
A Selecto-recombinative Genetic Algorithm with

Continuous Chromosome Reconfiguration

Jǐŕı Kubaĺık, Petr Poš́ık, and Jan Herold

Department of Cybernetics, CTU Prague,
Technicka 2, 166 27 Prague 6, Czech Republic

{kubalik,posik}@labe.felk.cvut.cz, jan herold@volny.cz

Abstract. A good performance of traditional genetic algorithm is de-
termined by its ability to identify building blocks and grow them to
larger ones. To attain this objective a properly arranged chromosome is
needed to ensure that building blocks will survive the application of re-
combination operators. The proposed algorithm periodically rearranges
the order of genes in the chromosome while the actual information about
the inter-gene dependencies is calculated on-line through the run. Stan-
dard 2-point crossover, operating on the adapted chromosomal structure,
is used to generate new solutions. Experimental results show that this
algorithm is able to solve separable problems with strong intra building
block dependencies among genes as well as the hierarchical problems.

1 Introduction

Standard selecto-recombinative genetic algorithms (GAs) work with fixed-length
chromosomes with the gene order fixed during the whole evolution. A population
of such chromosomes is evolved—they are recombined in order to generate the
new ones. Through the evolutionary process, various high quality partial solu-
tions called building blocks are generated that are needed to obtain the optimum
solution. GA has to be able to identify essential building blocks and grow them
to larger ones. Tightly linked building blocks have relatively high probability of
surviving through successive generation, while building blocks with weak linkage
are very likely to be disrupted by crossover operations. Thus, it is crucial that
the genes belonging to the same building block are spatially grouped close to
each other in order to maximize the efficiency of mixing the building blocks by
recombination operators.

Many approaches have been proposed to deal with the linkage problem and
to ensure appropriate building block mixing. They can be classified into the
following categories:

– Linkage identification/learning techniques such as the messy GAs [1], linkage
identification by non-monotonicity detection [6], linkage learning GA [2],
dependency structure matrix driven GA [12], adaptive linkage model [5].

– Estimation of distribution algorithms also called probabilistic model build-
ing techniques include the bivariate marginal distribution algorithm [7], ex-
tended compact GA [3], Bayesian optimization algorithm [8].

2 Jǐŕı Kubaĺık et al.

A selecto-recombinative GA with continuous chromosome reconfiguration
(CoCR), described in this paper, is based on an idea that given a chromosome
structure that enables tight linkage of building blocks of the given problem,
standard recombination operators can be used to efficiently grow the building
blocks when recombining parental individuals. In order to attain this, CoCR up-
dates pair-wise gene dependencies periodically during the evolutionary process
and rearranges the chromosomal structure every generation according to the ac-
tual linkage information. The chromosome structure is generated by a heuristic
procedure so that it reflects the most significant gene dependencies. Standard
2-point crossover, operating on the adapted chromosomal structure, is used to
generate new solutions.

The rest of this paper is organized as follows. The next section describes the
proposed algorithm. Section 3 and 4 describe the test problems and experimental
setup used for our experiments. Then the results of experiments are presented
and discussed. The work is summarized and possible future extensions are given
in the last section.

2 CoCR Algorithm

An outline of CoCR algorithm is in Fig. 1. CoCR starts with a randomly gener-
ated order of genes in the chromosome. Then, the algorithm iterates in the main
loop (1) generating subsequent populations of candidate solutions using a di-
versity preservation variant of selecto-recombinative GA while (2) continuously
adapting the chromosome structure on the fly.

The pair-wise gene statistics are accumulated in stats every generation. All
chromosomes of the processed population contribute to stats, no selection of high
quality solutions is applied. The stats are accumulated for one epoch, consisting
of recalculation step number of generations, and then the gene dependencies are
recalculated and stored in table links table. links table is a table of size [n×m],
where for each gene i ∈ {0, n− 1} there is an ordered list of up to m genes that
have the strongest epistasis with gene i. Each lists of the most epistatic genes
is ordered in a descendant manner with respect to the strength of the epistasis.
After the links table has been updated the stats are erased.

The chromosome structure is reconfigured every generation using the actual
gene dependencies in links table. The gene order is calculated using the same gene
dependencies information for each generation within one epoch. However, the
actual linkage of genes in the chromosome might change slightly generation by
generation since the heuristic procedure for the chromosome structure construc-
tion involves a stochastic component. This is an important aspect that makes
the approach resistant against imperfectly identified epistasis among genes.

2.1 Identification of Pair-wise Gene Dependencies

CoCR uses the Pearson’s chi-square test for discovering the pair-wise gene depen-
dencies in the same way as it was used in the BMDA [7]. It estimates the depen-
dencies from the collected set of N chromosomes. For each gene i we define the

Lecture Notes in Computer Science 3

1 init(population)

2 init(chromosome structure)

3 generations = 0

4 erase(stats)

5 repeat

6 population ← selecto-recombinative GA(population)

7 generations = generations + 1

8 accumulate pairwise stats(population,stats)

9 if(generations mod recalculation step = 0)

10 links table ← recalculate links table(stats)

11 erase(stats)

12 chromosome structure ← construct chromosome(links table)

13 until(CoCR termination condition is met)

Fig. 1. An outline of CoCR algorithm.

univariate marginal frequency pi(xi) as the frequency of chromosomes that have
ith gene set to xi, where xi ∈ {0, 1}. For any two positions i 6= j ∈ {0, . . . , n−1}
and any possible values xi, xj ∈ {0, 1} we define the bivariate marginal frequency
pi,j(xi, xj) as the frequency of chromosomes that have genes i and j set to xi and
xj , respectively. Then, for each pair of genes i and j, the Pearson’s chi-square
statistics can be defined by

X2
i,j =

∑

xi,xj

(Npi,j(xi, xj)−Npi(xi)pj(xj))
2

Npi(xi)pj(xj)
,

where Npi(xi)pj(xj) and Npi,j(xi, xj) is the expected and the observed fre-
quency of the pair of values (xi, xj) on the positions i and j, respectively. If
positions i and j are not independent for 95%, i.e. X2

i,j ≥ 3.84, then the value

X2
i,j is recorded for both genes i and j and the strongest gene dependencies

are retained in links table for each gene. Note, that there may be some genes in
links table that have the list of the most related genes shorter than m if there
were less than m dependencies identified for these genes.

2.2 Generation of the Chromosome Structure

The chromosome structure is constructed by means of a simple greedy algorithm
(see Fig. 2) utilizing the information about the most significant epistases among
genes (stored in links table). The algorithm works in two steps - first the linkage
groups are constructed, then the linkage groups are merged together to form the
whole chromosome. It starts with a set of elementary linkage groups, where each
gene represents one single group. Then it grows the linkage groups in the main
loop (lines 3-11 in Fig. 2) using in turn the strongest links (i.e. the first column of
links table), then the second strongest links, etc., until all columns of links table

4 Jǐŕı Kubaĺık et al.

1 init(linkage groups)

2 i = 0

3 do

4 unused ← {0,1,...,n− 1}

5 do

6 gene = select random(unused)

7 linkage groups ← link(gene,links table[gene, i])

8 remove gene from unused

9 while(unused 6= {})

10 i = i + 1

11 while(i < m) and (card(linkage groups)>1)

12 chromosome structure ← merge(linkage groups)

13 return(chromosome structure)

Fig. 2. An outline of construct chromosome procedure.

have been used or all the genes have been grouped in a single linkage group. In
each i-th iteration of the main loop all links from the i-th column of links table

are used to grow the respective linkage groups. Note, that when processing ith
column of links table the links are picked from the list of unused links in a
random order. Thus, each time the procedure is called different linkage groups
can be generated, see Table 3.

A link between genes i and j is incorporated into the linkage groups so that
the two linkage groups already assigned to i and j, respectively, are merged
together. For example, let us assume that a link between genes 3 and 7 is to be
added to the linkage groups, given the actual linkage groups assigned to gene 3
and 7 are LG3 =(2–4–7–1) and LG7 =(5–3–9), respectively. Merging LG3 and
LG7 will yield a new linkage group LG3 = LG7 =(2–4–7–1–5–3–9).

After the linkage groups have been established they are merged together,
again in a random order.

2.3 Genetic Algorithm with Allelic Diversity Preservation

It is crucial for proper functioning of the algorithm of identification of pair-wise
dependencies to supply it with a diverse collection of chromosomes. Since the
collection consists of the population contents collected over multiple generations
the selecto-recombinative GA must be designed so that it can preserve the allelic
diversity of the population at every generation.

In this work the genetic algorithm with limited convergence (GALCO) in-
troduced by Kubalik et al. [4] is used to attain this goal. GALCO is based on
the idea that the population is explicitly prevented from becoming homogenous
by simply imposing limits on its convergence. This is done by specifying the
maximum difference between the frequency of ones and zeros at any position
of the chromosome calculated over the whole population. A steady-state evolu-
tionary model and a special replacement operator are used to keep the desired

Lecture Notes in Computer Science 5

distribution of ones and zeros during the whole run. An important point is that
GALCO is a type of a simple selecto-recombinative GA that uses the standard
recombination operators and no explicit mutation operator.

3 Test Problems

There are four test problems, each of them composed of different fundamental
building blocks of variable size.

DF3. This is a representative of deceptive problems, i.e. problems that are
intentionally designed to make a GA converge towards local deceptive optimum.
The problem is composed of 25 copies of a 4-bit fully deceptive function DF3
taken from [11]. DF3 has a global optimum in the string 1111 with fitness 30
and a deceptive attractor 0000 with low fitness 10, which is surrounded, in the
search space, by four strings of just one 1 with fitness values 28, 27, 26, and 25.
The whole 100-bit long chromosome has the global optimum of value 750.

DF3-intrl. This problem is an extension of the previous problem such that the
whole chromosome is split into 12-bit blocks, where each of the blocks contributes
to the fitness by the value

∑
DF3(bj , bj+1, b(j+2)mod12, b(j+3)mod12), where j ∈

{0, 2, 4, 6, 8, 10}. In the optimal case, when all bits of the block are set to 1, the
contribution of the block is 6 × 30 = 180. Here, a problem composed of eight
blocks was used with the global optimum of value 1440.

H-IFF. A hierarchical-if-and-only-if function proposed in [10] is the represen-
tative of hierarchically decomposable problems. The hierarchical block structure
of the function is a balanced binary tree. Leaf nodes, corresponding to single
genes, contribute to the fitness by 1. Each inner node is interpreted as 1 if and
only if its children are both 1’s, and as 0 iff they are both 0’s - in such cases
the inner node contributes to the fitness by a positive value 2height(x), where
height(x) is the distance from the node x to its antecedent leaves. Otherwise
the node is interpreted as null and its contribution is 0. The function has two
global optima - one consists of all 1’s and the other one has all 0’s. We have used
128-bit problem with global optima of value 1024.

H-TRAP. The structure of this problem is similar to the structure of H-IFF
with the difference that each inner node has three children and the contribution
of each building block at every level is given as 3height(x) × ftrap(u), see [9].
ftrap(u) is a trap function returning 1.0 if all its three children nodes interpret
as 1, fmin if the three children nodes interpret as 0, fmin/2 if one out of the three
children interpret as 1, and 0.0 if two children interpret as 1. We set fmin = 1.01
at lower levels, and fmin = 0.9 at the top most level. Leaf nodes (0-th level
nodes) do not contribute any value. The problem with 81 bits with the global
optimum of the value 324.0 was used.

4 Experimental Setup

For each problem, 20 runs have been executed, from which the following statistics
were calculated:

6 Jǐŕı Kubaĺık et al.

– MeanBest. Mean best-of-run value calculated over the 20 independent runs.
– StDev. Standard deviation of the best-of-run values.
– #Success. A number of runs, in which the optimum solution was found.
– WhenFound. The average number of fitness evaluations needed to get the

optimum solution.

Graphs showing (1) the evolution of the building block compactness and
(2) the evolution of the best-so-far solution are generated to demonstrate the
co-evolution of the chromosome structure and the quality of solution through
the evolutionary process. Both the best-so-far fitness and the building block
compactness show median values out of the 20 values in each generation.

The building block compactness is calculated as the average defining length
of fundamental building blocks under the given chromosome structure with re-
spect to the ringed representation implied by the 2-point crossover. For DF3 and
DF3-intrl problem it shows an average defining length of 25 4-bit and 8 12-bit
deceptive building blocks, respectively. In case of H-IFF problem, building blocks
of 16 adjacent genes are considered. In case of H-TRAP problem, building blocks
of 27 adjacent genes are considered. Four algorithms were compared:

– CoCR-GALCO. GALCO is used as the selecto-recombinative GA. The max-
imal diversity of the evolved population is forced by setting the conver-
gence limit to 1. This means that the number of ones is within the interval
(PopSize/2− 1,PopSize/2+ 1) at every position in the chromosome in any
stage of the run.

– CoCR-SGA. CoCR using a standard genetic algorithm with bit flipping mu-
tation applied to 1 bit per chromosome.

– GALCO-tight and GALCO-loose. GALCO operating on the chromosome of
ideally organized genes (the most compact building blocks) and randomly
chosen gene order, respectively. The gene order is static through the whole
evolutionary process.

All algorithms used the same configuration: population size 500, 2-point
crossover applied with a probability 1.0, tournament selection (n=4). Both vari-
ants of CoCR algorithm used recalculation step 10 generations.

5 Experimental Results

Table 1 compares the observed performance characteristics of the algorithms. Re-
sults of CoCR algorithms are achieved with the number of columns of links table
set to 2. This means, that for each gene i a list of up to two genes with the
strongest epistasis with gene i (i.e. links table with m = 2) is considered in the
process of building the chromosome structure. The results show that the per-
formance of CoCR-GALCO lies between GALCO-loose and GALCO-tight and
outperforms CoCR-SGA on all test problems. This is in agreement with our
expectations. An interesting observation is that CoCR-GALCO perfectly solves
DF3-intrl problem composed of high-order building blocks and scores even on
the hierarchical problems.

Lecture Notes in Computer Science 7

Table 1. Comparisons on DF3, DF3-intrl, H-IFF, and H-TRAP.

CoCR-GALCO CoCR-SGA GALCO-tight GALCO-loose

D
F
3

#Success 20 0 20 0
WhenFound 122658 - 115444 -
MeanBest 750.0 728.8 750.0 708.9
StDev 0.0 4.6 0 4.7

D
F
3
-i
n
tr
l #Success 20 0 20 1

WhenFound 108754 - 53881 498698
MeanBest 1440.0 1305.0 1440.0 1392.4
StDev 0.0 13.7 0.0 28.6

H
-I
F
F

#Success 3 0 20 0
WhenFound 115211 - 42564 -
MeanBest 876.8 625.8 1024.0 626.8
StDev 71.5 54.6 0.0 58.1

H
-T

R
A
P #Success 10 0 20 0

WhenFound 85152 - 26968 -
MeanBest 293.6 197.6 324.0 199.6
StDev 31.2 19.3 0.0 11.7

Fig. 3 also illustrates the inability of CoCR-SGA to evolve the proper chro-
mosome structure with tight linkage. This is because SGA, using simple bit flip-
ping mutation, is not able to maintain sufficiently high population diversity in
comparison to GALCO. The less diverse the population is, i.e. the fewer unique
chromosomes contribute to stats, the less information CoCR has for identifica-
tion of the pair-wise gene dependencies used to derive the proper chromosome
structure. This is also the reason why the BB compactness eventually increases

0 100 200 300 400 500
3

10

20

30

40

50

450

550

650

750

fitness evaluations (x1000)

be
st

−s
o−

fa
r f

itn
es

s
av

er
ag

e
B

B
co

m
pa

ct
ne

ss

CoCR−GALCO
CoCR−SGA
GALCO−tight
GALCO−loose

0 100 200 300 400 500

(a) DF3

0 100 200 300 400 500

11

25

50

75

800

1000

1200

1440

fitness evaluations (x1000)

be
st

−s
o−

−f
ar

 fi
tn

es
s

av
er

ag
e

B
B

co
m

pa
ct

ne
ss

CoCR−GALCO
CoCR−SGA
GALCO−tight
GALCO−loose

0 100 200 300 400 500

(b) DF3-intrl

Fig. 3. Mean convergence characteristics observed for different algorithms

8 Jǐŕı Kubaĺık et al.

Table 2. Results achieved for different sizes of links table.

links buffer 1 2 4 8

D
F
3

#Success 20 20 20 20
WhenFound 141531 122658 122667 118522
MeanBest 750.0 750.0 750.0 750.0
StDev 0.0 0.0 0.0 0.0

D
F
3
-i
n
tr
l #Success 9 20 20 20

WhenFound 292447 108754 82501 85452
MeanBest 1427.5 1440.0 1440.0 1440.0
StDev 12.9 0.0 0.0 0.0

H
-I
F
F

#Success 0 3 15 19
WhenFound - 115211 83714 61420
MeanBest 763.2 876.8 992.0 1017.6
StDev 52.9 71.5 56.9 28.6

H
-T

R
A
P #Success 7 12 20 20

WhenFound 105779 82303 42879 40234
MeanBest 299.8 312.4 324.0 324.0
StDev 21.3 18.7 0.0 0.0

for CoCR-GALCO, as observed in Fig. 3 and Fig. 4. This happens when the
optimal solution has already been found. As GALCO still tries to keep the pop-
ulation maximally diverse, it gets saturated with half-to-half the copies of the
optimum and copies of the string that is a binary complement to the optimum.
From such a two-valued set of strings any valid information about gene depen-
dencies can not be obtained and the generated chromosome structure becomes
partially randomized.

0 100 200 300 400 500
15

45

75

105

250

500

750

1024

fitness evaluations (x1000)

be
st

−s
o−

fa
r f

itn
es

s
av

er
ag

e
B

B
co

m
pa

ct
ne

ss

m=2
m=4
m=8
m=16

0 100 200 300 400 500

(a) H-IFF

0 100 200 300 400 500

26

40

50

60

70

60

120

180

240

324

fitness evaluations (x1000)

be
st

−s
o−

fa
r f

itn
es

s
av

er
ag

e
B

B
co

m
pa

ct
ne

ss

m=2
m=4
m=8
m=16

0 100 200 300 400 500

(b) H-TRAP

Fig. 4. Mean convergence characteristics observed for different sizes of links table

Lecture Notes in Computer Science 9

Table 3. Chromosome structure evolution. An excerpt of one run when solving 32-bit
H-IFF problem. Population size was 200. The optimal solution was found after 3264
fitness evaluations. G stands for the generation, BBC is the average BB compactness
of given chromosome structure.

G BBC chromosome structure

1 26.0 10 21 7 25 15 4 24 27 30 16 12 18 20 26 22 9 2 19 23 17 11 8 31 29 0 1 3 6 13 5 28 14

2 27.0 1 20 14 25 17 21 7 0 22 3 5 6 28 9 27 13 12 31 4 26 11 15 10 8 29 16 19 24 2 18 23 30

3 26.5 1 14 16 25 7 4 26 20 22 30 5 21 24 12 27 31 19 10 2 15 11 8 17 29 0 9 3 6 18 28 23 13

4 28.0 21 1 7 23 2 30 3 27 25 4 12 31 22 29 13 28 8 10 15 24 9 17 11 26 5 20 19 6 16 18 0 14

5 25.0 13 7 23 3 4 8 10 0 25 12 27 11 17 29 9 28 30 6 1 24 31 22 20 26 19 21 5 18 16 15 2 14

16 9.0 26 27 25 24 21 20 23 22 3 2 0 1 4 5 6 7 8 9 10 11 13 12 14 15 16 18 17 19 29 28 30 31

17 7.0 4 5 6 7 3 2 0 1 19 18 17 16 22 23 20 21 26 27 25 24 31 30 29 28 11 10 8 9 12 13 14 15

18 9.0 3 2 0 1 28 29 30 31 7 6 5 4 11 10 8 9 13 12 14 15 19 17 16 18 21 20 22 23 26 27 25 24

19 7.0 23 22 20 21 25 24 26 27 31 30 28 29 10 11 9 8 15 14 12 13 4 5 6 7 1 0 2 3 19 18 17 16

20 9.0 28 29 30 31 12 13 15 14 7 6 5 4 0 1 2 3 10 11 8 9 18 19 17 16 23 22 21 20 26 27 25 24

Results in Table 2 and graphs in Fig. 4 show how the size m of links table

influences the performance of CoCR-GALCO. The general observation is that
as the size m increases the better results in shorter time are achieved so that
even the hierarchical problems are almost perfectly solved with m = 8. In other
words, the more of the linkage information the construction algorithm can use
the better results can be expected.

Table 3 illustrates the evolution of the chromosome structure for the 32-bit
H-IFF problem. It shows that despite the last 5 generations were generated using
the same linkage information stored in links table they differ each other. This
is due to the stochastic nature of the algorithm for generating the chromosome
structure. Intuitively, such a variability may make the algorithm more robust
when solving problems with complicated epistatic structure where the genes can
not be arranged in a linear chromosome so that tight linkage of all strongly
dependent genes are satisfied. In such cases, different chromosomes that neglect
different dependencies can be generated each time.

6 Conclusions

The proposed CoCR algorithm identifies the pair-wise gene dependencies that
are used to generate the proper chromosome structure on which standard recom-
bination operators work. The chromosome structure changes every generation
and the actual information about the inter-gene dependencies is calculated on-
line through the run. The algorithm for construction of the chromosome structure
uses a list of the most related genes to each gene. Thus, the generated chromo-
some can capture a structure of the problem with higher-order fundamental
building blocks that can be efficiently processed then. Moreover, the chromo-
some reconfiguration that takes place every generation makes the algorithm

10 Jǐŕı Kubaĺık et al.

more resistant against partial errors in the gene order. This was documented
on problems with 12-bit building blocks as well as on hierarchical problems.

The results of the experiments suggest that this approach could be used for
solving problems, where the epistatic structure is too complicated so that it is
hard to find just one optimal arrangement of genes in the chromosome. The ex-
periments presented in this paper illustrated the performance of the proposed al-
gorithm on problems with uniformly scaled subfunctions. Future research should
investigate applicability of this approach to problems with exponentially scaled
subfunctions as well.

Acknowledgments. This research has been supported by the research pro-
gram Information Society No. 1ET 101 210 513 ”Relational machine learning
for analysis of biomedical data”, sponsored by Czech Academy of Sciences.

References

1. Goldberg, D.E., Korb, B. and Deb, K.: Messy genetic algorithms: Motivation,
analysis and first results. Complex Systems 3(5), pp. 493–530, 1989.

2. Harik, G. and Goldberg, D. E.: Learning linkage. In Foundations of Genetic Algo-
rithms IV, pp. 270–85. San Mateo: Morgan Kaufmann, 1997.

3. Harik, G.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL Re-
port N. 99010, University of Illinois at Urbana-Champaign, Urbana, IL, 1999.

4. Kubalik, J., Rothkrantz, L.J.M., Lazansky, J.: Genetic Algorithm with Limited
Convergence. In Grana, M., Duro, R., d’Anjou, A., and Wang, P.P., (Eds.), Infor-
mation Processing with Evolutionary Algorithms: From Industrial Applications to
Academic Speculations. Springer-Verlag, ISBN: 1-85233-866-0, pp. 216-235. 2005.

5. Kwon, Y. K., Hong, S.D., Moon, B. R.: A Genetic Hybrid For Critical Heat Flux
Function Approximation. In W. B. Langdon et al. (Eds.), Proceedings of GECCO
2002, Morgan Kaufmann Publishers, pp. 1119-1125, 2002.

6. Munetomo, M. and Goldberg, D. E.: Linkage identification by non-monotonicity
detection for overlapping functions, Evolutionary Computation, Vol. 7, No. 4, pp.
377-398, 1999.

7. Pelikan, M., Muehlenbein, H.: The Bivariate Marginal Distribution Algorithm. In
R. Roy, T. Furuhashi, and P. K. Chawdhry, (Eds.), Advances in Soft Computing
- Engineering Design and Manufacturing, pp. 521-535, Springer-Verlag. 1999.

8. Pelikan, M., Goldberg, D. E., Cantu-Paz, E.: Linkage learning, estimation distri-
bution, and Bayesian networks. Evolutionary Computation, 8(3), 314-341, 2000.

9. Pelikan, M., Goldberg, D. E.: Escaping hierarchical traps with competent genetic
algorithms. In L. Spector et al. (Eds.), Proceedings of the GECCO–2001, pp. 511–
518. Morgan Kaufmann, 2001.

10. Watson, R. A., Hornby, G. S., and Pollack, J. B.: Modeling Building-Block Inter-
dependency. In proceedings of Fifth International Conference PPSN V, pp. 97–106.
Springer, 1998.

11. Whitley, D.: Fundamental Principles of Deception in Genetic Search. In: Founda-
tions of Genetic Algorithms. G. Rawlins (ed.), 221–241, Morgan Kaufmann, 1991.

12. Yu, T.-L., Goldberg, D. E.: Dependency Structure Matrix Analysis: Offline Utility
of the Dependency Structure Matrix Genetic Algorithm. In K. Deb et al. (Eds.),
Proceedings of GECCO 2004, pp. 355-366, Springer Berlin/Heidelberg, 2004.

