect to dealing with expressive models background
knowledge that can also be very large - some ontologies contain tens of thousands of
axioms.

Uncertainty The approach described above relies on the existence of an initial mapping
between predicates and instances in the two ontologies. In order to determine these ini-
tial mappings an additional matching step is necessary (compare e.g. [12]). This prob-
lem which is referred to as entity and schema matching, respectively, is a research area
in its own rights and a variety of methods have been proposed for this purpose. Most
of these methods are based on weak criteria such as structural or linguistic similarity.
As a result, the learning process has to cope with a significant degree of noise (recent
papers report an F-Value of 70% to 90% for the instance matching task). For the prob-
lem of creating simple mappings as part of the background knowledge state of the art
systems reach a performance of 60% to 90% on real world ontologies [3] which adds
additional uncertainty into the learning process. This means that the development of
highly robust learning methods is necessary to cope with the task. A possible way to go
is to explicitly take the uncertainty introduced by entity and ontology into account [1].
As discussed above, mappings are annotated with a degree of confidence that can be
interpreted in thee context of probabilistic ILP approaches [2]. This, however, requires
that only probabilistic matching methods have been used to create simple mappings and
entity correspondences. The majority of the existing approaches, however are based on
different notions of similarity. Providing ways to exploit these similarities in the learn-
ing process would be a bit step forward.

Incompleteness and Inconsistency The third condition in our definition that claims the
consistency of the overall model poses an additional and unexpected challenge to the
learning task. We have shown that existing matching systems cannot guarantee that their
result leads to a consistent model. This means that in many cases (O1 ∪ O2 ∪M) is
already inconsistent. As the logical languages currently used for ontologies and map-
pings are monotonic, the third condition will never be satisfied in many cases. If we still
want to learn complex mappings, we first have to fix the inconsistencies in the simple
mappings. This is normally done by removing mappings fromM that cause the overall
model to become inconsistent. Simply removing all potential causes of inconsistency,
however, will in cases remove too many mappings reducing the degree of overlap be-
tween the two ontologies which in turn can be expected to have a negative impact on
the accuracy of the learning result. We therefore have to find a way to only remove the
’right’ mappings in the sense that the set of removed mappings is minimal and contains
only such mappings that are ’wrong’ in the sense that their content does not correspond
to reality. There are first results in this direction that apply techniques from model-based
diagnoses to the debugging of inconsistent ontology mappings [11], but there is still a
lot of space for improvement to get an optimal basis for learning complex mappings.

110

5 Summary and Conclusions

In this paper, we discussed the generation of complex ontology mappings as a chal-
lenging problem to be addressed by the ILP community. We think that this problem is
interesting for ILP researchers because (1) the use of ILP for addressing this problem is
a natural choice as the definition of the learning problem perfectly matches the ideas of
ILP and because (2) a closer look reveals that the problem comes with some interesting
challenges with respect to scalability and accuracy. In particular, ILP cannot be seen
in isolation here, because the result of the learning phase is directly influenced by the
quality of the instance and schema matching step. It is likely that there can be syner-
gies between these two steps that have not been investigated so far, leaving space for
interesting and challenging research on the border between ILP and semantic matching.

Acknowledgements: Research reported in this paper has been partially financed by the
German Science Foundation (DFG) in the Emmy Noether Programme under contract
STU 266/3-1.

References
1. A. Cali, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt. Rule-based Approaches for

Representing Probabilistic Ontology Mappings. In Uncertainty Reasoning for the Semantic
Web I. Springer, to appear.

2. L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton. Probabilistic Inductive Logic
Programming - Theory and Applications. Springer, 2008.

3. J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt, O. Svab, V. Svatek, W. van
Hage, and M. Yatskevich. Results of the ontology alignment evaluation initiative 2007. In
Proc. of the ISWC 2007 Workshop on Ontology Matching, Busan, Korea, November 2007.

4. J. Euzenat and P. Shvaiko. Ontology Matching. Springer, 2007.
5. B. C. Grau, B. Motik, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology Language:

Profiles. (W3C Working Draft 11 April 2008). Technical report, 2008.
6. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: combining

logic programs with description logic. In Proc. of the 12th international conference on World
Wide Web (WWW03), 2003.

7. U. Hustadt, B. Motik, and U. Sattler. Reasoning in Description Logics by a Reduction to
Disjunctive Datalog. In Journal of Automated Reasoning (JAR), 2007.

8. N. Jian, W. Hu, G. Cheng, and Y. Qu. Falcon-AO: Aligning ontologies with falcon. In
K-CAP Workshop on Integrating Ontologies, 2005.

9. J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sammut, edi-
tors, Inductive Logic Programming, volume 2583 of Lecture Notes in Artificial Intelligence,
page 117132. Springer, 2003.

10. F. Lisi. Data mining in hybrid languages via ilp. In D. Calvanese, G. De Giacomo,
and E. Franconi, editors, Proc. of the 2003 International Workshop on Description Logics
(DL’03), 2003.

11. C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Repairing ontology mappings. In Pro-
ceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-07), Vancouver,
Canada, 2007.

12. H. Qin, D. Dou, and P. LePendu. Discovering executable semantic mappings between on-
tologies. In On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS, volume 4803 of LNCS, pages 832–849, 2007.

111

A Simple Model for Sequences of Relational State
Descriptions ?

Ingo Thon, Niels Landwehr, and Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001
Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. Artificial intelligence aims at developing agents that learn and act in
complex environments. Realistic environments typically feature a variable num-
ber of objects, relations amongst them, and non-deterministic transition behavior.
Standard probabilistic sequence models provide efficient inference and learning
techniques, but typically cannot fully capture the relational complexity. On the
other hand, statistical relational learning techniques are often too inefficient. In
this paper, we present a simple model that occupies an intermediate position in
this expressiveness/efficiency trade-off. Based on CP-logic, an expressive proba-
bilistic logic for modeling causality. but specialized to represent a probability dis-
tribution over sequences of relational state descriptions, and employing a Markov
assumption, inference and learning become more tractable and effective.

1 Introduction

One of the current challenges in artificial intelligence is the modeling of dynamic envi-
ronments that change due to actions and activities people or other agents take. As one
example, consider a model of the activities of a cognitively impaired person [1]. Such a
model could be used to assist persons, using common patterns to generate reminders or
detect potentially dangerous situations, and thus help to improve living conditions.

As another example and one on which we shall focus in this paper, consider a model
of the environment in a massively multi-player online game (MMOG). These computer
games support thousands of players in complex, persistent, and dynamic virtual worlds.
They form an ideal and realistic test-bed for developing and evaluating artificial intel-
ligence techniques. A model of human cooperative behavior can be useful in several
ways. Analysis of in-game social networks are not only interesting from a sociological
point of view but could also be used to give advice to inexperienced players. More
ambitiously, the model could be used to build computer-controlled players that mimic
the cooperative behavior of human players, form alliances and jointly pursue goals that
would be impossible to attain otherwise. Mastering these social aspects of the game will
be crucial to building smart and challenging computer-controlled opponents, which are
currently lacking in most MMOGs. Finally, the model could also serve to detect non-
human players in todays MMOGs — accounts which are played by automatic scripts to
give one player an unfair advantage, and are typically against game rules.
? An extend version of this work was accepted at ECML 2008 [10].

112

From a machine learning perspective, this type of domain poses three main chal-
lenges: 1) world state descriptions are inherently relational, as the interaction between
(groups of) agents is of central interest, 2) the transition behavior of the world will be
strongly stochastic, and 3) a relatively large number of objects and relations is needed to
build meaningful models, as the defining element of environments such as MMOGs are
interactions among large sets of agents. Thus, we need an approach that is both com-
putationally efficient and able to represent complex relational state descriptions and
stochastic world dynamics.

Artificial intelligence has already contributed a rich variety of different model-
ing approaches, for instance, Markov models [2] and decision processes [3], dynamic
Bayesian networks [4], STRIPS [5], statistical relational learning representations [6],
etc. Most of the existing approaches that support reasoning about uncertainty (and sat-
isfy requirement 2) employ essentially propositional representations (for instance, dy-
namic Bayesian networks, Markov models, etc.), and are not able to represent complex
relational worlds, and hence, do not satisfy requirement 1). A class of models that in-
tegrates logical or relational representations with methods for reasoning about uncer-
tainty (for instance, Markov Logic, CP-logic, or BLPs) is considered within statistical
relational learning [6] and probabilistic inductive logic programming [7]. However, the
inefficiency of inference and learning algorithms causes problems in many realistic ap-
plications, and hence, such methods do not satisfy requirement 3).

We aim to alleviate this situation, by contributing a novel representation, called
CPT-L (for CPTime-Logic), that occupies an intermediate position in this expressive-
ness/efficiency trade-off. A CPT-L model essentially defines a probability distribution
over sequences of interpretations. Interpretations are relational state descriptions that
are typically used in planning and many other applications of artificial intelligence.
CPT-L can be considered a variation of CP-logic [8], a recent expressive logic for mod-
eling causality. By focusing on the sequential aspect and deliberately avoiding the com-
plications that arise when dealing with hidden variables, CPT-L is more restricted, but
also more efficient to use than its predecessor and alternative formalisms within the
artificial intelligence and statistical relational learning literature.

2 CPT-L

We are interested in describing complex world states in terms of relational interpre-
tations. A relational interpretation I is a set of ground facts a1, ..., aN . A relational
stochastic process defines a distribution P (I0, ..., IT) over sequences of interpretations
of length T , and thereby completely characterizes the transition behavior of the world.

The semantics of CPT-L is based on CP-logic, a probabilistic first-order logic that
defines probability distributions over interpretations [8]. CP-logic has a strong focus on
causality and constructive processes: an interpretation is incrementally constructed by a
process that adds facts which are probabilistic outcomes of other already given facts (the
causes). CPT-L combines the semantics of CP-logic with that of (first-order) Markov
processes. Causal influences only stretch from It to It+1 (Markov assumption), are
identical for all time-steps (stationarity), and all causes and outcomes are observable.
Models in CPT-L are also called CP-theories, and can be formally defined as follows:

113

Definition 1. A CPT-theory is a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn)← b1, . . . , bm

where the hi are logical atoms, the bi are literals (i.e., atoms or their negation) and
pi ∈ [0, 1] probabilities s.t.

∑n
i=1 pi = 1.

It will be convenient to refer to b1, ..., bm as the body body(r) of the rule and to
(h1 : p1) ∨ . . . ∨ (hn : pn) as the head head(r) of the rule. We shall also assume that
the rules are range-restricted, that is, that all variables appearing in the head of the rule
also appear in its body. Rules define conditional probabilistic events: the intuition be-
hind a rule is that whenever b1θ, ..., bmθ holds for a substitution θ in the current state It,
exactly one of the hiθ in the head will hold in the next state It+1. In this way, the rule
models a (probabilistic) causal process as the condition specified in the body causes one
(probabilistically chosen) atom in the head to become true in the next time-step.

From a CPT-theory, the rule (h1 : p1θ) ∨ . . . ∨ (hn : pnθ) ← b1θ, . . . , bmθ is
obtained for a substitution θ. A ground rule r is applicable in It if and only if body(r) =
b1θ, . . . , bmθ is true in It, denoted It |= b1θ, . . . , bmθ.

One of the main features of CPT-theories is that they are easily extended to include
background knowledge. The background knowledge B can be any logic program, cf.
[9].

The set of all applicable ground rules in state It will be denoted as Rt. Each ground
rule applicable in It will cause one of its head elements to become true in It+1. More
formally, let Rt = {r1, ..., rk}. A selection σ is a mapping {(r1, j1), ..., (rk, jk)} from
ground rules ri to indices ji denoting that head element hiji ∈ head(ri) is selected. In
the stochastic process to be defined, It+1 is a possible successor for the state It if and
only if there is a selection σ such that It+1 = {h1σ(1), ..., hkσ(k)}. We shall say that σ

yields It+1 in It, denoted It
σ→ It+1, and define

P (It+1|It) =
∑

σ:It
σ→It+1

P (σ) =
∑

σ:It
σ→It+1

(∏
(ri,ji)∈σ

pji

)
(1)

As for propositional Markov processes, the probability of a sequence I0, ..., IT given
an initial state I0 is defined by P (I0, ..., IT) = P (I0)

∏T
t=0 P (It+1 | It). Intuitively, it

is clear that this defines a distribution over all sequences of interpretations of length T
much as in the propositional case. More formally:

Theorem 1 (Semantics of a CPT theory). Given an initial state I0, a CPT-theory
defines a discrete-time stochastic process, and therefore for T ∈ N a distribution
P (I0, ..., IT) over sequences of interpretations of length T .

3 Inference and Parameter Estimation in CPT-L

As for other probabilistic models, we can now ask several questions about the intro-
duced CPT-L model:

– Sampling: how to sample sequences of interpretations I0, ..., IT from a given CPT-
theory T and initial interpretation I0?

114

– Inference: given a CPT-theory T and a sequence of interpretations I0, ..., IT , what
is P (I0, ..., IT | T)?

– Parameter Estimation: given the structure of a CPT-theory T and a set of se-
quences of interpretations, what are the maximum-likelihood parameters of T ?

– Prediction: Let T be a CPT-theory, I0, ..., It a sequence of interpretations, and
F a first-order formula that constitutes a certain property of interest. What is the
probability that F holds at time t + d, P (It+d |=B F | T , I0, ..., It)?

The solution to this problems and the algorithms are described in detail in [10].

4 Experimental Evaluation

The proposed CPT-L model has been evaluated in two different domains. First, we
discuss experiments in a stochastic version of the well-known blocks world domain,
an artificial domain that allows to perform controlled and systematic experiments e.g.
with regard to the scaling behavior of the proposed algorithms. Second, the model is
evaluated on real-world data collected from a live server of a massively multi-player
online strategy game. Experiments in these two domains will be presented in turn.

4.1 Experiments in a Stochastic Blocks World Domain

As an artificial test bed for CPT-L, we performed experiments in a stochastic version
of the well-known blocks world domain. The domain was chosen because it is truly
relational and also serves as a popular artificial world model in agent-based approaches
such as planning and reinforcement learning. Application scenarios involving agents
that act and learn in an environment are one of the main motivations for CPT-L.

In a first experiment, we explore the convergence behavior of the EM algorithm for
CPT-L. The world model together with the policy for the agent, which specifies which
block to stack next, is implemented by a (gold-standard) CPT-theory T , and a training
set of 20 sequences of length 50 each is sampled from T . From this data, the parameters
are re-learned using EM. Figure 1, left graph, shows the convergence behavior of the
algorithm on the training data for different numbers of blocks in the domain, averaged
over 15 runs. It shows rapid and reliable convergence. Figure 1, right graph, shows
the running time of EM as a function of the number of blocks. The scaling behavior
is roughly linear, indicating that the model scales well to reasonably large domains.
Absolute running times are also low, with about 1 minute for an EM iteration in a world
with 50 blocks1.

4.2 Experiments in a Massively Multi-player Online Game

As an example for a massively multi-player online game, we consider Travian2, a com-
mercial, large-scale strategy game with a player community of about 3.000.000 players

1 All experiments were run on standard PC hardware, 2.4GHz Intel Core 2 Duo processor, 1GB
memory.

2 www.travian.com;www.traviangames.com

115

-10000
-9000
-8000
-7000
-6000
-5000
-4000
-3000
-2000
-1000

 0 2 4 6 8 10

Lo
g-

Li
ke

lih
oo

d
Iterations of the EM-Algorithm

10 blocks
25 blocks
50 blocks

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50

ru
nt

im
e

[m
in

ut
es

] f
or

 1
0

ite
ra

tio
ns

Number of blocks

runtime

Fig. 1. Left graph: per-sequence log-likelihood on the training data as a function of the EM it-
eration. Right graph: Running time of EM as a function of the number of blocks in the world
model.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

CPT-L, k = 1
CPT-L, k = 2
CPT-L, k = 3
CPT-L, k = 4
CPT-L, k = 5

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 1 2 3 4 5

A
re

a
un

de
r

R
O

C
 c

ur
ve

Number of steps predicted (k)

January 2008
February 2008

Fig. 2. Left figure: ROC curve for predicting that a city C will be conquered by a player P within
the next k time-steps, for k ∈ {1, 2, 3, 4, 5}. The model was trained on 10 sequences of local
game state descriptions from December 2007, and tested on 10 sequences from January 2008.
Right figure: AUC as a function of the number k of future time-steps considered in the same
experiment. Additionally, AUC as a function of k is shown for 10 test sequences from February
2008.

worldwide. In Travian, players are spread over several independent game worlds, with
approximately 20.000–30.000 players interacting in a single world. Travian game play
follows a classical strategy game setup. Players can build different military units which
can be used to attack and conquer other cities on the map.

We are interested in the dynamic aspect of this world: as players are acting in the
game environment (e.g. by conquering other players’ cities and joining or leaving al-
liances), the game graph will continuously change, and thereby reflect changes in the
social network structure of the game.

We consider the task of predicting the “conquest” action conq(P,C) based on a
learned generative model of world dynamics. The collected sequences of (local) game
states were split into one training set (December 2007) and two test sets (January and
February 2008). Maximum-likelihood parameters of a hand-crafted CPT-theory T as
described above were learned on the training set using EM. The learned model was
used to predict the player action conq(P,C) on the test data in the following way.
Let S denote a test sequence with states I0, ..., IT . For every t0 ∈ {0, ..., T − 1},
and every player p and city c occurring in S, the learned model is used to compute
the probability that the conquest event conq(p, c) will be observed in the next world
state, P (It0+1 |= conq(p, c) | T , I0, ..., It0). This probability is obtained from the

116

sampling-based prediction algorithm. The prediction is compared to the known ground
truth (whether the conquest event occurred at that time in the game or not). Figure 2,
left, shows ROC curves for this experiment with different values k ∈ {1, 2, 3, 4, 5},
evaluated on the first test set (January 2008). Figure 2, right, shows the corresponding
AUC values as a function of k for both test sets. The achieved area under the ROC curve
is substantially above 0.5 (random performance), indicating that the learned CPT-theory
T indeed captures some characteristics of player behavior and obtains a reasonable
ranking of player/city pairs (p/c) according to the probability that p will conquer c.
In summary, we conclude that player actions in Travian are indeed to some degree
predictable from the social context of the game, and CPT-L is able to learn such patterns
from the data. Parameter learning for the CPT-L theory T on the training set takes
approximately 30 minutes, and the model needed 5 iterations of EM to converge.

5 Conclusions and Future Work

We have introduced CPT-L, a probabilistic model for sequences of relational state de-
scriptions. In contrast to other approaches that could be used as a model for such se-
quences, CPT-L focuses on computational efficiency rather than expressivity. This is
essential for many real-life applications. The main direction for future work is to fur-
ther evaluate the trade-off between representational power and scaling behavior in chal-
lenging real-world domains. Furthermore, we want to explore how the model can be
extended, for instance to account for hidden data, without sacrificing efficiency.

References
1. Pollack, M.E.: Intelligent technology for an aging population: The use of AI to assist elders

with cognitive impairment. AI Magazine 26(2) (2005) 9–24
2. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recog-

nition. Proceedings of the IEEE 77(2) (1989) 257–286
3. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc. (1994)
4. Ghahramani, Z.: Learning dynamic bayesian networks. In: Adaptive Processing of Se-

quences and Data Structures, International Summer School on Neural Networks. (1997)
168–197

5. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving
to problem solving. In: Computation & intelligence: collected readings, Menlo Park, CA,
USA, American Association for Artificial Intelligence (1995) 429–446

6. Getoor, L., Taskar, B., eds.: Statistical Relational Learning. MIT press (2007)
7. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Probabilistic Inductive Logic

Programming - Theory and Applications. Volume 4911 of Lecture Notes in Computer Sci-
ence., Springer (2008)

8. Vennekens, J., Denecker, M., Bruynooghe, M.: Representing causal information about a
probabilistic process. In: Logics In Artificial Intelligence. Volume 4160 of Lecture Notes in
Computer Science. (2006) 452–464

9. Bratko, I.: Prolog Programming for Artificial Intelligence. Addison-Wesley (1990) 2nd
Edition.

10. Thon, I., Landwehr, N. adn De Raedt, L.: A simple model for sequences of relational state
descriptions. In: Proceedings of the 19th European Conference on Machine Learning

117

Relational Data Mining in Crisis Management

Martin Večeřa and Luboš Popeĺınský

KD Lab at Faculty of Informatics
Masaryk University,

Brno, Czech Republic
{xvecera1,popel}@fi.muni.cz

Abstract. We describe a proposal of a new framework called CriMi to
support spatio-temporal reasoning in crisis management. CriMi is based
on PostGIS and the multi-relational learner GRAPE. Data on floods in
the Czech Republic will be used for testing.

Key words: crisis management, geographic information system, spatio-temporal
data, multi-relational data mining, frequent patterns, association rules.

1 Introduction

The aim of this work is to develop a technique for generating civil crisis man-
agement plans in different areas based on multi-relational data mining. This
involves spatio-temporal data preprocessing, implementing a set of appropriate
rules for ILP system, and integrating the whole process into local civil crisis
management planning. To the best of our knowledge, to date, there is no com-
prehensive work on spatio-temporal multi-relational data mining for civil crisis
management. Outcome of this work will be a proof of concept on floods data that
could be used in local civil crisis management planning. Relational data mining
(or inductive logic programming) [8] is the most powerful technology for mining
multi-relational data. However, mining spatio-temporal data is more complex
task than mining multi-relational data and the following facts need to be taken
in account [2]:

1. implicit spatial and temporal relations
2. granularity of spatial objects
3. granularity of temporal intervals

The history of spatial data mining tools started in 1997 with GeoMiner [9] that
also contained a module for association rules mining, GeoAssociator. However,
the system suffered from single-table assumption. The very first work related to
usage of ILP in spatio-temporal data mining described the GWiM system [11].
It was a proof of concept showing that the idea of Horn clauses can be very
useful. SPADA (Spatial Pattern Discovery Algorithm) [10], a part of ARES [1],
is another ILP data mining system which solves hierarchical structure problem.
Most studies in association rule mining have focused on mining rules at single

118

concept levels. Either at the primitive level or at a rather high concept level. Yet
many applications would benefit from concept hierarchies that are often available
as part of the domain knowledge. Due to the evolution in the expressiveness of
target languages, the discovery of multi-level association rules is one of those
data mining problems to which ILP can supply an elegant solution. This is
especially useful for spatio-temporal mining where different spatial hierarchies
can be specified.

In the next section we describe PostGIS, a geographic extension of Post-
greSQL database system. Section 3 brings a brief overview of GRAPE, a multi–
relational system for mining first–order frequent patterns. Main features of CriMi
are then described in Section 4. We conclude with information about test data
in Section 5 with concluding remarks in Section 6.

2 PostGIS

PostGIS is an extension of PostgreSQL1. All the existing functions of Post-
greSQL remain unchanged. In addition PostGIS enables to store various geome-
tries. Supported objects are points, line strings, polygons, multi-points, multi-
line strings, multi-polygons and a geometry collection (collection of any of the
previous objects). For indexing this new type effectively PostGIS also adds new
index type GiST (R-Tree).

There are many new operators for working with GEOMETRY data like
same as (∼=), completely contains (∼), completely contained (@),overlaps (&&),
strictly to the left/right (<<, >>) and so on. Also functions are added to the sys-
tem, the most interesting of them include ST Distance, ST Within, ST Disjoint,
ST Intersects, ST Touches, ST Crosses, ST Covers, ST Relate, ST Area,
ST Length, ST Boundary, ST Intersection.

An example of PostGIS usage is shown in Figure 1. It presents an easy way of
exporting geometry data into textual representation, and a SQL query that finds
all pubs that are maximally 250 m far from any hospital. Many of the functions

SELECT id , name , AsText (geom) FROM body ;
id | name | a s t ex t
−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−

1 | Point no . 1 | POINT(18 .053 49 .689)

SELECT h . name , p . name FROM ho sp i t a l s h , pubs p
WHERE Distance (h . the geom , p . the geom) < 250 ;

Fig. 1. PostGIS usage example

1 PostgreSQL home page http://www.postgresql.org

119

are performed by Geometry Engine Open Source2 (GEOS) which is strongly
recommended to be installed together with PostGIS. Different data usually use
different coordinate system. To solve the coordinate system incompatibilities,
there is option to install Proj.4 Cartographic Projections3 library. Every database
table can then have its own coordinate system specified.

3 RAP and GRAPE

RAP is a system for searching long frequent patterns in dense data using different
search strategies [6]. Input of RAP consists of three separate files that contain a
learning set, a definition of domain knowledge and language specification. RAP
offers rich set of constraints for search space. Except for basic frequent patterns,
RAP can also find frequent patterns typical for particular classification class.
This is often referenced as emerging patterns.

For use with spatio-temporal data there has been proposed extension to RAP
called GRAPE [5] which implements new refinement operator. This refinement
operator extends standard refinement operator by six other operators:

1. ρ((P, is a(Attr,XN), R)) = (P, is a(Attr,XN+1), R) where XN is a value in
a level N in a hierarchy for the attribute Attr and XN+1 is an ancestor of
XN in this hierarchy.

2. ρ(P) = (P, ♦(X)) where X is a new variable and there is no other temporal
predicate in P with a free variable (i.e. unused in P).

3. ρ((P, ♦(T), S)) = (P, ¤(T), S) if there is no term T1Θ-equivalent (in terms
of Θ-subsumption) with T in the rest of the pattern.

4. ρ((P, ♦(T), S)) = (P,©n(T), S) if there is no term T1Θ-equivalent with T
in the rest of the pattern.

5. ρ(P) = (P, ♦(T1)) if P contains ¤(T), where T, T1 are terms, T1 is a proper
specialization of T , and T1 does not appear elsewhere in the pattern.

6. ρ(?(X)) = ?(ρ(X)) for ? ∈ ♦,¤,©k.

GRAPE uses spatio-temporal language ST0 introduced in [4]. This language
combines RCC-8 with the propositional temporal logic (PTL). RCC-8 [7] con-
sists of region variables X0, X1, . . . and the eight binary predicates: disconnected
(DC), external contact (EC), equal (EQ), partially overlapping (PO), tangen-
tial part (TPP), inverse tangential part (TPPi), non-tangential part (NTPP),
in-versed non-tangential part (NTPPi). A spatial formula is then constructed
from the predicates above and the logical connectives ∨,∧,→,¬.

Time is assuming to be isomorphic with the set of natural numbers and the
relation < is defined together with two temporal operators Since and Until.
When allowing application of Since and Until, or other standard operators like
© (next), ♦ (sometimes) or ¤ (always) to spatial formulas we have got the
spatio-temporal language ST0.
2 GEOS home page http://trac.osgeo.org/geos/
3 Proj.4 home page http://trac.osgeo.org/proj/

120

4 CriMi: Mining in crisis management data

CriMi consists of three basic building blocks - PostgreSQL/PostGIS, Weka and
GRAPE. Having spatio-temporal data in PostgreSQL we have to transformed
them into the typed first-order predicate logic. We also need to extract language
bias specification from the data and the database scheme. This process cannot
be fully automated but the proposed system offers tools to minimize human
intervention. Weka4 is data preprocessing and data mining system that can be
seamlessly connected to PostgreSQL and used for pre-processing the non-spatial
part of data.

GRAPE, a system for mining in spatio-temporal data will be adapted for
mining in crisis management data. Especially the refinement operator [5] imple-
mented in GRAPE will be modified. The system will also incorporate different
measures for finding the most interesting frequent patterns and association rules
[3].

There should be a wizard for creating queries that offers PostGIS functions
and shows results - predicates, types of arguments and language bias. It will be
possible to generate predicates in ST0 logic [4]. The expected number of tuples
returned by the query should be displayed. For each predicate there should be a
bitmap specifying presence of particular predicate in different hierarchical level.
Hierarchical levels will also have specific support and confidence configured. The
system is able to track changes in the source database and to offer an update of
predicates. Using predefined meta-rules, CriMi can automatically generate pred-
icates for any two tables according to the object types, e.g. road, railway, forest,
city, district. This also results in minimizing the need of human intervention and
in generating reasonable predicates. For cooperation with other tools for crisis
management data a Web service interface will be as a part of CriMi.

There should be a possibility to use a kind of object cache for the data in a
database, represent the data in native Java internal structures, and use Prolog
only to verify hypotheses. Walking through the search space and refinement
would be done in Java directly. Such a solution could bring a great performance
speed up.

5 Test data

The test data come from the FLOREON (FLOods REcognition on the Net)
system5 which has been developed to bring the information about any possible
approaching flood to the end user. The main purpose of the FLOREON system is
to present those information to arbitrary type of users including citizens, majors,
governments, and or specialists. Therefore, the system can provide information
in required level of detail. Individual parts of the system are implemented as web
services and thus easily reusable by other systems. As data warehouse there is
used – among others – PostGIS. Meteorological module uses various data sources
4 Weka home page http://www.cs.waikato.ac.nz/ml/weka/
5 FLOREON home pagehttp://floreon.vsb.cz/web/

121

including ALADIN (numerical weather forecasting system engaged by Czech
Hydro-meteorologic Institute) and Medard (weather forecast system developed
at Institute of Computer Science on Academy of Sciences of the Czech Republic).
Other parts of the system are third party flood calculation modules, geographical
module for providing terrain data, map server for combining and visualization of
all the data, and web user interface. Data provided to our system are rainfall and
river flow rates by measure sites, and the list of measure sites with coordinates.
Results from our system will be accessible using web service for it to be easily
incorporated into FLOREON.

6 Conclusions

The aim of this work is to design a system , implement for data analysis that
would assist in building crisis management plans. The CriMi system that has
been described consists of three parts - transformation raw data to first-order
logic and preprocessing, learning first-order frequent patterns, and different use
of (a subset) of those rules in analyzing FLOREON data.. CriMi is the first
system designed especially for spatio-temporal multi-relational data mining for
civil crisis management.

CriMi is primarily intended for a direct use by experts in data mining.
In future we plan to extend the CriMi framework with an interface for non-
experienced users.

Acknowledgment

This work has been partially supported by the Grant Agency of the Czech Re-
public under the Grant No. MSM0021622418 Dynamic Geovisualization in Crisis
Management and by Faculty of Informatics, Masaryk University. VŠB – Tech-
nical University of Ostrava provided FLOREON system. Special thanks to Jan
Blaťák for his valuable advices.

References

1. Annalisa Appice, Margherita Berardi, Michelangelo Ceci, and Donato Malerba.
Mining and filtering multi-level spatial association rules with ARES. In Founda-
tions of Intelligent Systems, volume Volume 3488/2005, pages 342–353. Springer
Berlin / Heidelberg, 2005.

2. Annalisa Appice, Michelangelo Ceci, Antonietta Lanza, Francesca A. Lisi, and
Donato Malerba. Discovery of spatial association rules in geo-referenced census
data: A relational mining approach. Intelligent Data Analysis, 7(6):541–566, 2003.

3. Paulo J. Azevedo and Aĺıpio Mário Jorge. Comparing rule measures for predictive
association rules. In Machine learning: ECML, volume Volume 4701/2007, pages
510–517. Springer Berlin / Heidelberg, 2007.

4. Brandon Bennett, Anthony G. Cohn, Frank Wolter, and Michael Zakharyaschev.
Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Ap-
plied Intelligence, 17(3):239–251, 2002.

122

5. J. Blaťák and L. Popeĺınský. Toward mining of spatiotemporal maximal frequent
patterns. In Proceedings of the Workshop on Mining Spatio-Temporal Data at
ECML/PKDD 2005, pages 31–40, 2005.

6. J. Blaťák, L. Popeĺınský, and M. Nepil. RAP: Framework for mining frequent
datalog patterns. In Proceedings of the first KDID workshop at ECML/PKDD
2002, pages 85–86, 2002.

7. A.G. Cohn, B. Bennett, J.M. Gooday, and N. Gotts. RCC: A calculus for region
based qualitative spatial reasoning. GeoInformatica, (1):275–316, 1997.

8. Sašo Džeroski and Nada Lavrač, editors. Relational Data Mining. Springer Verlag,
Berlin, September 2001.

9. Jaiwei Han, Krzysztof Koperski, and Nebojsa Stefanovic. GeoMiner: a system
prototype for spatial data mining. In Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 553–556, 1997.

10. Francesca A. Lisi and Donato Malerba. Inducing multi-level association rules from
multiple relations. Machine Learning, 55(2):175–210, May 2004.

11. Luboš Popeĺınský. Knowledge discovery in spatial data by means of ILP. In PKDD
’98: Proceedings of the Second European Symposium on Principles of Data Mining
and Knowledge Discovery, pages 185–193, London, UK, 1998. Springer-Verlag.

123

A Sample Complexity for PILP

Hiroaki Watanabe and Stephen Muggleton

Department of Computing, Imperial College London
Email: {hw3, shm}@doc.ic.ac.uk

Abstract. Probabilistic inductive logic programming (PILP) is a prob-
abilistic extension of ILP. We explore fundamental relationships between
ILP and PILP by considering generality orders between their underlying
representations first. This leads to an alternative view of PILP as a way
of providing approximate generalisation. We study a sample complex-
ity of PILP based on the approximate generalisation by extending PAC
learning framework. To the authors’ knowledge, this is a first attempt to
characterise PILP in terms of computational complexity theory.

1 Introduction and Approximative Generalisation

The ability of inducing relational concepts on the basis of examples with back-
ground knowledge plays an important role in intelligent activities. The task
becomes harder if the examples contains uncertainties. Probabilistic inductive
logic programming (PILP) provides a framework for such a task. PILP studies
Machine Learning algorithms for learning probabilistic relational concepts from
noisy examples associated with background knowledge. In this paper we study
a new sample complexity of a concept learning by introducing a probabilistic
classifier1 as a first step to construct computational learning theory of PILP.

In ILP[1], given sets of first-order logical clauses: hypotheses (H), background
knowledge (BK), and positive examples (E), we consider the following entail-
ment relation:

BK ∪H |= E (1)

where H is a generalisation of E associated with BK. We propose an alternative
approach by adding the following new three statements:

BK ∪ E′ |= E (2)

BK ∪H ′ |= E′ (3)

BK ∪H ′ |= H (4)

where H ′ is a set of hypotheses and E′ is a set of examples. Intuitively (2) and
(4) express that (a) E′ is more general than E associated with BK and (b) H ′ is
more general than H associated with BK respectively. The entailment relation
between H ′ and E can be proved associated with BK as follows.
1 A probabilistic classifier returns the results of the classification in probability values

instead of in Boolean values.

124

Theorem 1.
BK ∪H ′ |= E

is held.

Proof. As a consequence of (4) and (1), BK∪H ′ |= H∪BK |= E. Alternatively,
as a consequence of (2) and (3), BK ∪H ′ |= E′ ∪BK |= E. ut
Fig. 1 shows “more general” relations associated with BK defined by (1), (2), (3),
and (4). For example, E′ is more general than E and H ′ is more general than E′

in the figure. The route (1) in Fig. 1 is the usual route in the normal ILP setting,
however, the new route, (2)(3)(4), can also be used as an alternative. Surprisingly
in (4) H is deductively obtained from H ′. We view that the route (3) can be

H’ E’

H E

PILP

ILP

(4) (2)

(3)

(1)

Fig. 1. ILP and PILP from Approximative Generalisation Point of View

associated with PILP[2] by expressing E′ as probability-labelled examples, so
called probabilistic examples in which a probability label attached to an example
expresses the probability of the associated example being classified as positive.
Note that in ILP (route (1)) Boolean-labelled examples are used for representing
positive examples (true) and negative examples (false) instead of probability
values. This approximative generalisation view of PILP is on the basis of E.
That is, probability labels are required to be estimated using some statistical
information whose source is in the generalisation from E to E′. In this paper,
we assume that probability labels of probabilistic examples have already been
estimated so that we can focus on the analysis of the sample complexity in the
route (3). We introduce a variant of PAC learning [3, 5] framework in the next
section.

2 Sample Complexity Analysis

2.1 Definitions

Let us assume that Learner obtains a set of m probabilistic examples, E′ =
{〈x1, p̂1〉, ..., 〈xm, p̂m〉} where xi ∈ X is an example and p̂i is an estimated prob-
ability label being guaranteed to have an error at most ε in a confidence level
1− δ. Note that ε and δ are small constants such that 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1.

In PAC learning, Teacher and Learner classify the examples in Boolean val-
ues, however, in Approximative learning they classify in probability values.

125

Definition 1 (Classification in probability value). A hypothesis h is said
to be probabilistic classifier which takes a probabilistic example 〈xi, p̂i〉 ∈ E′ and
returns the probability, h(xi), of xi being accepted as true.

Fig. 2 shows the two cases: (a) p̂x = 0.80, h(x) = 0.76 and (b) p̂x = 0.62 and
h(x) = 0.90. Intuitively, the dotted zones in the figures express the disagreements
between Teacher and Learner. The probability value, |p̂x − h(x)|, is the error of
h for the probabilistic example 〈x, p̂x〉.

Fig. 2. Probabilistic Decision Makings

Definition 2 (Distributional Consistency). Assume a set of m probabilistic
examples E′ = {〈x1, p̂1〉, ..., 〈xm, p̂m〉} is given. Then hypothesis h is distribution-
ally consistent to E′ if

p̂i − ε ≤ h(xi) ≤ p̂i + ε (5)

for every 〈xi, p̂i〉 ∈ E′.

Intuitively, the hypothesis h is said to be distributionally consistent to E′ if the
error of the Learner’s classification h(xi) for the Teacher’s classification p̂i is
within ε at the 1− δ confidence level. Based on this new consistency definition,
we introduce a new class of version space[4] for the given probabilistic examples.

Definition 3 (Distributional Version Space). Consider a hypothesis space
H ′ and probabilistic training examples E′. Distributional version space is the
set of all hypotheses h ∈ H ′ that are distributionally consistent to the training
example E′.

V SH′,E′ = {h ∈ H ′|(∀〈xi, p̂i〉 ∈ E′, p̂i − ε ≤ h(xi) ≤ p̂i + ε}
Intuitively, this distributional version space is a set of hypotheses which are dis-
tributionally consistent to the given probabilistic examples with the estimation
error ε. The true error of h ∈ H ′ can be defined associated with this parameter
as follows.

Definition 4. Assume a set of m probabilistic examples E′ = {〈x1, p̂1〉, ..., 〈xm, p̂m〉}
is given where xi ∈ X. For any distribution DX over X, the true error of h ∈ H ′

is defined as the sum of the weighted errors.

errorDX
(h) =

∑

x∈X

[DX




{h(x)− (p̂i + ε)}] (if p̂i + ε < h(x))
{(p̂i − ε)− h(x)}] (if p̂i − ε > h(x))
0] (if p̂i − ε ≤ h(x) ≤ p̂i + ε)

126

Note that the given probabilistic examples are random variables since m
probabilistic examples are randomly sampled from DX . That is, the constructed
distributional version space might have a large true error if we obtain some
unfair examples. Since we cannot avoid such a case, we only consider a class of
distributional version space with a small true error ε.

Definition 5 (ε-exhausted Distributional Version Space). Consider a hy-
pothesis space H ′ and training probabilistic example E′. The distributional ver-
sion space is said to be ε-exhausted if every hypothesis h ∈ V SH′,E′ has a true
error less than equal to ε.

(∀h ∈ V SH′,E′ errorDX
(h)) ≤ ε

2.2 Result of Sample Complexity in Route 3

In Definition 5, we introduce the class of hypotheses with the two parameters: ε
and ε. Our next interest is if the hypotheses in ε-exhausted distributional version
space can classify a given probabilistic example well or not. First, we analyse how

Fig. 3. Worst case error of hypothesis h in ε-exhausted distributional version space for
a probabilistic example 〈xi, p̂i〉 with estimation error ε

severely a hypothesis in ε-exhausted distributional version space can misclassify
any probabilistic example.

Lemma 1. Assume a hypothesis h ∈ V SH′,E′ is given associated with ε and ε.
Then the error of h for classifying any probabilistic example 〈xi, p̂i〉 ∈ E′ is at
most ε + 2ε.

Proof. Let h(xi) be the probability returned by h for 〈xi, p̂i〉. Since h ∈ V SH′,E′ ,
|h(xi) − (p̂i + ε)| is at most ε as shown in Fig. 3. In this case, the error ε + 2ε
is the worst case error for h in the ε-exhausted distributional version space. If
h(xi) ≤ p̂i + ε), |(p̂i − ε) − h(xi)| is at most ε and h has the same worst case
error, ε + 2ε.

We consider the sample error of the ε exhausted distributional version space
for any m probabilistic examples next.

Lemma 2 (ε exhausting the distributional version space). If the hypoth-
esis space H ′ is finite and E′ is a sequence of m ≥ 1 independent randomly drawn

127

probabilistic examples of some target concept, then for any 0 ≤ ε ≤ 1 such
that ε ≤ 1 − 2ε , the probability that the distributional version space V SH′,E′

is not ε exhausted (with respect to the target concept) is less than or equal to
|H ′|e−(ε+2ε)m.

Proof. Let h1, .., hk be all the hypotheses in H ′ that have true error greater
than ε with respect to the target concept. We fail to ε-exhaust the version space
if and only if at least one of these k hypotheses happens to be distributionally
consistent with all m′ independent random probabilistic training examples. Thus
the probability that this hypothesis will be distributionally consistent with m
independently drawn probabilistic examples is at most {1 − (ε + 2ε)}m. Given
that we have k hypotheses with error greater than ε, the probability that at
least one of these will be distributionally consistent with all m probabilistic
training examples is at most k{1 − (ε + 2ε)}m. Since k ≤ |H ′|, this is at most
|H ′|{1 − (ε + 2ε)}m. Finally, we use a general inequality stating: (1 − x) ≤
e−x if 0 ≤ x ≤ 1. For 0 ≤ ε + 2ε ≤ 1, |H ′|{1 − (ε + 2ε)}m ≤ |H ′|e−(ε+2ε)m

which proves the lemma.

Now, we obtain a sample complexity for the route (3) as follows.

Theorem 2. Assume we obtain probabilistic training examples with error ε.
For any ε, ε, and δ′ such that 0 ≤ ε + 2ε ≤ 1 and 0 ≤ δ′ ≤ 1, let m be the
number of the probabilistic training examples sufficient for any distributionally
consistent learner to successfully learn any target concept in H ′ with true error
ε in confidence (1− δ′). Then m is bounded as follows.

m ≥ ln|H ′|+ ln 1
δ′

ε + 2ε
.

Proof. The probability value |H ′|e−(ε+2ε)m monotonically decreases as m in-
creases. Let δ′ be a constant for the upper bound of the error |H ′|e−(ε+2ε)m:

|H ′|e−(ε+2ε)m ≤ δ′.

By solving this inequality, m ≥ ln|H′|+ln 1
δ′

ε+2ε . is found.

3 Discussions on Sample Complexity

Let us analyse Theorem 2. In PAC learning, Blumer bound [4] provides a lower
bound: mB ≥ ln|H|+ln 1

δ

ε for the consistent learner who classifies each given
Boolean labelled examples into binary classes. Our result shows that in the
route (3) we need fewer probabilistic examples than the standard PAC learning
if the given examples have already been labelled by probability values with their
error information. This becomes a positive result for PILP.

Why can PILP have an advantage in terms of the number of examples? The
particular difference between our result and Blumer bound is in the term, 2ε,

128

which comes from the definition of distributional consistency. It is the error tol-
erance level for the classification in probability values; the required number of
examples could be fewer once we are more tolerant for mistakes. In the stan-
dard PAC learning, the consistent learner does not allow to have any mistakes
for constructing the version space with the given training examples whereas the
distributionally consistent learner can have a small error for making the distribu-
tional version space. This is achieved by the fine probability-based classification.

The estimation of the probability labels of probabilistic examples is an im-
portant topic in PILP. The law of large numbers suggests that ε becomes smaller
if more non-probabilistic examples are used for estimating the probability label.
In that case, we could be less tolerant for the mistakes in the route (3) since
we can strongly believe the estimated label. If we prefer the sample complexity
being inversely proportional to ε, one possible alternation of the definition of (5)
is:

p̂i − 1
ε
≤ h(xi) ≤ p̂i +

1
ε

which leads the following new sample complexity:

m ≥ ln|H ′|+ ln 1
δ′

ε + 2/ε
.

4 Conclusion

The alternative view of PILP is introduced as a way of providing approximate
generalisation. Our result of sample complexity of PILP shows that fewer prob-
abilistic examples are required in PILP than the standard PAC learning if the
given examples have already been labelled in probability with their error infor-
mation. This is essentially because of the introduction of error tolerance in the
definition of the distributional consistency. In this paper, some initial results
of complexity analysis of PILP are stated. More effort is required for clarifying
if PILP eases ILP or not in terms of machine learnability. We expect that the
new view of PILP develops better understandings of PILP both in theory and
applications.

References

1. S.H. Muggleton and L. De Raedt.: Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19,20:629-679, 1994.

2. Luc De Raedt and Kristian Kersting.: Probabilistic Inductive Logic Programming.
Proceedings of the 15th International Conference on Algorithmic Learning Theory
(ALT-2004). LNCS 3244. pp. 19-36. Springer. 2004.

3. Leslie G. Valiant.: A Theory of the Learnable. Communications of the ACM 27(11):
1134-1142 (1984)

4. Machine Learning, Tom Mitchell, McGraw Hill, 1997
5. M. J. Kearns and R. E. Schapire.: Efficient distribution-free learning of probabilistic

concepts. 31st Annual Symposium on Foundations of Computer Science (pp. 382–
391). IEEE Press. 1990.

129

Author Index

Agnew, Jeffrey, 32
Alphonse, Erick, 1

Buryan, Petr, 7

Costa Florêncio, Christophe, 14

Dědek, Jan, 20
De Raedt, Luc, 38, 63, 111

Eckhardt, Alan, 20

Flach, Peter, 26

Gérard, Pierre, 99
Gao, Qingyi, 26
Goadrich, Mark, 32
Gutmann, Bernd, 38

Holec, Matěj, 50

Ishihata, Masakazu, 44

Józefowska, Joanna, 57

Kameya, Yoshitaka, 44
Kersting, Kristian, 38
Kimmig, Angelika, 38, 63
Kléma, Jǐŕı, 50
Kuželka, Ondřej, 69
Kuzmin, Alexander, 93

Landwehr, Niels, 111
Langley, Pat, 75

Lawrynowicz, Agnieszka, 57
Li, Nan, 75
Lukaszewski, Tomasz, 57

Meilicke, Christian, 105
Minato, Shin-ichi, 44
Mouĺık, Karel, 81
Muggelton, Stephan, 123
Muggleton, Stephen H., 87

Popeĺınský, Luboš, 117
Predoiu, Livia, 105

Ralbovský, Martin, 93
Rauch, Jan, 93
Rodrigues, Christophe, 99
Rouveirol, Céline, 99

Santos, Joé C. A., 87
Sato, Taisuke, 44
Stracuzzi, David J., 75
Stuckenschmidt, Heiner, 105
Svoboda, Jǐŕı, 50

Tamaddoni-Nezhad, Alireza, 87
Thon, Ingo, 111
Tolar, Jakub, 50

Večeřa, Martin, 117
Vojtáš, Peter, 20

Watanabe, Hiroaki, 123

Železný, Filip, 50, 69, 81

Title: Inductive Logic Programming 2008
Type of Publication: Late Breaking Papers
Submitted: Authors, Co-Authors
Edited: Filip Železný, Nada Lavrač
Number of Pages: 140
Year of Issue: 2008
Edition: first

Published: Zeithamlová Milena, ing. - Agentura Action M
Vršovická 68
101 00 Praha 10
actionm@action-m.com
http://www.action-m.com

Printed: Reprostředisko UK MFF
Sokolovská 83
186 75 Praha 8

No editorial and stylistic revision.

ISBN 978-80-86742-26-7

