
Binary or Real? Real-coded Binary!

Jiri Kubalik
Czech Technical University in Prague

Technicka 2, 166 27 Prague, Czech Republic
e-mail: kubalik@labe.felk.cvut.cz

Abstracts: This paper presents a novel approach to improve the performance of genetic algo-
rithms - called genetic algorithms with real-coded binary representation (GARB). The proposed
algorithm is capable of maintaining the population diversity during the whole run which protects
it from premature convergence. This is achieved by using a special encoding scheme with a high
redundancy, which is supported by so-called gene-strength adaptation mechanism. The proposed
approach was evaluated on various test problems, all of them considered to be hard for standard
genetic algorithms. The results show the algorithm signi�cantly outperforms standard genetic
algorithm and achieves results competitive with other techniques on non-stationary problems.

Keywords: genetic algorithms, representation, redundancy, premature convergence.

1 Introduction

Genetic algorithms (GAs) are probabilistic population-based search techniques. A weak point
of conventional GAs is that they often su�er from so-called premature convergence, which is
caused by an early homogenization of genetic material in the population.

There are many factors that a�ect the convergence of a GA. Up to now research have been
devoted to estimation of an adequate population size that would provide the GA with suÆcient
amount of genetic material to evolve the optimal chromosome [4]. Various selection schemes have
been analyzed and convergence models of GAs under those selection schemes were developed
[3]. Research in the area of choosing the proper recombination operators and the probabilities of
their application that would provide the best balance between the exploitation and exploration
of the GA has been done in [9] and [10]. An interesting approach for preserving population
diversity has been introduced in [5]. The population is explicitly prevented from becoming
homogenous by specifying the maximum di�erence between frequency of ones and zeros at any
position of the chromosome in the population.

The mechanisms for maintaining population diversity become necessary when GAs are used for
optimization in non-stationary environments. Thus GAs are extended to be capable of con-
tinuously adapting to changes in the environment when searching for optimal solutions. The
simplest way to react to changes in the environment is to restart the genetic algorithm [1] or
increase the rate of mutation to reach diversity in population [7] whenever the change of the
system is detected. The drawback of such approaches is their poor ability to reuse the informa-
tion gained in the past. Other approaches to maintaining the diversity in population are based
on using redundant representation. A frequently used approach to redundant representations is
the diploidy and dominance with multiple alleles for each gene position [2]. For non-stationary
environments the diploidy can be enhanced by a dominance switching mechanism [8]. However,
results achieved with multiploid representations published so far indicate that the approach is



suitable for non-stationary environments with only a few periodically changing states.

The next section introduces the proposed real-coded binary representation. Section 3 describes
test problems selected for experimental evaluation of the approach. Experiments and comments
on achieved results are presented in section 4. Last section concludes the paper.

2 Real-coded Binary Representation

The motivation for the proposed real-coded representation is to introduce a redundancy into the
genetic code that would make the genetic algorithm resistant against premature convergence.
This is achieved so that the chromosomes are not formed of direct zeros and ones as it is in the
conventional genetic algorithms with binary representation. Instead, each gene is expressed by
a real number r from the interval h0:0; 1:0i, which is interpreted as binary gene 0 or 1 as follows:

interpretation(r) = 1, when r > 0:5

= 0, when r < 0:5.

An incidental gene value 0.5 is replaced by random value resulting in unbiased interpretations
of zero and one. The real-valued genes expressions represent a gene strength. The value r = 0:0
represents the strongest binary zero, and r = 1:0 represents the strongest one. Then as the value
r changes from 1.0 to 0.5 the strength of binary one decreases and vice versa. Similarly this
applies to binary zero as the value r changes on the interval 0.0 to 0.5. Such a pseudo-binary
representation provides many possibilities for expressing any arbitrary binary chromosome. For
example two chromosomes Ch1 = [0.9, 0.07, 0.23, 0.62] and Ch2 = [0.65, 0.19, 0.4, 0.86] are
interpreted as the same binary chromosome [1, 0, 0, 1].

Standard crossover operators are used with this representation. First, the o�spring is composed
of parts taken from the parental chromosomes and then the gene strength of each gene is changed
by the so-called gene-strength adjustment mechanism. It playes a crutial role in maintaining of
the population diversity. The extent to which genes will be adjusted depends (i) on their
interpretation and (ii) on the relative frequency of ones at their position in the chromosome.
For this purpose a vector P [] with relative frequency of ones at each position of the representation
calculated over the whole population of interpreted chromosomes is maintained.

The gene at the i-th position is weakened if it interprets as the binary value that is more
frequently sampled at the i-th position in the current population. And vice versa, the gene at
the i-th position is strengthened if it represents the binary value that is less frequently sampled
at the i-th position. The genes are weakened and strengthened proportionally to P [i] as shown
below. Thus if the real-valued gene represents binary value that prevails in the population at
the given position then the gene is weakened { the value is moved towards 0.5. In opposite
case the gene is strengthened { zero-value is moved towards 0.0 and one-value is moved towards
1.0, respectively. Parameter c denotes the maximal adjustment step de�ning the maximal value
each gene can be changed by in one adjustment step. Parameter c can take on values from the

gene weakening: gene0 = gene+ c � (1:0� P [i]), if (gene < 0:5) and (P [i] < 0:5)
OR

gene0 = gene� c � P [i], if (gene > 0:5) and (P [i] > 0:5)

gene strengthening: gene0 = gene� c � (P [i]), if (gene < 0:5) and (P [i] > 0:5)
OR

gene0 = gene+ c � (1:0� P [i]), if (gene > 0:5) and (P [i] < 0:5)



interval (0:0; 0:5). However useful values are rather small ranging between 0.0 and 0.2.

The idea behind the introduced manipulation with the strength of genes is as follows. In standard
evolutionary algorithms the above-average building blocks are used more often for creating the
new population that ends up in undesirable homogenization of the population genotype. Here,
the genes that are likely to prevail the population are weakened each time they are used in
the newly created individual. Such genes are gradually approaching the value 0.5 and at some
point of this weakening process they are adjusted so that they turn over the critical value 0.5
and change their interpretation from one to zero and vice versa, respectively. Even when some
binary gene completely overwhelm the population at some position it is just a matter of time
when the opposite value will emerge and reproduce again. In opposite case, binary genes that
are sampled in the current population with below-average frequency are strengthened in the
newly created individuals in order to make them more likely to survive and reproduce.

Important thing is that the weakening and strengthening of genes is driven by the demand of
the population for needed genes at given positions. Moreover there is no need for any explicit
mutation operator, since all genes are passed into the new population already modi�ed by the
gene-strength adjustment mechanism, which can be considered as an implicit mutation.

The gene-strength adjustment o�ers a possibility to distinguish between \promising" and \or-
dinary" individuals. Let us consider the newly generated individual that is better than its both
parents as a promising one. As such its genotype should be retained in the population with
an unchanged interpretation for some time. In order not to change its interpretation by the
adjustment too early all its genes are rescaled to be strong before it is inserted into the new
population (Note that the generational evolutionary model is used in this work). This means
that the genes interpreted as ones are set by random to be close to 1.0 and genes interpreted as
zeros are set to be close to 0.0. For example the individual o = (0.71, 0.45, 0.18, 0.57) would
be rescaled to o0 = (0.97, 0.03, 0.02, 0.99). Obviously the latter one is more likely to survive
unchanged for some generations than the original one. This rescaling mechanism boosts up the
exploitation ability of the algorithm.

3 Test Problems and Experimental Setup

The test problems used in our experiments were selected to be representatives of non-linear func-
tion, deceptive, hierarchical and non-stationary optimization problems - all of them considered
to be hard for genetic algorithms.

First test problem is based on function F101(x; y) taken from [12]. It is non-linear non-separable
and highly multimodal function of two variables. Our problem consists of 10 copies of the
function. The total length of the problem is 200 bits and the global minimum value is -955.96.

The second problem is a representative of deceptive problems. As the base function the 4-bit
fully deceptive function DF3 taken from [13] was used. The problem is composed of 50 DF3
functions resulting in a 200-bit long chromosome with the global optimum of value 1500 in the
string of all ones and local optima about the value 1400.

A hierarchical-if-and-only-if function (H-IFF) was proposed in [11]. The function has two global
optima - one consists of all 1's and the other all 0's. The 256-bit function with global optima of
value 2304 was used here.

As a representative of non-stationary problems an oscillating version of the single knapsack
problem was used [6]. The goal is to �ll a knapsack using a subset of objects from an available
set of size n, such that the sum of object weights is as close as possible to the target weight t.
The problem uses 14 objects, each of them of the weight wi = 2i, where i ranges from 0 to 13.



The optimum �tness is 1.0 and the �tness decreases towards 0.0 as the Hamming distance to
the optimum solution string increases. The target weight oscillates between values 12643 and
2837, where the change occurs every 1500 generations as used in [6].

50 independent runs were carried out for each experiment and the results were averaged. Per-
formance of GARB has been evaluated and compared to the standard genetic algorithm (SGA)
and algorithms used in [6]. The comparisons are based on the quality of the solutions achieved
after the same number of �tness function evaluations, which is a commonly used condition when
comparing di�erent evolutionary algorithms. Parameters of GARB and SGA:

� population size: 500 (F101, DF3, H-IFF), 150 (Knapsack)

� tournament selection with N = 3 for all problems

� evolutionary model: generational

� elitism: one copy of the best individual is copied to the new population

� crossover: 2-point (F101, DF3, H-IFF), uniform (Knapsack)

� mutation: simple bit-swapping mutation operator is used in SGA

� #�tness eval.: 500000 (F101, DF3, H-IFF), 30000 (Knapsack)

4 Experiments and Results

In Table 1 we see that GARB with well chosen maximal adjustment step c signi�cantly outper-
forms SGA on all static test problems. We observe an optimal behavior of GARB for rather
moderate values of c; 0.075 in case of F101 and DF3 problem and 0.125 in case of H-IFF problem.
Results achieved with c = 0:005 as well as with c = 0:175 are poor. This is in agreement with
our expectations that the exploration power of the algorithm is low when too small c is used.
On the other hand, too big values of c cause the exploitation of the useful genetic information
drops down since the changes of the gene interpretation are too fast.

Table 2 compares GARB with results obtained for Haploid-Recover, Extended-Additive and
Ng-Wong approaches presented in [6]. There the steady-state evolutionary model with uniform
crossover was running for 1500 generations between two subsequent target weight changes. This
equals to 1500 or 3000 �tness evaluations depending on whether the crossover operator generated

Table 1: Comparison of GARB and SGA on F101, DF3, and H-IFF problems. The results are
in the form average best-of-run / stdev.

Algorithm F101 DF3 H-IFF

GARB c = 0:005 -903 / 20 1479 / 7 1544 / 155
GARB c = 0:025 -935 / 7 1500 / 0 2112 / 138
GARB c = 0:075 -941 / 4 1500 / 0 2253 / 100
GARB c = 0:125 -931 / 8 1494 / 3 2304 / 0
GARB c = 0:175 -893 / 10 1390 / 15 1808 / 45
SGA Mutationrate = 0:5 -896 / 14 1451 / 6 1267 / 80
SGA Mutationrate = 1 -905 / 17 1461 / 9 1323 / 76
SGA Mutationrate = 2 -900 / 10 1408 / 9 1289 / 35
SGA Mutationrate = 3 -883 / 13 1362 / 17 1267 / 82



Table 2: Comparison of GARB and other algorithms on Oscillating knapsack problem. A
number of runs in which the optimum was found in each period is shown.

Oscillation period
Algorithm 1 2 3 4 5 6 7 8 9 10

GARB C = 0:025 46 0 7 0 17 6 0 0 11 9
Oscillation GARB C = 0:075 45 19 5 11 9 16 7 10 12 10
period GARB C = 0:125 41 35 31 37 38 32 36 35 41 32

10 generations GARB C = 0:175 32 28 25 28 29 33 35 21 28 31

GARB C = 0:025 47 1 0 1 0 6 3 2 1 4
Oscillation GARB C = 0:075 50 46 34 42 28 43 29 40 25 43
period GARB C = 0:125 49 49 49 47 49 49 50 50 50 48

20 generations GARB C = 0:175 46 42 44 44 48 39 46 44 43 42

Haploid-Recover 45 44 33 45 33 44 29 43 37 47
Extended-Additive 43 29 44 42 39 40 45 37 39 40
Ng-Wong 32 21 41 25 34 27 32 26 32 27

1 or 2 o�spring (this is not speci�ed in [6]). Our implementation of GARB uses generational
model so we have carried out experiments with two di�erent oscillation periods { 10 and 20
generations { in order to change the target after 1500 and 3000 �tness evaluations, respectively.
Results achieved with GARB for oscillation period 10 generations and c = 0:125 are better than
Ng-Wong but slightly worse than Haploid-Recover and Extended-Additive. When the oscillation
period 20 generations was used GARB outperformed all other algorithms. Again the best results
were achieved with c set to 0.125.

5 Conclusions and Future Work

This paper introduces a novel approach to prevent a premature convergence of a genetic al-
gorithm. It is based on a redundant pseudo-binary representation where the binary genes are
represented by real numbers where all values greater than 0.5 are interpreted as binary ones
and values less than 0.5 are interpreted as binary zeros, respectively. The introduced gene-
strength adjustment mechanism is used to control the diversity of the evolved population so
that real-valued genes corresponding to the binary value that prevails at the given position in
the population are weakened and pushed towards the opposite binary interpretation. The real-
valued genes interpreted as the minor binary value are strengthened making it more likely to
retain in the population and reproduce.

The proposed algorithm was empirically evaluated on various test problems proving that it
represents a competitive alternative to the techniques designed to prevent a premature conver-
gence. The algorithm exhibits a strong capability of self-controlling of the population diversity
that extends its explorative power and makes it capable of recovering even from completely
homogeneous population.

Analysis and deep understanding of the algorithm's behavior will be the primary goal of the
future work. Especially applications to optimization in non-stationary environment will be
investigated as the experiments revealed the capabilities of tracking a dynamically changing
optimum. Original version of the proposed algorithm uses a generational model where the
convergence characteristics of the population is updated after the whole population has been
generated. Steady-state model could provide faster response to the state of the population since
the statistics could have been updated after inserting each single individual. Implementation



and analysis of the steady-state model are subject to the future research as well.

Acknowledgments

This research work was supported by the Grant Agency of the Czech Republic within the project
No. 102/02/0132.

References

[1] Fukunaga, A. (1997). Restart scheduling for genetic algorithms. In Thomas Back, editor,
Proceedings of ICGA'97, 1997.

[2] Goldberg D. E., Smith, R. E. (1987). Nonstationary function optimization using genetic
algorithms with dominance and diploidy. In J.J. Grefenstette, ed., Proceedings of ICGA'87,
pp. 59-68. Lawrence Erlbaum Associates, 1987.

[3] Goldberg, D. E., Deb, K. (1991). A comparative analysis of selection schemes used in genetic
algorithms. In Rawlins, G. J. E. (Ed.), Foundations of Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann, pp. 69-93, 1991.

[4] Harik, G. R., Cant-Paz, E., Goldberg, D. E., Miller, B. (1997). The gambler's ruin problem,
genetic algorithms, and the sizing of populations. In Bck, T. (Ed.), Proceedings of ICEC'97,
pp. 7-12, New York: IEEE Press, 1997.

[5] Kubalik, J., Rothkrantz, L.J.M., Lazansky, J. (2002). Genetic Algorithm with Limited
Convergence. In Proceedings of the 4th International Workshop on Frontiers in Evolutionary
Algorithms in conjunction with the 6th JCIS, ISBN 0-9707890-1-7, pp. 610-613, 2002.

[6] Lewis, J., Hart, E., Ritchie,G. (1998). A comparison of dominance mechanisms and simple
mutation on non-stationary problems. In Eiben, A.E. et al. (Eds.). Proceedings of PPSN'98,
LNCS 1498, pages 139-148. Springer, 1998.

[7] Morrison, R. W., De Jong, K. A. (2000). Triggered hypermutation revisited. In Proceedings
of CEC'2000, pp. 1025-1032, 2000.

[8] Ng, K. P., Wong, K. C. (1995). A new diploid scheme and dominance change mechanism
for non-stationary function optimization. In Proceedings of ICGA'95, pp. 159-166. Morgan
Kaufmann, 1995.

[9] Spears, W. M. (1997). Recombination Parameters. In Handbook of Evolutionary Computa-
tion, T. Back, D. B. Fogel, and Z. Michalewicz, eds., New York: Oxford Univ. Press and
Institute of Physics, pp E1:3:1-11, 1997.

[10] Srinivas, M., Patnaik, L. M. (1994). Adaptive Probabilities of Crossover and Mutation in
Genetic Algorithms. In IEEE Transaction of System, Man and Cybernetics, vol. 24, pp.
656-667, 1994.

[11] Watson, R. A., Hornby, G. S. and Pollack, J. B. (1998). Modeling Building-Block Interde-
pendency. In Proceedings of PPSN'98, Springer, pp.97-106., 1998.

[12] Whitley D., Mathias, K., Rana, S., Dzubera, J. (1996). Evaluating Evolutionary Algorithms,
Arti�cial Intelligence, Volume 85, pp. 245-261, 1996.

[13] Whitley D. (1991). Fundamental Principles of Deception in Genetic Search. In: Foundations
of Genetic Algorithms, G. Rawlins ed., Morgan Kaufmann, pp. 221-241, 1991.


