
Estimation of Fitness Landscape Contours in EAs

Petr Pošík
Czech Technical University in Prague

Dept. of Cybernetics
Technická 2, 166 27 Prague 6, Czech Republic

posik@labe.felk.cvut.cz

Vojtěch Franc
Fraunhofer-FIRST.IDA

Kekuléstrasse 7, 12489 Berlin, Germany
fravoj@first.fraunhofer.de

ABSTRACT
Evolutionary algorithms applied in real domain should profit
from information about the local fitness function curvature.
This paper presents an initial study of an evolutionary strat-
egy with a novel approach for learning the covariance matrix
of a Gaussian distribution. The learning method is based on
estimation of the fitness landscape contour line between the
selected and discarded individuals. The distribution learned
this way is then used to generate new population members.
The algorithm presented here is the first attempt to con-
struct the Gaussian distribution this way and should be
considered only a proof of concept; nevertheless, the em-
pirical comparison on low-dimensional quadratic functions
shows that our approach is viable and with respect to the
number of evaluations needed to find a solution of certain
quality, it is comparable to the state-of-the-art CMA-ES in
case of sphere function and outperforms the CMA-ES in case
of elliptical function.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; G.1.2 [Nume-
rical Analysis]: Approximation—approximation of surfa-
ces and contours, nonlinear approximation; I.2.6 [Artificial
Intelligence]: Learning—concept learning, induction

General Terms
Algorithms, Design, Experimentation, Performance, Theory

Keywords
evolutionary computation, estimation of distribution algo-
rithms, learnable evolution model, function optimization,
separating ellipsoid

1. INTRODUCTION
Many algorithms used for real-parameter black-box opti-

mization use Gaussian distribution to sample new points.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

This approach started with mutative evolutionary strate-
gies (ES) which were soon equipped with a feedback adapta-
tion of the step size (Rechenberg’s one fifth rule), and self-
adaptation of the step size, coordinate-wise step sizes, and
self-adaptation of the whole covariance matrix (see e.g. [12]).
However, Rudolph [9] showed that self adaptive mutations
can lead to premature convergence.

Other algorithms that use Gaussian distribution very of-
ten fall into the class of estimation of distribution algo-
rithms (EDAs) [7]. They select better individuals and fit
the Gaussian distribution to them—usually by means of the
maximum likelihood estimation which is far from ideal (see
Fig. 1(a) for an example of Estimation of Multivariate Nor-
mal distribution Algorithm (EMNA)). Without imposing
limits on the minimal ‘size’ of the Gaussian, the variance
of the distribution in the direction of the fitness function
gradient quickly decreases, and the algorithm thus can get
stuck even on the slope of the fitness function [3].

One way of overcoming this drawback of maximum like-
lihood estimation in real-valued EDAs is to estimate the
distribution of the selected mutation steps instead of the dis-
tribution of selected individuals (cf. 1(a) and 1(b)). Pošík [8]
applied this approach in a co-evolutionary manner. Hansen
at al. [5] use similar principles in the evolutionary strategy
with covariance matrix adaptation (CMA-ES) which is con-
sidered to be the state-of-the-art in real-valued black-box
optimization. It adapts the step size separately from the
‘directions’ of the multivariate Gaussian distribution. The
adaptation is based on accumulation of the previous steps
that the algorithm made.

Auger et al. [1] proposed a method of improving the
CMA-ES covariance matrix adaptation using a quadratic
regression model of the fitness function in the local neigh-
borhood of the current point. Their approach, however, re-
quired in D-dimensional space at least D(D+3)

2 +1 data vec-
tors to learn the quadratic function. Moreover, it assumed
that each point has its fitness value, i.e. it cannot use selec-
tion schemes based on pure comparisons of two individuals.

In this paper, we propose a novel algorithm for learning
the Gaussian distribution by modeling the fitness landscape
contour line that lies between the selected and discarded in-
dividuals (see Fig. 1(c)). If the population does not surround
a local optimum, the resulting Gaussian distribution should
fit into the local neighborhood to much greater extent com-
pared to Gaussian learned with CMA-ES-like algorithms.
We present a modified perceptron algorithm that finds an
elliptic decision boundary if it exists. If it does not exist,
the algorithm will not stop. From this, the main limitation

of our approach immediately follows: this preliminary algo-
rithm is able to optimize only convex quadratic functions.
Despite of that, it serves as a proof-of-concept and forms a
strong basis for the development of more capable learning
algorithm.

We provide the main principle of the method and the com-
putational details in section 2. Section 3 describes the ex-
periments we have carried out to assess the very basic prop-
erties of the proposed method. Section 4 presents the results
of the comparison of our method against the CMA-ES al-
gorithm. Section 5 summarizes the paper, points out the
main advantages of the method and discusses the directions
of future work on all the things that have to be done before
the algorithm is generally applicable.

2. PRINCIPLE AND METHODS
The basic principle of the proposed method is illustrated

in Fig. 1(c). After evaluation of the population, we try to
model the contour line of the fitness function with an ellipse
that would allow us to discriminate between the selected and
discarded individuals. The decision boundary is of the form
xAxT +xB+C = 0, where x is a D-dimensional row vector
representing a population member, A is a positive definite
D ×D matrix, B is a column vector with D elements, and
C is a scalar.

After finding the quadratic decision function, we need to
turn it into the sampling Gaussian distribution. Auger et
al. [1] discussed that setting the covariance matrix Σ to
Σ = A−1 is a very good (if not optimal) choice. We fol-
low this approach since the elliptic decision boundary then
corresponds to certain contour line of the Gaussian density
function. The candidate members of the new population are
then sampled from this distribution.

We shall not learn the elliptic function directly—we shall
use a variation of the perceptron algorithm that generally
finds a linear decision function. To learn an ellipsoid we
shall map the points to a different space and then map the
learned linear function back into the original space where it
shall form the ellipsoid. Then, we shall turn this ellipsoid
into a Gaussian distribution, and we shall also modify the
Gaussian to ensure that a specified ratio of the sampled
points will lie inside the ellipsoid. The following subsections
introduce methods used to accomplish the process sketched
above.

2.1 Quadratic Mapping
We need to learn a quadratic function which would allow

us to discriminate between two classes of data points. The
classifier is then given as

C(x) =

1 iff xAxT + xB+C > 0
2 iff xAxT + xB+C < 0

. (1)

The decision boundary xAxT + xB + C = 0 is required
to be a hyperellipsoid which is a special case of quadratic
function, but, as was already stated, we shall approach that
problem with a method that is designed to find a linear de-
cision boundary. In order to be able to do that, we have
to use a coordinate transform such that if we fit the linear
decision boundary in the transformed space, we can trans-
form it back and get a quadratic function. This process is
sometimes referred to as the basis expansion [6] or feature
space straightening [10].

1. Transform the points x from the input space to points
z in the quadratically mapped feature space using Eq.
3.

2. Find the vector w defining the linear decision bound-
ary in feature space.

3. Reorder the elements of vector w into matrices A, B,
and C using Eq. 4.

Figure 2: Learning quadratic decision boundary

The matrix A is symmetric, i.e. aij = aji, i, j ∈ 〈1, D〉.
We can rewrite the decision boundary to the following form:

a11x1x1 + 2a12x1x2 + . . . + 2a1Dx1xD +
+ a22x2x2 + . . . + 2a2Dx2xD +

. . . +
+ aDDxDxD +

b1x1 + b2x2 + . . . + bDxD +
+ c = 0

(2)
This equation defines a quadratic mapping qmap which for

each point x from the input space creates a new, quadrati-
cally mapped point z, where

z = qmap(x) =
= (x21, 2x1x2, . . . , 2x1xD, x22, . . . , 2x2xd, . . . , x2D,

x1, . . . , xD, 1)
(3)

Then, if we arrange the coefficients aij , bi, and c into a
vector w so that

w = (a11, a12, . . . , a1D, a22, . . . , a2D, . . . , aDD,
b1, . . . , bD, c),

(4)

we can write the decision boundary as zwT = 0 and the
whole classifier as

C(x) = C(z) =

1 iff zwT > 0
2 iff zwT < 0

, (5)

The dimensionality of the feature space is easily computed
as the number of terms in Eq. 2: we have D(D+1)

2 quadratic
terms, D linear terms, and 1 constant term. This gives
D(D+3)
2 + 1 dimensions.

The learning of a quadratic decision boundary can be car-
ried out by the process sketched up in Fig. 2.

2.2 Separating Hyperplane
There are many ways to learn a separating hyperplane.

In this paper, the well-known perceptron algorithm is used.
The reason for this decision is the fact that in case of the
perceptron algorithm we found a relatively easy way to en-
sure that the learned linear function will correspond to a
quadratic function with positive definite matrix A in the
original space (see Sec. 2.3).

The perceptron algorithm can be stated as follows. We
have training vectors zi ∈ Z of the form zi = (zi1, . . . , ziD, 1),
each of them is classified into one of the two possible classes,
C(zi) ∈ {1, 2}. We search for a (D + 1)-dimensional weight
vector w so that ziwT > 0 iff C(zi) = 1 and ziwT < 0 iff
C(zi) = 2. In other words, we search for a hyperplane that
separates the two classes and contains the coordinate origin.
The algorithm is presented in Fig. 3.

−2 −1 0 1 2 3
−4

−3

−2

−1

0

1

(a) EMNA estimates the Gaussian
from selected points using maximum
likelihood method. It is highly prone
to premature convergence even on the
slope of the fitness function.

−2 −1 0 1 2 3
−4

−3

−2

−1

0

1

(b) CMA-ES-like algorithm estimates
the Gaussian from selected muta-
tion steps using maximum likelihood
method. It fights the premature con-
vergence very well, but the learned
Gaussian generally does not fit to the
fitness landscape contour lines.

−2 −1 0 1 2 3
−4

−3

−2

−1

0

1

(c) Elliptic classifier learns the Gaus-
sian by estimating the fitness landscape
contour line directly. Generally, the fit
is much closer.

Figure 1: An example of learning the covariance matrix using various methods. Contour lines illustrate a
2D quadratic function. Generating Gaussian (---) is used to sample new points which are then divided to
selected (•) and discarded (×) points which are in turn used to learn the generating Gaussian for the next
generation (—).

1. Initialize the weight vector: w = 0

2. Invert points in class 2: zi = −zi for all i where
C(zi) = 2

3. Find the training vector with minimal projection onto
the weight vector w: z∗ = argminz∈Z(zw).

4. If the minimal projection is positive, z∗wT > 0, the
separating hyperplane is found and the algorithm fin-
ishes.

5. If the minimal projection is not positive, z∗wT ≤ 0,
the separating hyperplane was not found yet and the
point z∗ is the one with the greatest error. Adapt the
weight vector using this point: w = w + z∗.

6. Go to step 3.

Figure 3: The perceptron algorithm

Of course, the algorithm will not stop if the two classes
of qmap-ed vectors are not linearly separable, i.e. if the
original vectors are not separable by a quadratic decision
boundary.

2.3 Ensuring Ellipticity
Previous sections showed how to learn a quadratic decision

boundary by mapping the training vectors into the quadratic
space, finding a linear decision boundary, and rearranging
the elements of the weight vector w into matrices A, B, and
C. However, this quadratic decision function might not be
elliptic, i.e. the matrix A might not be positive definite.

The perceptron algorithm described in Fig. 3 is basically
an algorithm for the satisfaction of constraints given in the
form of linear inequalities. The usual set of constraints that
must be satisfied is ziwT > 0 for all i. If we found a way to
describe the requirement of positive definiteness of the ma-
trix A in the form of similar inequalities, and if we were able
to find vectors that violate these inequalities, we could use
only slightly modified perceptron algorithm to learn an el-
liptic decision boundary. Such a way exists and is described
in the following paragraphs.

As shown in Sec. 2.1, the quadratic form can be written
using a linear function:

xAxT + xB+C = zwT . (6)

Matrix A is positive definite iff the condition xAxT > 0
holds for all non-zero vectors x ∈ R1×D. In order to write
the condition of positive definiteness xAxT > 0 in terms of
the weight vector w, we define a ‘pure’ quadratic mapping
pqmap for the vectors x where only the quadratic elements
are present while the D linear elements and 1 absolute ele-
ment are substituted with zero:

q = pqmap(x), (7)

where

qi =

zi iff i ∈ 〈1, D(D+1)

2 〉
0 iff i ∈ 〈D(D+1)

2 + 1, D(D+3)
2 + 1〉

, (8)

and

z = qmap(x). (9)

Using any D-dimensional vector x and its transformed vari-
ant q = pqmap(x), the following two conditions are equiva-
lent:

xAxT > 0 ⇐⇒ qwT > 0 (10)

Furthermore, all eigenvalues of any positive definite ma-
trix are positive. If we perform the eigendecomposition of
matrix A and get negative eigenvalues, then the related
eigenvectors v violate the condition for positive definiteness,
i.e. vAvT = qwT ≤ 0, where q = pqmap(v). These pqmap-
ed eigenvectors can thus be used to adapt the weight vector
w in the same way as ordinary qmap-ed data vectors. A
modified version of the perceptron algorithm that ensures
the positive definiteness of the resulting matrix A is shown
in Fig. 4.

1. Initialize the weight vector: w = 0

2. Invert points in class 2: zi = −zi for all i where
C(zi) = 2

3. Find the training vector with minimal projection onto
the weight vector w: z∗ = argminz∈Z(zw).

4. Arrange the first D(D+1)
2 elements of vector w into

a matrix A and find its minimal eigenvalue λ∗ and
corresponding eigenvector v∗.

5. If both the minimal projection and the minimal eigen-
value are positive, z∗wT > 0 and λ∗ > 0, the separat-
ing hyperplane is found and the algorithm finishes.

6. If the minimal projection is lower than the minimal
eigenvalue, z∗wT < λ∗, adapt the weight vector using
the vector with greatest error: w = w + z∗.

7. If the minimal eigenvalue is lower or equal to the min-
imal projection, z∗wT ≥ λ∗, adapt the weight vector
using the pqmap-ed eigenvector for the sake of elliptic-
ity: w = w + pqmap(v∗).

8. Go to step 3.

Figure 4: The modified perceptron algorithm

Again, the algorithm will not stop if the original vectors
are not separable by an elliptic decision boundary.

2.4 From Quadratic Function to Gaussian Dis-
tribution

The quadratic function xAxT + xB + C learned by the
modified perceptron algorithm is not defined uniquely; all
functions of the type k(xAxT + xB +C), k 6= 0, have the
same decision boundary (see Fig. 5 for an illustration in 1D
case).

One reasonable way of the standardization (assuming ma-
trix A is positive definite) is to fix the function value at the
minimum of the function. The minimum lies in the point

−1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

σ σ

Figure 5: Non-uniqueness of the quadratic deci-
sion function. All of them define the same decision
boundary.

µ = − 12 (A
−1B)T . We deliberately chose the function value

at the minimum to be −1, i.e. the following equation must
hold:

k(µAµT + µB+C) = −1 (11)

k = − 1

µAµT + µB+C
(12)

The matrices defining the standardized quadratic function
are then given as AS = kA, BS = kB, and CS = kC.

The multivariate Gaussian distribution N(µ,Σ) which will
be used to sample new points is then given by µ = − 12 (A

−1B)T

and Σ = A−1S .

2.5 Sampling from Gaussian Distribution
Sampling from the Gaussian distribution with the center

µ and covariance matrix Σ is rather a standard task. The
distribution, however, suffers from the curse of dimension-
ality in such a way that the proportion of generated vectors
that lie inside the separating ellipsoid varies (drops with in-
creasing dimensionality).

Suppose we have a set of vectors generated from D-dimen-
sional standardized Gaussian distribution. Each of the co-
ordinates has unidimensional standardized Gaussian distri-
bution and their sum of squares has a χ2 distribution with
D degrees of freedom, χ2D. Thus, if we wanted to specify the
percentage p, p ∈ (0, 1), of vectors lying inside the separating
ellipsoid we can employ the inverse cumulative distribution
function of the χ2 distribution, CDF−1

χ2
D

, in a way that is
described in step 2 of the sampling algorithm in Fig. 6.

This modification of the sampling algorithm can be con-
sidered a counterpart to the step size adaptation mecha-
nism in the CMA-ES. Although it is based on different ba-
sis, it modifies the size of the Gaussian. Furthermore, we
should note that by fixing the percentage of points lying in-
side the separating hyperellipsoid, the search becomes more
local with increasing dimensionality.

2.6 Relations to Other Algorithms
Support Vector Machine (SVM) [11] is very success-

ful and popular method for solving classification and regres-
sion tasks. They combine two techniques:

1. Eigendecompose the covarinace matrix so that Σ =
RΛ2RT , where R is a rotational matrix of eigenvec-
tors and Λ2 is a diagonal matrix of the eigenvalues,
i.e. Λ is a diagonal matrix of standard deviations in
individual principal axes.

2. Modify the standard deviations using the critical value
of the χ2 distribution,

Λ =
Λq

CDF−1
χ2

D
(p)

. (13)

3. Generate the desired number of vectors xS from
the standardized multivariate Gaussian distribution
N(0, I).

4. Rescale them using the standard deviations Λ and ro-
tate them using R, i.e. xC = xSΛR.

5. Decenter the vectors xC using the center µ, i.e. x =
xC + µ.

Figure 6: Sampling algorithm

1. Maximum margin separating hyperplane. When trying
to find a linear function discriminating between two
classes of observations, it is advantageous to take into
account only those observations that lie close to the
boundary of the two classes, and to maximize the dis-
tance of the separating hyperplane from these points
(to maximize the margin) [13]. This task was formu-
lated in the form of quadratic programming (is thus
solvable by standard quadratic programming solvers)
and has a unique solution. Later in [4], this method
was extended to handle even the non-separable case.

2. Kernel trick. The maximum margin separating hyper-
plane is still only a linear function. When trying to
make it non-linear, one could transform the observa-
tions from the original space to a non-linearly mapped
high dimensional feature space (e.g. to the quadratic
one, as it is done in this paper), find a linear deci-
sion boundary in that space, and then map it back
to the original space, which gives a non-linear deci-
sion boundary (e.g. quadratic, or elliptic, as it is done
in this paper). The kernel trick [2] is a way of doing
the same without having to map the points from the
original space to the high dimensional feature space.
Any linear algorithm based on the dot products of the
observations can be made non-linear just by replacing
the dot product with a kernel. Kernel is a function
which takes two observations, and produces a single
number. If the kernel function fulfills certain condi-
tions, it can be shown that it actually computes a dot
product of the observations in a non-linearly mapped
high-dimensional feature space.

Combining these two techniques, we get the SVM. In fact,
SVM with a quadratic kernel function can learn much better
elliptic boundary than our modified perceptron algorithm
(see Fig. 7 for comparison) without the need to map the
points to the quadratic space. The reason why we do not
use it instead of the modified perceptron algorithm is that
this algorithm produces general quadratic decision function,

while we need a special case of it—quadratic function with
positive definite matrix A in order to be able to invert it.

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 7: The difference in decision boundaries
found by the modified perceptron algorithm (solid
line) and the support vector machine (dashed line).

Learnable Evolution Model (LEM) The underlying
principle of the method presented in this paper (modeling
the contour line of the fitness function landscape that dis-
criminates the selected and discarded individuals, and to
turn the part of model describing the promising individuals
into a probabilistic model from which new points are sam-
pled) is our original idea. Nevertheless, later it turned out
that it can be described as a special case of the learnable evo-
lution model [15]. Current known implementations of LEM,
however, use almost exclusively the AQ21 classification rules
[14].

3. EMPIRICAL EVALUATION
To assess the basic characteristics of the algorithm, we

chose two quadratic fitness functions, spherical and ellip-
soidal :

fsphere =
DX

d=1

x2d (14)

felli =
DX

d=1

(106)
d−1
D−1 x2d (15)

3.1 Evolutionary Model
The evolutionary algorithm used in the experiments is the

following:

1. Initialize the population of size N and evaluate it

2. Assign the discarded individuals (the worse half of the
population) to class 1, the selected individuals (the
better half of population) to class 2.

3. Map the population to quadratic feature space, use
the modified perceptron algorithm to find a linear de-
cision boundary given by vector w, and rearrange its
coefficients into matrices A, B, and C.

4. Turn the quadratic model into Gaussian distribution,
and modify its eigenvalues so that the ellipsoid con-
tains the desired proportion of new individuals.

Table 1: Best population sizes for both test prob-
lems

Dimension 2 4 6 8
CMA-ES 6 8 9 10
Our method, Sphere 9 8 7 6
Our method, Ellipsoidal 11 10 8 6

5. Sample N − 1 new individuals from learned Gaussian
and evaluate them.

6. Join the old and new population using elitism and
throw away some individuals so that the population
is of size N again.

7. If termination criteria are no met, go to step 2.

The population is initialized in area 〈−10,−5〉D in order
to test not only the ability to focus the search when it resides
in the area of the optimum, but also to test the ability to
efficiently shift the population toward the optimum.

Elitism and sampling N − 1 new individuals together en-
sure, that the new population will contain at least 1 old
individual and 1 new individual. This feature greately pre-
vents the stagnation in situations when no new individual is
better than the worst old individual.

The algorithm was stopped if the best fitness value in
the population dropped under 10−8. The results reported
are taken from 20 independent runs for each algorithm and
configuration.

3.2 Where to Place the Gaussian?
After finding the decision ellipsoid and turning it into a

Gaussian distribution, we can decide where we want to place
it. There are basically two possible decisions:

1. Place it in the center of the learnt quadratic func-
tion. This placement is reminiscent of the process
done in conventional EDAs (and is actually depicted
in Fig. 1(c)). Also, if the ellipsoid were fit precisely
the algorithm could jump to the area of the global op-
timum in a few iterations.

2. Place it around the best individual of the population.
Such an approach is similar to mutative ES and the
search is more local.

Since we plan to compare our algorithm to CMA-ES which
uses the second option, we use it as well and center the
learned Gaussian distribution around the best individual in
the population.

3.3 Population Sizes
The CMA-ES uses a population sizing equation of the

form N = 4 + b3log(D)c. We do not have any population
sizing model yet. However, we want to evaluate the po-
tential hidden in our method, and thus we decided to tune
the population size for individual test problems and indi-
vidual dimensionalities.1 The best settings found for our
algorithm along with the population size used by CMA-ES
are presented in Table 1.
1This is not a good practice for production systems but in
this early stage of the research such a tuning is acceptable
for discovering the potential of the proposed method.

4. RESULTS AND DISCUSSION
The comparison of the algorithms is depicted in Fig. 9.

As can be seen, for the sphere function our approach is
slightly better for dimensions 2 and 4, and slightly worse
for dimensions 6 and 8. For the ellipsoid function, our al-
gorithm clearly outperforms the CMA-ES for all tested di-
mensions (2, 4, 6, 8). But again, the difference between our
method and CMA-ES gets lower with increasing dimension-
ality. This could suggest that the efficiency of the algorithm
does not scale up well and drops with increasing dimension-
ality of the problem.

However, another reason of the diminishing performance
of the algorithm can be hidden in the perceptron algorithm
we used. The algorithm finds any elliptical decision bound-
ary, not the optimal one (compare the boundaries found by
our algorithm and by the SVM in Fig. 7). With increasing
dimensionality, there is a higher chance that the resulting
separating ellipsoid will significantly differ from the optimal
one.

Coming back to Table 1, we can observe very interest-
ing phenomenon. The ‘optimal’ population size drops with
increasing dimensionality which is something nobody of us
expected. We do not have any sound explanation for that.
We can only hypothesize that it is again due to the learning
algorithm, the modified perceptron. It may be profitable to
use smaller populations which would impose less constraints
on the ellipsoid that would be in turn less deformed.

Another interesting observation is that the rate of conver-
gence is constant during the whole evolution (which can be
seen in Fig. 9(b)). The CMA-ES has to adapt the Gaussian
to all dimensions (slow progress phase) before it can aim
for the global optimum (fast progress phase); it resembles
the steepest descent algorithm. Our method, on the con-
trary, exhibits a constant progress which suggests better fit
of the Gaussian distribution to the local neighborhood; it
resembles second-order quazi-newton methods.

5. SUMMARY AND FUTURE WORK
In this paper, a new and original way of learning the pa-

rameters of Gaussian distribution in the context of EDAs is
presented. The learning algorithm is based on modeling the
fitness landscape contour line. The whole process comprises
of transforming the original data points into quadratically
mapped feature space, finding a linear decision function in
that space using our modified perceptron algorithm, trans-
forming the parameters of the decision function back into the
original space where they form a quadratic decision function,
and computing the parameters of the Gaussian distribution
using the parameters of the quadratic decision function.

We expect this concept to have a number of advantages
over the conventional evolutionary algorithms. The most
important are:

1. the Gaussian distribution should fit the local neighbor-
hood much better than in case of EMNA or CMA-ES,

2. it works with individuals marked only with select/dis-
card labels, it does not need the fitness values for each
of them (as is the case in [1]),

3. it estimates a ‘reasonable’ Gaussian even from a small
number of individuals (much less than D(D+3)/2+1
that are needed by [1]).

0 2000 4000 6000 8000 10000 12000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Evaluations

A
ve

ra
ge

 B
S

F
 F

itn
es

s

Sphere Function

Perceptron
LEM

(a) Sphere function.

0 1000 2000 3000 4000 5000 6000 7000 8000
10

−10

10
−5

10
0

10
5

10
10

Number of Evaluations

A
ve

ra
ge

 B
S

F
 F

itn
es

s

Ellipsoid Function

Perceptron
LEM

(b) Eliptic function.

Figure 8: Comparison of average evolution traces for the proposed algorithm (—) and the LEM3 system
(---). The individual lines belong to 2, 4, 6, and 8 dimensional versions, respectively, from left to right.

0 500 1000 1500 2000 2500
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of Evaluations

A
ve

ra
ge

 B
S

F
 F

itn
es

s

Sphere Function

Perceptron
CMA−ES

(a) Sphere function.

0 1000 2000 3000 4000 5000 6000
10

−10

10
−5

10
0

10
5

10
10

Number of Evaluations

A
ve

ra
ge

 B
S

F
 F

itn
es

s

Ellipsoid Function

Perceptron
CMA−ES

(b) Eliptic function.

Figure 9: Comparison of average evolution traces for the proposed algorithm (—) and the CMA-ES (---).
The individual lines belong to 2, 4, 6, and 8 dimensional versions, respectively, from left to right.

The presented algorithm is an initial attempt to proof the
concept of modeling the fitness landscape contour line. As
such it has strong assumptions which must be relaxed before
the algorithm is generally applicable. At present state it is
able to optimize only convex quadratic functions.

A number of promissing topics for future work remain to
be addressed:

• We work on a way of modifying the maximum mar-
gin hyperplane algorithm (mentioned in Sec. 2.6) to
produce elliptic decision boundary which would allow
us to construct optimal separating ellipsoid (and not
just any separating ellipsoid). We expect that such an
algorithm could take advantage of larger populations
and would preserve its superior performance with in-
creasing dimensionality.

• Further extension on our list is to employ the soft mar-
gin which will allow us to apply the algorithm even on
the non-convex functions, i.e. in cases when the se-
lected and discarded points are not separable with an
ellipsoid.

• We have not pursued the possibility to use the learned
center of the quadratic function as the center of the
Gaussian. This feature must be also studied and we
expect it to further increase the efficiency of the algo-
rithm.

• With a learning algorithm that finds an elliptic de-
cision boundary even for non-separable cases, there
are possibilities to create a learning algorithm for a
whole mixture of Gaussians which would allow us to
successfully apply the algorithm on multimodal func-
tions. Moreover, such an algorithm can be able to au-
tomaticly select the number of Gaussian components.
It would be more time demanding, however, it is a
generalization worth trying.

On the other hand, we have thought of several other pos-
sibilities of extending this algorithm in which we do not see
much promise:

• Could we use the quadratic kernel function in the max-
imum margin hyperplane algorithm instead of the ex-
plicit quadratic mapping of the data points from the

original space? This seems to be a reasonable sug-
gestion, however, based on our preliminary modifica-
tions of the maximum margin hyperplane algorithm
this would make the requirement of positive definite
matrix A significantly more difficult to achieve.

• If we used a different mapping (not quadratic), could
we estimate the distribution of individuals using a dif-
ferent probabilistic model (not Gaussian)? Although
this is theoretically possible, we do not see it as a
promising research direction. We could for sure learn
a different type of decision function this way, however,
the critical step is the transformation of the decision
function to the probabilistic distribution. The trans-
formation used in this work (quadratic function →
Gaussian distribution) is (more or less) exception since
for this case the transformation is rather straightfor-
ward.

To conclude, the experiments carried out suggest there
is a big potential in this method if our objective is to find
a solution of certain quality using the least possible num-
ber of fitness function evaluations. For high-dimensional
fitness functions the process of learning the separating el-
lipsoid may be higly time demanding so that this method
should be mainly applicable in cases when the fitness func-
tion evaluation is expensive or takes a long time to compute.
Nevertheless, we believe that this method can play a signif-
ficant role in the future development of the real parameter
optimization field.

6. ACKNOWLEDGMENTS
This section is optional; it is a location for you to acknowl-

edge grants, funding, editing assistance and what have you.
In the present case, for example, the authors would like to
thank Gerald Murray of ACM for his help in codifying this
Author’s Guide and the .cls and .tex files that it describes.

7. REFERENCES
[1] A. Auger, M. Schoenauer, and N. Vanhaecke.

LS-CMA-ES: A second-order algorithm for covariance
matrix adaptation. In X. Y. et al., editor, Parallel
Problem Solving from Nature VIII, number 3242 in
LNCS, pages 182–191. Springer Verlag, 2004.

[2] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A
training algorithm for optimal margin classifiers. In
D. Haussler, editor, 5th Annual ACM Workshop on
COLT, pages 144–152, Pittsburgh, PA, 1992. ACM
Press.

[3] P. A. Bosman and J. Grahl. Matching inductive bias
and problem structure in continuous
estimation-of-distribution algorithms. European
Journal of Operational Research, 2006.

[4] C. Cortes and V. Vapnik. Support vector networks.
Machine Learning, 20:273–297, 1995.

[5] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer series in
statistics. Springer Verlag, 2001.

[7] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms. GENA. Kluwer Academic
Publishers, 2002.

[8] P. Pošík. Real-parameter optimization using the
mutation step co-evolution. In IEEE Congress on
Evolutionary Computation, pages 872–879. IEEE,
2005. ISBN 0-7803-9364-3.

[9] G. Rudolph. Self-adaptive mutations may lead to
premature convergence. IEEE Trans. on Evolutionary
Computation, 5(4):410–413, August 2001.

[10] M. I. Schlesinger and V. Hlaváč. Ten Lectures on
Statistical and Structural Pattern Recognition. Kluwer
Academic Publishers, Dodrecht, The Netherlands,
2002.

[11] B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, Cambridge, Massachusetts, 2002.

[12] H.-P. Schwefel. Evolution and Optimum Seeking.
Wiley, New York, 1995.

[13] V. Vapnik and A. Lerner. Pattern recognition using
generalized portrait method. Automation and Remote
Control, 24:774–780, 1963.

[14] J. Wojtusiak. Aq21 user’s guide. Reports of the
Machine Learning and Inference Laboratory MLI 04-5,
George Mason University, 2004.
http://www.mli.gmu.edu/papers/2003-2004/04-5.pdf.

[15] J. Wojtusiak and R. S. Michalski. The LEM3 system
for non-darwinian evolutionary computation and its
application to complex function optimization. Reports
of the Machine Learning and Inference Laboratory
MLI 04-1, George Mason University, Fairfax, VA,
February 2006.

