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Abstract— Evolutionary algorithms are typically used to
evolve a population of complete candidate solutions to a given
problem. Recently, a novel framework called Iterative Prototype
Optimization with Evolved Improvement Steps has been proposed.
This is a general optimization framework, where a possible
improvement of a prototype solution is being evolved by the
evolutionary algorithm. The framework has already been used
to solve binary string optimization problems and the combinato-
rial optimization problem. In this paper we use this optimization
framework to solve real-parameter optimization problems. The
algorithm was tested on problems collected for the Special
Session on Real-Parameter Optimization of the IEEE Congress
on Evolutionary Computation 2005. The achieved results show
a potential of the presented optimization framework for solving
hard real-parameter optimization problems.

I. INTRODUCTION

Evolutionary algorithms (EAs) have already been more or
less successfully applied to a wide range of optimization
problems. They are typically used to evolve a population of
candidate solutions to a given problem. Each of the candidate
solutions encodes a complete solution - i.e. a complete set of
the problem control parameters, a complete schedule in case
of scheduling problems, a complete tour for the traveling
salesman problem, etc. This implies, that especially for large
instances of the solved problem the EA operates on an
enormous huge space of potential solutions, so it might easily
fail to find the optimal (or at least good enough) solution.

Recently, a new approach called Iterative Prototype
Optimisation with Evolved IMprovement Steps (POEMS)
[1] has been proposed, where the EA does not handle the
complete candidate solution to the problem at hand. Instead,
the EA is employed within the iterative optimisation frame-
work to evolve the best modification of the current solution
prototype in each iteration. Thus, the total load of searching
for the best complete solution is cut into pieces, each of them
representing a process of seeking for the best transformation
of the current solution prototype to the new possibly better
one. The POEMS algorithm has been tested on problems
from two different optimisation problem domains - binary
string optimisation and the traveling salesman problem. The
results revealed interesting aspects of using the algorithm for
the two classes of optimisation problems. The aim of this
paper is to show that the algorithm can be used for solving
real-parameter optimisation problems as well.

The paper is structured as follows. In section 2, the
general outline of the algorithm of POEMS is described. In
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section 3, the implementation of the algorithm for the real-
parameter optimisation problems is described. Sections 4 and
5 describe the problems and the experimental set-up used for
the proof-of-concept validation of POEMS. In section 6, the
results achieved with POEMS are presented and compared
with other evolutionary approaches. The paper ends with
conclusions on effectiveness of POEMS, and its possible
further extensions.

II. POEMS

The main idea behind POEMS (see Figure 1) is that some
initial prototype1 solution is further improved in an iterative
process, where the most suitable modification of the current
prototype is sought for using an evolutionary algorithm (EA)
in each iteration. The modifications are represented as a
sequence of primitive actions/operations, defined specifically
for the problem at hand. The evaluation of action sequences
is based on how good/bad they modify the current prototype,
which is an input parameter of the EA. Sequences that do
not change the prototype at all are penalized in order to
eliminate generating trivial solutions. After the EA finishes,
it is checked whether the best evolved sequence improves
the current prototype or not. If an improvement is found,
then the sequence is applied to the current prototype and the
resulting solution becomes the new prototype. Otherwise the
current prototype remains unchanged for the next iteration.

Representation. The EA evolves linear chromosomes of
length MaxGenes, where each gene represents an instance
of certain action chosen from the set of elementary actions
defined for the given problem. Each action is represented by
a record, with an attribute action type followed by parameters
of the action. Besides actions that truly modify the prototype
there is also a special type of action called nop (no operation).
Actions with action type=nop are interpreted as void actions
with no effect on the prototype, regardless of the values of
their parameters. A chromosome can contain one or more in-
stances of the nop operation. In this way the variable effective
length of chromosomes is implemented. An important aspect
of this implementation is that any temporarily inactivated
action can be activated again later on (with its formerly
evolved parameters) just by switching its action type on.

Operators. The representation allows to use a variety of
possible recombination and mutation operators such as stan-
dard 1-point, 2-point or uniform crossover and a simple gene-
modifying mutation. In [1] a generalized uniform crossover

1The initial prototype can be generated either by random or using some
problem specific heuristic.



1 generate(Prototype)
2 repeat
3 BestSequence ← run EA(Prototype)
4 Candidate ← apply to(BestSequence,Prototype)
5 if(Candidate is better than Prototype)
6 Prototype ← Candidate
7 until(POEMS termination condition)
8 return Prototype

Fig. 1. An outline of POEMS algorithm

was used, that forms a valid offspring as an arbitrary
combination of parental genes. Both parents have the same
probability of contributing its genes to the generated child,
and each gene can be used only once. Mutation operator
changes either the action type (activates or inactivates the
action) or the parameters of the action.

Evolutionary model. The design and configuration of
the EA can differ for each particular optimisation problem.
Figure 2 shows a simple steady-state evolutionary algorithm
that iteratively modifies a population of individuals. In each
iteration a couple of individuals is selected that undergoes the
crossover operation with the specified crossover probability.
The offspring is then modified by the mutation operation and
assigned the fitness. Then one of the worst individuals in the
current population is chosen as the replacement. Finally, the
offspring is placed on the position of the replacement in the
population if it is better than the replacement.

In general, the EA is expected to be executed many times
during the whole run of the POEMS. Thus, it must be con-
figured to converge fast in order to get the optimised action
sequence in short time. As the EA is evolving sequences of
actions to improve the solution prototype, not the complete
solution, the maximal length of chromosomes MaxGenes
can be short compared with the size of the problem. For
example, MaxGenes = 10 that is much smaller than the
problem size of the binary string optimisation problems (200
bits) and much smaller than the number of cities (100-2000
cities) in case of the TSP problem was used in [1]. The
relaxed requirement on the expected EA output and the small

1 initialize(Population)
2 repeat
3 Parents ← select(Population)
4 if(rand() < Pcross)
5 Offspring ← cross over(Parents)
6 else
7 Offspring ← Parents
8 mutate(Offspring)
9 evaluate(Offspring)
10 Replacement = find loser(Population)
11 Population[Replacement] ← Offspring
12 until(EA termination condition)
13 BestSequence ← best of(Population)
14 return BestSequence

Fig. 2. An outline of a simple steady-state EA

size of evolved chromosomes enables to setup the EA so that
it converges within a few generations.

It is important to note, that POEMS does not perform
prototype optimisation via improvement steps that are purely
local with respect to the current prototype. In fact, long
phenotypical as well as genotypical distances between the
prototype and its modification can be observed if the system
possesses a sufficient explorative ability, see [1]. The space of
possible modifications of the current prototype is determined
by the set of elementary actions and the maximum allowed
length of evolved action sequences MaxGenes. The less
explorative actions are and the shorter sequences are allowed
the more the system searches in a prototype neighborhood
only and the more it is prone to get stuck in a local optimum
early, and vice versa.

III. IMPLEMENTATION ISSUES

POEMS is a general optimisation framework that can be
used more or less effectively for any optimisation problem.
The problem specific part is the implementation of the
engaged EA. One has to design the representation of the
evolved action sequences, genetic operators operating on the
sequences, and the evolutionary model. Perhaps, the most
important is a proper choice of the set of action types. They
should be chosen so that the space of possible candidate
action sequences is rich enough to ensure a sufficient explo-
ration capabilities of the whole system.

Representation. In [1], the action sequences for the bi-
nary string optimisation problems were composed of just
one type of action called invert(gene). The action simply
inverts specified gene within the prototype. Thus, the EA
was searching for the best prototype modification among
the joint-mutations of up to MaxGenes=10 genes in each
POEMS iteration. For the TSP problem a direct path rep-
resentation of the tour was used. The prototype tour was
modified by action sequences composed of actions of the
following types

• move(city1, city2) moves city1 right after city2 in the
tour,

• invert(city1, city2) inverts a subtour between city1 and
city2,

• swap(city1, city2) swaps city1 and city2.

Again, the EA search space contained a lot of possible action
sequences of wide range of the impact they have on the
prototype.

In this work, besides the nop action we have used effective
actions of the following types

• add(parameter) adds the value of parameter to the
respective prototype variable xi. When initializing or
mutating this action, the value of parameter is chosen
randomly from the interval 0.1∗ (maxi −mini), where
maxi and mini is the upper bound of variable xi and
the lower bound of variable xi, respectively.

• sub(parameter) subtracts the value of parameter
from the respective prototype variable xi.



• sample right(parameter) picks a new value of the
respective prototype variable xi from the interval
(xi,maxi) according to the formula

(maxi − xi) ·
e4·parameter − 1

e4 − 1
,

This action moves the respective variable xi towards
its upper bound, preferring the smaller changes to the
larger ones. Note, the effect of this action is quite similar
to the sub action with the difference that it samples
the interval (xi,maxi) non-linearly with respect to the
action parameter.

• sample left(parameter) picks a new value of the
respective variable xi from the interval (mini, xi).
The sampling strategy being the same as in case of
sample right action.

The chromosome (i.e. the candidate action sequence) is
represented as an ordered list of D actions (active or inac-
tive), each of them operating on the corresponding prototype
variable xi, where D is the dimension of the problem at hand.
At least one of the actions in each sequence must be active
with non-zero argument in order to eliminate trivial solutions
(i.e. action sequences that do not modify the prototype at all).

Operators. The crossover operator used in this work
is a combination of the standard uniform and arithmetical
crossover operators. Given the pair of parental chromosomes
P1 and P2, the offspring chromosome inherits i− th action
either from the first or the second parent. If the i − th
actions are of the same type in both parents then the value
of the offspring action parameter is picked randomly from
the interval (P1xi, P2xi), otherwise the offspring action
inherits the parameter value from the same parent as the
action type.

The mutation operator modifies either the action type or
the parameter. If the action type is to be changed the new
action type out of the four effective plus the nop is chosen
with a uniform probability. If the action parameter changes,
then the new parameter value is pick from the interval (0.9∗
parameter, 1.1∗parameter) making sure that the new value
lies within the interval specified for the given action, see
above.

Evolutionary model. The steady-state evolutionary model
shown in Figure 2 was implemented in this work. The
action sequences in the initial population were generated with
half-and-half active and nop actions. Moreover, the initial
population of the EA in the second and later iterations were
not generating completely from scratch. A portion of actions
(specified by the parameter Preuse) from the final population
of the previous EA were reused instead. The motivation for
that is (i) to keep the search direction that proved beneficial
in the past and (ii) to reuse the unexploited yet possibly
useful material (inactive actions or actions of other well-fit
sequences besides the best one) evolved in the last iteration.

A tournament selection was used for selecting the parents.
The inverse tournament strategy (i.e. the worst individual out
of N competing ones) was used to find the replacements.

IV. TEST PROBLEMS

The algorithm is tested on the 10D and 30D reference
optimisation functions collected for the Special Session
on Real-Parameter Optimization of the IEEE Congress on
Evolutionary Computation 2005. There are 25 functions in
the suit that are divided into the four groups – unimodal
functions, multimodal basic functions, multimodal expanded
functions, and multimodal hybrid composition functions. A
detailed description of the functions is given in [2].

Due to the space limitations just one representative func-
tion of each group was chosen for our experiments:

• Shifted Sphere Function (Problem 1 in [2]). Properties:
unimodal, shifted, separable, scalable.

• Shifted Rastrigins Function (Problem 9 in [2]). Prop-
erties: multi-modal, shifted, separable, scalable, local
optimas number is huge.

• Shifted Expanded Griewanks plus Rosenbrocks Func-
tion (Problem 13 in [2]). Properties: multi-modal,
shifted, non-separable, scalable.

• Non-Continuous Rotated Hybrid Composition Function
(Problem 23 in [2]). Properties: multi-modal, non-
separable, scalable, a huge number of local optima,
different functions properties are mixed together, non-
continuous, global optimum is on the bound.

The set of four test problems is sufficient for our purposes
since the experiments are considered just a proof-of-concept
evaluation of usability of the POEMS framework for the real-
parameter optimisation.

V. EXPERIMENTAL SETUP

For each problem, 25 runs have been executed. The error
value (f(x) − f(x∗)), where x∗ is the optimal parameter
vector and x is a solution obtained by the algorithm, was
recorded at termination for each run. Out of the 25 error
values for each experiment, the best (smallest), median, and
the worst (largest) values are presented together with Mean
and StDev values.

The results achieved with the POEMS algorithm are com-
pared to the other algorithms presented at the Special Session
on Real-Parameter Optimization of the IEEE Congress on
Evolutionary Computation 2005. The algorithms denoted as
A1-A9 map to the reffered papers as follows – A1 [3],
A2 [4], A3 [5], A4 [6], A5 [7], A6 [8], A7 [9], A8 [10],
A9 [11].

The following configuration of the EA engaged in POEMS
was used in the experiments.

• Population size: 200 (for both 10D and 30D),
• Number of fitness function evaluations: 1500 (for 10D),

2000 (for 30D),
• MaxGenes: 10 (for 10D), 30 (for 30D),
• Pcrossover = 0.95, Pmutation = 0.1, Preuse = 0.5.

The total number of fitness function evaluations of the
POEMS was set to 100000 (for 10D) and 300000 (for 30D),
respectively.



TABLE I
ERROR VALUES FOR 10D PROBLEMS

Algorithm POEMS A1 A2 A3 A4 A5 A6 A7 A8 A9

Pr
ob

le
m

1 Best 7.02e-9T 4.82e-9T 6.49e-9T 0.0e+0 3.76e-9T 0.0e+0 0.0e+0 1.84e-9 0.0e+0 4.60e-9T
Median 6.60e-8 8.49e-9T 8.98e-9T 0.0e+0 8.31e-9T 0.0e+0 0.0e+0 5.65e-9 0.0e+0 9.28e-9T
Worst 4.62e-7 9.96e-9T 9.99e-9T 0.0e+0 9.89e-9T 0.0e+0 0.0e+0 9.34e-9 0.0e+0 9.93e-9T
Mean 1.09e-7 8.34e-9 8.90e-9 0.0e+0 8.71e-9 0.0e+0 0.0e+0 5.20e-9 0.0e+0 8.83e-9
StDev 1.11e-7 1.41e-9 9.39e-10 0.0e+0 1.22e-9 0.0e+0 0.0e+0 1.94e-9 0.0e+0 1.33e-9

Pr
ob

le
m

9 Best 2.08e-7 6.75e-9T 9.95e-1 0.0e+0 4.76e-9T 2.28e+0 0.0e+0 1.52e-10 0.0e+0 8.98e+0
Median 5.57e-7 9.95e-1 3.98e+0 9.95e-1 8.82e-9T 5.83e+0 0.0e+0 6.14e-10 0.0e+0 1.93e+1
Worst 1.56e-6 3.98e+0 1.19e+1 2.98e+0 2.98e+0 1.21e+1 0.0e+0 9.95e-1 0.0e+0 3.09e+1
Mean 6.32e-7 1.15e+0 4.02e+0 9.55e-1 1.19e-1 5.42e+0 0.0e+0 2.39e-1 0.0e+0 1.92e+1
StDev 3.26e-7 7.96e-1 2.27e+0 9.73e-1 5.97e-1 1.91e+0 0.0e+0 4.34e-1 0.0e+0 6.62e+0

Pr
ob

le
m

13

Best 9.95e-3 3.67e-1 3.49e-1 1.39e-1 3.28e-1 8.73e-1 2.54e-1 4.07e-1 1.20e-1 4.69e-1
Median 2.72e-1 7.91e-1 8.18e-1 9.63e-1 7.15e-1 1.89e+0 3.61e-1 6.82e-1 2.17e-1 1.03e+0
Worst 6.34e-1 1.12e+0 1.32e+0 2.44e+0 1.07e+0 2.47e+0 4.73e-1 1.05e+0 3.12e-1 2.14e+0
Mean 2.81e-1 7.50e-1 8.38e-1 9.77e-1 6.53e-1 1.84e+0 3.69e-1 6.96e-1 2.20e-1 1.14e+0
StDev 1.31e-1 2.10e-1 2.69e-1 4.67e-1 2.06e-1 3.40e-1 5.64e-2 1.50e-1 4.11e-2 4.33e-1

Pr
ob

le
m

23

Best 5.59e+2 5.59e+2 5.59e+2 5.59e+2 5.59e+2 5.59e+2 5.59e+2 5.59e+2 N/A 4.25e+2
Median 9.71e+2 5.59e+2 5.59e+2 5.59e+2 1.10e+3 5.59e+2 7.21e+2 5.59e+2 N/A 8.23e+2
Worst 1.29e+3 1.27e+3 9.71e+2 7.21e+2 1.11e+3 9.71e+2 9.71e+2 5.59e+2 N/A 1.09e+3
Mean 9.69e+2 6.39e+2 5.76e+2 5.72e+2 1.06e+3 6.41e+2 7.30e+2 5.59e+2 N/A 8.35e+2
StDev 2.70e+2 2.06e+2 8.22e+1 4.48e+1 1.50e+2 1.39e+2 1.66e+2 3.24e-11 N/A 1.64e+2

TABLE II
ERROR VALUES FOR 30D PROBLEMS

Algorithm POEMS A1 A2 A3 A4 A5 A6 A7 A8 A9

Pr
ob

le
m

1 Best 1.00e-2 6.29e-9T 8.58e-9T 0.0e+0 5.11e-9T 0.0e+0 0.0e+0 3.98e-9 0.0e+0 8.29e-9T
Median 2.65e-2 9.07e-9T 9.62e-9T 0.0e+0 9.18e-9T 0.0e+0 0.0e+0 5.20e-9 0.0e+0 1.23e-2
Worst 5.28e-2 9.99e-9T 9.93e-9T 0.0e+0 9.96e-9T 5.68e-14 0.0e+0 7.51e-9 0.0e+0 1.18e+1
Mean 2.65e-2 8.88e-9 9.35e-9 0.0e+0 8.95e-9 9.09e-15 0.0e+0 5.42e-9 0.0e+0 7.97e-1
StDev 9.10e-3 9.85e-10 4.63e-10 0.0e+0 9.90e-10 2.13e-14 0.0e+0 9.80e-10 0.0e+0 2.49e+0

Pr
ob

le
m

9 Best 9.86e-2 6.96e+0 1.09e+1 9.95e+0 8.27e-9T 1.57e+2 1.29e+1 4.35e-6 0.0e+0 9.16e+1
Median 1.71e-1 1.52e+1 2.39e+1 1.81e+1 1.16e-8 1.80e+2 1.79e+1 9.95e-1 0.0e+0 1.34e+2
Worst 3.88e-1 2.68e+1 3.68e+1 3.28e+1 9.95e-1 2.03e+2 2.49e+1 4.97e+0 5.68e-14 1.83e+2
Mean 1.82e-1 1.51e+1 2.39e+1 1.85e+1 2.79e-1 1.79e+2 1.76e+1 9.38e-1 2.27e-15 1.31e+2
StDev 5.66e-2 5.04e+0 6.25e+0 5.20e+0 4.56e-1 1.02e+1 3.02e+0 1.18e+0 1.14e-14 2.39e+1

Pr
ob

le
m

13

Best 1.99e+0 1.87e+0 1.88e+0 1.83e+0 2.27e+0 1.32e+1 1.38e+0 1.10e+0 9.54e-1 5.20e+0
Median 3.02e+0 3.18e+0 3.40e+0 3.18e+0 1.33e+1 1.55e+1 2.36e+0 2.61e+0 1.18e+0 8.89e+0
Worst 3.66e+0 1.39e+1 6.42e+0 4.97e+0 1.49e+1 1.67e+1 3.33e+0 3.20e+0 1.46e+0 1.68e+1
Mean 2.91e+0 5.15e+0 3.59e+0 3.23e+0 1.19e+1 1.53e+1 2.36e+0 2.49e+0 1.21e+0 9.02e+0
StDev 0.43e+0 4.02e+0 1.09e+0 8.23e-1 3.80e+0 9.52e-1 5.28e-1 5.13e-1 1.34e-1 2.28e+0

Pr
ob

le
m

23

Best 5.34e+2 5.34e+2 5.34e+2 5.34e+2 8.65e+2 5.34e+2 N/A 5.34e+2 N/A 6.07e+2
Median 5.34e+2 5.70e+2 5.34e+2 5.34e+2 8.66e+2 5.34e+2 N/A 5.34e+2 N/A 8.58e+2
Worst 1.16e+3 9.17e+2 5.34e+2 5.34e+2 8.68e+2 5.34e+2 N/A 5.34e+2 N/A 1.22e+3
Mean 6.63e+2 5.87e+2 5.34e+2 5.34e+2 8.66e+2 5.34e+2 N/A 5.34e+2 N/A 9.22e+2
StDev 2.19e+2 7.70e+1 3.49e-4 4.26e-4 8.07e-1 2.71e-4 N/A 2.22e-4 N/A 1.81e+2
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Fig. 3. Evolution of the improvement step size

VI. MAIN RESULTS

Tables I and II compare the results achieved with POEMS
to the other algorithms (T in some numbers indicates the
optimum was found before reaching the maximum number
of evaluations). POEMS exhibits about-average performance
among the compared algorithms on both the 10D and 30D
problems. The only extremes can be observed for 10D and
30D versions of problem 1. It shows that POEMS is not able
to converge quickly to the optimum of an easy unimodal
problem. On the other hand, it is competitive to most of
the algorithms on the multimodal problems. This may be
attributed to the claimed property of POEMS that it is
able to evolve improvement steps that do not restrict to the
close neighborhood of the current prototype. In principal,
the evolved action sequence may move the current prototype
far form its current position, so it can escape from the local
extreme.

Tables III and IV show fragments of an execution of
POEMS on 10D problem 9 and 10D problem 13. For each
iteration the following parameters are presented

• Prototype – the current prototype,

• action type – the type of the action xi,
• parameter – the parameter of the respective action,
• Prototype′ – the new prototype obtained by application

of the evolved action sequence to the Prototype.

In fact, the size of the improvement steps tends to decrease
during the course of the run. The reason is that in early
iterations the prototype is rather of bad fitness so it is easier to
evolve some “innovative” action sequence that dramatically
modifies the prototype. On the other hand, in latter stages
of the run the prototype is already well-fit, so the EA
tends to produce action sequences that do not modify the
prototype much. In other words, POEMS starts with a global
exploration mode at the beginning of the run and converts to
the local refinement mode at the latter stages of the run.

The progressive conversion from the global to the local
exploration is illustrated in Figure 3. The plots show the
evolution of the improvement step size of the 25 runs for
each problem. The improvement step size is calculated as
the Euclidian distance between the original prototype and
the new prototype obtained by application of the evolved
action sequence to the original one. Isolated points and



TABLE III
A FRAGMENT OF AN EXECUTION OF POEMS ON 10D PROBLEM 9

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1.
ite

r. Prototype (-82.7584) -1.0300 -1.0400 -2.8300 4.6100 -1.5400 2.5300 -4.4500 -3.0300 -0.1500 1.8500
action type nop 2 1 3 4 4 4 2 1 3
parameter -0.1755 0.4269 -0.0745 0.6531 0.0867 0.9847 0.7313 -0.3441 0.2158 0.9403

Prototype′ (-276.1552) -1.0300 -1.4669 -2.9045 -4.2116 -1.5787 -2.1667 3.9043 -2.6859 0.0658 -4.2312

2.
ite

r. Prototype (-276.1552) -1.0300 -1.4669 -2.9045 -4.2116 -1.5787 -2.1667 3.9043 -2.6859 0.0658 -4.2312
action type 3 1 2 3 3 4 4 4 nop 3
parameter 0.7711 -0.1154 0.0399 0.6001 0.1902 0.7943 0.7665 0.0279 0.1835 0.6121

Prototype′ (-304.1126) 0.9152 -1.5822 -2.9444 -3.2760 -1.4723 -4.3107 1.9960 -2.6969 0.0658 -3.2452

3.
ite

r. Prototype (-304.1126) 0.9152 -1.5822 -2.9444 -3.2760 -1.4723 -4.3107 1.9960 -2.6969 0.0658 -3.2452
action type 4 3 1 3 3 1 nop 1 3 4
parameter 0.0307 -0.0058 -0.0113 0.0669 0.9409 0.0223 0.7863 0.0249 0.1372 -0.0871

Prototype′ (-320.1851) 0.9030 -1.5822 -2.9557 -3.2474 2.4555 -4.2884 1.9960 -2.6721 0.1340 -3.2452

4.
ite

r. Prototype (-320.1851) 0.9030 -1.5822 -2.9557 -3.2474 2.4555 -4.2884 1.9960 -2.6721 0.1340 -3.2452
action type nop 1 3 nop 3 1 nop 3 4 1
parameter 0.0318 0.0189 0.6101 0.0575 0.0897 0.0167 0.8699 0.0222 0.1112 0.0003

Prototype′ (-323.8139) 0.9030 -1.5633 -1.9784 -3.2474 2.4958 -4.2716 1.9960 -2.6634 0.0818 -3.2449

16
.i

te
r. Prototype (-329.0046) 0.9057 -1.5644 -0.9788 -2.2535 2.4990 -3.2853 0.9760 -3.6660 0.1000 -3.2466

action type 1 3 3 nop nop nop 4 nop 4 nop
parameter 0.9954 0.0002 0.0013 -0.0265 0.3869 0.0313 -0.1011 0.0129 0.0004 0.0015

Prototype (-329.9995) 1.9011 -1.5643 -0.9783 -2.2535 2.4990 -3.2853 0.9760 -3.6660 0.0999 -3.2466
Optimum (-330.0000) 1.9005 -1.5644 -0.9788 -2.2536 2.4990 -3.2853 0.9759 -3.6661 0.0985 -3.2465

TABLE IV
A FRAGMENT OF AN EXECUTION OF POEMS ON 10D PROBLEM 13

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

1.
ite

r. Prototype (2.1894e+6) -1.0300 -1.0400 -2.8300 4.6100 -1.5400 2.5300 -4.4500 -3.0300 -0.1500 1.8500
action type nop 2 3 4 nop 4 3 3 nop 4
parameter 0.1758 0.1686 0.5133 0.9543 -0.1004 0.9554 0.5607 0.9503 -0.1177 0.7605

Prototype′ (1169.7497) -1.0300 -1.2086 -2.1964 0.4602 -1.5400 -1.6375 -3.6646 1.0521 -0.1500 -0.0110

2.
ite

r. Prototype (1169.7497) -1.0300 -1.2086 -2.1964 0.4602 -1.5400 -1.6375 -3.6646 1.0521 -0.1500 -0.0110
action type 1 2 3 1 3 1 3 2 2 4
parameter 0.4064 0.4044 0.6153 -0.9229 0.4527 0.9340 0.7069 0.6620 0.3862 0.5703

Prototype′ (-122.7340) -0.6236 -1.6129 -1.1964 -0.4627 -1.0629 -0.7035 -2.1810 0.3901 -0.5362 -0.8308

3.
ite

r. Prototype (-122.7340) -0.6236 -1.6129 -1.1964 -0.4627 -1.0629 -0.7035 -2.1810 0.3901 -0.5362 -0.8308
action type 2 2 1 1 1 1 3 4 2 2
parameter 0.0313 0.4599 0.2641 0.1716 0.5156 0.5527 0.6991 0.5373 0.3387 0.3481

Prototype′ (-128.5585) -0.6549 -2.0728 -0.9323 -0.2911 -0.5473 -0.1508 -0.7455 -0.3168 -0.8749 -1.1789

4.
ite

r. Prototype (-128.5585) -0.6549 -2.0728 -0.9323 -0.2911 -0.5473 -0.1508 -0.7455 -0.3168 -0.8749 -1.1789
action type 2 1 2 1 1 4 1 4 4 2
parameter -0.1350 0.5125 -0.8127 0.1527 0.2341 0.3964 -0.4143 0.5000 0.3634 0.2476

Prototype′ (-129.1438) -0.5199 -1.5604 -0.1196 -0.1384 -0.3132 -0.5129 -1.1598 -0.9127 -1.1807 -1.4265

52
.i

te
r. Prototype (-129.822420) -0.51151 -1.5526 -0.1083 -0.3832 -0.4325 -0.6219 -0.9807 -0.9237 -1.1727 -1.6543
action type 3 nop nop nop nop nop nop nop nop nop
parameter 0.0001 0.0003 0.0353 0.0002 -0.3478 0.0012 0.3546 0.4182 0.7918 0.0027

Prototype′ (-129.822421) -0.51148 -1.5526 -0.1083 -0.3832 -0.4325 -0.6219 -0.9807 -0.9237 -1.1727 -1.6543

Optimum (-130.0000) -0.7529 -1.8497 -0.4371 -0.7327 -0.3126 -0.8605 -1.2764 -0.5828 -1.5007 -1.5204



discontinuities are there due to the fact that not in every
iteration the action sequence that would improve the current
prototype was found by the EA. A common tendency of the
improvement step size to decrease (non monotonously) as
the time progresses can be observed for all the problems.
However, the step size can jump high even in latter stages
as can be observed on multimodal problems in Figures 3(b)-
3(d). The peaks indicate the iterations, in which the prototype
probably moved from the basin of one local extreme to the
other one. Very sparse plot in Figure 3(d) reveal the fact the
problem 23 is hard for the POEMS since the iterations where
any improving action sequence was evolved were rather rare.

The tables show the first four iterations of the runs. In
case of the problem 9 the 16th iteration is shown, in which
the solution of the required accuracy was found. In case of
the problem 13 the 52nd iteration is the last iteration of the
run, in which the improving action sequence was found. A
common characteristic observed in both run fragments is that
the number of active actions in the latter action sequences
decreases as the time progresses. Note, that the proportion of
active and nop actions in the starting population of each EAs
is half and half. Thus, the EA prefers more active actions in
early iterations whilst it suppresses the active actions in the
latter stages of the run. This is in agreement with what we
have observed on the evolution of the improvement step size
that the bigger changes of the prototype are frequent in the
beginning of the run whilst rather small changes are applied
in the final stages of the run.

VII. CONCLUSIONS

We have proposed the implementation of the algorithm
called Iterative Prototype Optimisation with Evolved Im-
provement Steps (POEMS) for the real-parameter optimi-
sation. POEMS iteratively improves the prototype solution
so that in each iteration an evolutionary algorithm is used
to search for a sequence of actions, which would improve
the current prototype. The POEMS algorithm was tested on
problems collected for the Special Session on Real-Parameter
Optimization of the IEEE Congress on Evolutionary Compu-
tation 2005 and the results were compared to the results of
the algorithms presented there. The achieved results show a
potential of the presented optimisation framework for solving
hard real-parameter optimisation problems.

An interesting aspect of the POEMS approach is that it
functions as a global explorer in early stages of the run
whilst it converts to fine tuning of the prototype solution
later on. This is due to the fact, that as the prototype gets
better and better, it becomes very hard for EA to evolve an
action sequence that would both improve and considerably
change the prototype. Instead, trivial action sequences that
do not modify the prototype much are produced. Obviously,
the algorithm would perform much better if it was able to
keep the exploration capabilities during the whole run.

One of the possible extensions of the algorithm might
utilize a backtracking strategy to restart the algorithm from
a new prototype when it begins to stagnate. An archive
of candidate prototypes (i.e. solutions of good fitness that

considerably differ from the current prototype) would be
maintained along the run. If the algorithm was not able
to generate any improving action sequence for the current
prototype within a specified number of iterations then the
new prototype, most distinct from the current one, would
be picked from the archive. Obviously, this could work
only if the EA is able to produce a population of high-
quality and distinct solutions otherwise the algorithm would
restart with a new prototype similar to the current one.
In order to support the diversity of the evolved population
some kind of niching strategy can be used. Another way to
improve the algorithm would be to design the set of actions
and the genetic operators that would extend the exploration
capabilities of the EA. Investigation of the possibilities to
make the POEMS algorithm resistant against stagnation will
be the content of the future research.
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