IDA - Intelligent Data Analysis Research Group

BibTeX Entry

@inproceedings{PosikPPSN2008PreventingPreConv,
  file = {PosikPPSN2008.pdf},
  category = {ida-publications},
  author = {Petr Po{\v s}{\'i}k},
  title = {Preventing Premature Convergence in a Simple EDA via Global Step Size Setting},
  booktitle = {Parallel Problem Solving from Nature - PPSN X},
  editor = {G. Rudolph et al.},
  series = {LNCS},
  volume = {5199},
  year = {2008},
  publisher = {Springer-Verlag Berlin Heidelberg},
  pages = {549--558},
  url = {http://dx.doi.org/10.1007/978-3-540-87700-4_55},
  keywords = {evolutionary algorithm, global step size, premature convergence},
  abstract = {When a simple real-valued estimation of distribution algorithm (EDA) with Gaussian model and maximum likelihood estimation of parameters is used, it converges prematurely even on the slope of the fitness function. The simplest way of preventing premature convergence by multiplying the variance estimate by a constant factor $k$ each generation is studied. Recent works have shown that when increasing the dimensionality of the search space, such an algorithm becomes very quickly unable to traverse the slope and focus to the optimum at the same time. In this paper it is shown that when isotropic distributions with Gaussian or Cauchy distributed norms are used, the simple constant setting of $k$ is able to ensure a reasonable behaviour of the EDA on the slope and in the valley of the fitness function at the same time.},
  vvvs = {1},
  obory = {JC,JD},
  zamer = {VZ Bio},
}


Creative Commons License  Content on this site is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Czech Republic License.