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Abstract. This paper presents a method that uses gene ontologies, to-
gether with the paradigm of relational subgroup discovery, to help find

description of groups of genes differentialy expressed in specific can-
cers. The descriptions are represented by means of relational features,
extracted from publicly available gene ontology information, and are
straightforwardly interpretable by medical/biology researchers. We ap-
plied the proposed method to two known data sets: (i) acute lymphoblas-
tic leukemia (ALL) vs. acute myeloid leukemia (AML) and (ii) classifica-
tion of fourteen types of cancer. Significant number of discovered groups
of genes had right description, confirmed by medical expert, which high-
lighted the underlying biological process that is responsible for distin-
guishing one class from the other classes. We view our methodology not
just as a prototypical example of applying more sophisticated machine
learning algorithms to gene expression analysis, but also as an motiva-
tion for developing increasingly more sophisticated functional annota-
tions and ontologies, that can be processed by such learning algorithms.

Keywords. Relational learning, Learning from structured data, Learning
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1. Introduction

Microarrays are at the center of a revolution in biotechnology, allowing researchers
to simultaneously monitor the expression of tens of thousands of genes. Indepen-
dent of the platform and the analysis methods used, the result of a microarray
experiment is, in most cases, a list of genes found to be differentially expressed.
The common challenge faced by the researchers is to translate such gene lists
into a better understanding of the underlying biological phenomena. Manual or
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semi-automated analysis of large-scale biological data sets typically requires bi-
ological experts with vast knowledge of many genes, to decipher the known bi-
ology accounting for genes with correlated experimental patterns. The goal is to
identify the relevant ”functions”, or the global cellular activities, at work in the
experiment. For example, experts routinely scan gene expression clusters to see if
any of the clusters are explained by a known biological function. Efficient inter-
pretation of these data is challenging because the number and diversity of genes
exceed the ability of any single researcher to track the complex relationships hid-
den in the data sets. However, much of the information relevant to the data is
contained in the publicly available gene ontologies. Including the ontologies as a
direct knowledge source for any algorithmic strategy to approach such data may
greatly facilitate the analysis.

Here we present a method to identify groups of genes with a similar signature
in gene expression data that also have functional similarity in the background
knowledge formally represented with gene annotation terms from the gene ontol-
ogy. Precisely, we present an algorithm that for given multi-dimensional numer-
ical data set, representing the expression of the genes under different conditions
(that define the classes of examples) and ontology used for producing background
knowledge about these genes, is able to identify groups of genes, described by
conjunctions of first order features, whose expression is highly correlated with one
of the classes. For example, one of the applications of this algorithm is to describe
groups of genes that were selected as discriminative factor for some classification
problem. Medical experts are usually not satisfied with separate description of
every discriminative gene, but want to know the processes that are controlled by
these genes. With our algorithm we are able to find these processes and cellular
component where they are ”executed” and which genes from preselected list of
discriminative genes are included in these processes.

For doing this we use the methodology of Relational Subgroup Discovery
(RSD) [10]. With RSD we were able to induce set of discrimination rules between
the different types (or subtypes) of cancers in terms of functional knowledge ex-
tracted from the gene ontology and information about gene interactions. In other
words, we try to explain the differences between types of cancer in terms of the
functions of the genes that are differentially expressed in these types.

1.1. Measuring gene expression

The process of transcribing a gene’s DNA sequence into the RNA that serves as
template for protein production is known as gene expression. A gene’s expres-
sion level indicates the approximate number of copies of that gene’s RNA pro-
duced in a cell. This is thought to correlate with the amount of corresponding
protein made. While the traditional technique for measuring gene expression is
labor-intensive and produces approximate quantitative measure of expression, the
new technologies have greatly improved the resolution and the scalability of gene
expression monitoring. ”Expression chips”, manufactured using technologies de-
rived from computer-chip production, can now measure the expression of thou-
sands of genes simultaneously, under different conditions. These conditions may
be different time points during a biological process, such as the yeast cell cycle
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or drosophila development; direct genetic manipulations on a population of cells
such as gene deletions; or they can be different tissue samples with some common
phenotype (such as different cancer specimen). A typical gene expression data set
is a matrix, with each column representing a gene and each row representing a
condition, e.g. a cancer type. The value at each position in the matrix represents
expression of a gene under some condition.

1.2. Analysis of gene expression data

Large scale gene expression data sets include thousands of genes measured at
dozens of conditions. The number and diversity of genes make manual analysis
difficult and automatic analysis methods necessary. Initial efforts to analyze these
data sets began with the application of unsupervised machine learning, or clus-
tering, to group genes according to similarity in gene expression [4]. Clustering
provides a tool to reduce the size of the dataset to a simpler one that can more
easily be manually examined. In typical studies, researchers examine the clusters
to find those containing genes with common biological properties, such as the
presence of common upstream promoter regions or involvement in the same bi-
ological processes. After commonalities have been identified (often manually) it
becomes possible to understand the global aspects of the biological phenomena
studied. As the community developed an interest in this area, additional novel
clustering methods were introduced and evaluated for gene expression data [1,6].

The analysis of microarray gene expression data for various tissue samples
has enabled researchers to determine gene expression profiles characteristic of the
disease subtypes. The groups of genes involved in these genetic profiles are rather
large and a deeper understanding of the functional distinction between the dis-
ease subtypes might help not only to select highly accurate ’genetic signatures’
of the various subtypes, but hopefully also to select potential targets for drug
design. Most current approaches to microarray data analysis use (supervised or
unsupervised) clustering algorithms to deal with the numerical expression data.
While a clustering method reduces the dimensionality of the data to a size that
a scientist can tackle, it does not identify the critical background biological in-
formation that helps the researcher understand the significance of each cluster.
However, that biological knowledge in terms of functional annotation of the genes
is already available in public databases. Direct inclusion of this knowledge source
can greatly improve the analysis, support (in term of user confidence) and explain
obtained numerical results.

1.3. Gene Ontologies

One of the most important tools for the representation and processing of informa-
tion about gene products and functions is the Gene Ontology (GO). GO is being
developed in parallel with work on a variety of other biological databases within
the umbrella project OBO (Open Biological Ontologies). It provides a controlled
vocabulary for the description of cellular components, molecular functions, and
biological processes. As of January 2006 (www.geneontology.org), GO contains
1681 component, 7386 function and 10392 process terms. Terms are organized
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in parent-child hierarchies, indicating either that one term is more specific than
another (is a) or that the entity denoted by one term is part of the entity denoted
by another (part of). Typically, such associations (or ’annotations’) are first of all
established electronically and later validated by a process of manual verification
which requires the annotator to have expertise both in the biology of the genes
and gene products and in the structure and content of GO. The Gene Ontology,
in spite of its name, is not an ontology in the sense accepted by computer sci-
entists, in that it does not deal with axioms and definitions associated to terms.
It is rather a taxonomy, or, as the GO Consortium puts it, a ’controlled vocabu-
lary’ providing a practically useful framework for keeping track of the biological
annotations applied to gene products.

Recently, an automatic ontological analysis approach using GO has been pro-
posed to help solving the task of interpreting the results of gene expression data
analysis [8]. From 2003 to 2005, 13 other tools have been proposed for this type
of analysis and more tools continue to appear every day. Although these tools
use the same general approach, identifying statistically significant GO terms that
cover a selected list of genes, they differ greatly in many respects that influence
in an essential way the results of the analysis. A general idea and comparison of
those tools is presented in [9]. Another approach to descriptive analysis of gene
expression data is [14]. They present a method that uses text analysis to help find
meaningful gene expression patterns that correlate with the underlying biology
described in scientific literature.

2. Descriptive analysis of gene expression data

The fundamental idea of this paper is as follows. First, we construct a set of
discriminative genes, GC(c), for every class c ∈ C. These sets can be constructed
in several ways. For example: GC(c) can be the set of the k(k > 0) most correlated
genes with class c, computed by, for example, Pearson’s correlation. GC(c) can
also be the set of the best k single gene predictors, using the recall values from
microarray experiment (absent/present/marginal) as the expression value of the
gene. These predictors can look like this: If genei = present Then class = c. In
our experiments we used a measure of correlation, P (g, c), that emphasizes the
”signal-to-noise” ratio in using the gene g as predictor for class c. Definition and
analysis of P (g, c) is presented in later section.

The second step aims at improving the interpretability of GC . Informally,
we do this by identifying groups of genes in GC(c) (for each c ∈ C) which can
be summarized in a compact way. Put differently, for each ci ∈ C we search
for compact descriptions of group of genes which correlate strongly with ci and
weakly with all cj ∈ C; j 6= i.

Searching of these groups of genes, together with their description, is defined
as separate supervised machine learning task. We refer to it as the secondary, or
meta-mining task, as it aims to mine from the outputs of the primary learning
process where genes of predictive strength are searched. This secondary task is, in
a way, orthogonal to the primary discovery process in that the original attributes
(genes) now become training examples, each of which has a class label c ∈ C.
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To apply a discovery algorithm, information about relevant features of the new
examples is required. No such features (i.e., ’attributes’ of the original attributes -
genes) are usually present in the gene expression microarray data sets themselves.
However, this information can be extracted from a public database of gene anno-
tations (in this paper, we use the Entrez Gene database maintained at the US Na-
tional Center for Biotechnology Information, ftp://ftp.ncbi.nlm.nih.gov/gene/).
For each gene we extracted its molecular functions, biological processes and cel-
lular components where its protein products are located. Next, using GO, in the
gene’s background knowledge we also included their generalized annotations. For
example, if one gene is functionally annotated as: zinc ion binding, then it will also
be annotated as: transition metal ion binding, metal ion binding, cation binding,
ion binding and binding. In the gene’s background knowledge we also included
information about the interactions of the genes, in the form of pairs of genes for
which there is a evidence that they can interact.

In traditional machine learning, examples are expected to be described by a
tuple of values corresponding to some predefined, fixed set of attributes. Note that
a gene annotation does not straightforwardly correspond to a fixed attribute set,
as it has an inherently relational character. For example, a gene may be related
to a variable number of cell processes, play role in variable numbers of regulatory
pathways etc. This imposes 1-to-many relations hard to elegantly capture within
an attribute set of fixed size. Furthermore, a useful piece of information about a
gene g may for instance be expressed by the feature

g interacts with another gene whose functions
include protein binding.

Going even further, the feature may not include only a single interaction relation
but rather consider entire chains of interactions. The difficulties of representing
such features through attribute-value tuples are evident.
In summary, we are approaching the task of subgroup discovery from a relational
data domain. For this purpose we employ the methodology of relational subgroup
discovery proposed in [10,16] and implemented in the RSD algorithm 1. Using
RSD, we were able to discover knowledge such as

The expression of genes coding for proteins located in the integral-to-membrane
cell component, whose functions include receptor activity, has a high correlation
with the BCR class of acute lymphoblastic leukemia (ALL) and a low correlation

with the other classes of ALL.

The RSD algorithm proceeds in two steps. First, it constructs a set of relational
features in the form of first order logic atom conjunctions. The entire set of
features is then viewed as an attribute set, where an attribute has the value true
for a gene (example) if the gene has the feature corresponding to the attribute.
As a result, by means of relational feature construction we achieve the conversion
of relational data into attribute-value descriptions. In the second step, groups
of genes are searched, such that each group is represented as a conjunction of

1http://labe.felk.cvut.cz/z̃elezny/rsd/rsd.pdf
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selected features. The subgroup discovery algorithm employed in this second step
is an adaptation of the popular propositional rule learning algorithm CN2 [3].

2.1. Relational feature construction

The feature construction component of RSD aims at generating a set of relational
features in the form of relational logic atom conjunctions. For example, the feature
exemplified informally in the previous section has the relational logic form

interaction(g,G), function(G,protein binding)

Here, upper cases denote existentially quantified variables and g is the key term
that binds a feature to a specific example (here a gene). The user specifies a
grammar declaration which constraints the resulting set of constructed features.
RSD accepts feature language declarations similar to those used in the inductive
logic programming system Progol [12].

The construction of features is implemented as depth first, general-to-specific
search where refinement corresponds to adding a literal to the currently examined
expression. During the search, each search node found to be a correct feature is
listed in the output.

A remark is needed concerning the way constants (such as protein binding)
are employed in features. Rather than making the user responsible for declaring
all possible constants that may occur in features, RSD extracts them automati-
cally from the training data. The user marks the types of variables which should
be replaced by constants. For each constant-free feature, a number of different
features are then generated, each corresponding to a possible replacement of the
combination of the indicated variables with constants. RSD then only proceeds
with those combinations of constants which make the feature true for at least
a pre-specified number of examples. Finally, to evaluate the truth value of each
feature for each example for generating the attribute-value representation of the
relational data, the first-order logic resolution procedure is used, provided by a
Prolog language engine.

2.2. Subgroup Discovery

A subgroup discovery task is defined as follows: Given a population of individuals
and a property of individuals we are interested in, find population subgroups that
are statistically ’most interesting’, e.g., are as large as possible and have the most
unusual statistical (distributional) characteristics with respect to the property of
interest. [15].

Notice an important aspect of the above definition: there is a predefined prop-
erty of interest, meaning that a subgroup discovery task aims at characterizing
population subgroups of a given target class. This property indicates that stan-
dard classification rule learning algorithms could be used for solving the task.
However, while the goal of classification rule learning is to generate models (sets of
rules), inducing class descriptions in terms of properties occurring in the descrip-
tions of training examples, in contrast, subgroup discovery aims at discovering
individual patterns of interest (individual rules describing the target class).
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Figure 1. Description of discovered subgroups can cover: a) Individuals from only one class (1),
b) Some not classified individuals (2), c) Individuals from other classes (3) and d) Individuals
already covered by other subgroups (3,4)

Rule learning typically involves two main procedures: the search procedure
that performs search to find a single rule, and the control procedure (the covering
algorithm) that repeatedly executes the search in order to induce a set of rules.
The two procedures are described in [10]

3. Experiments

This section presents a statistical validation of the proposed methodology. We do
not assess here the accuracy of disease classification from gene-expression values
itself, as this is a property of the particular method used for the primary mining
task, which is not our main concern. We rather aim at evaluating the properties of
the secondary, descriptive learning task. Namely, we wish to determine if the high
descriptive capacity pertaining to the incorporation of the expressive relational
logic language incurs a risk of descriptive overfitting, i.e., a risk of discovering
fluke subgroups. We thus aim at measuring the discrepancy of the quality of
discovered subgroups on the training data set on one hand and an independent
test set on the other hand. We will do this through the standard 10-fold stratified
cross-validation regime.

The specific qualities measured for each set of subgroups produced for a given
class are average precision (PRE) and recall (REC) values among all subgroups
in the subgroup set. See eg. [10] for details of their calculation.

3.1. Materials and methods

We apply the proposed methodology on two problems of predictive classification
from gene expression data.

The first was introduced in [5] and aims at distinguishing between samples of
acute lymphoblastic leukemia and acute myeloid leukemia from gene expression
profiles obtained by the Affymetrix HU6800 microarray chip, containing probes
for 6817 genes. The data contains 73 class-labeled samples of expression vectors.
The second was defined in [13]. Here one tries to distinguish among 14 classes
of cancers from gene expression profiles obtained by the Affymetrix Hu6800 and
Hu35KsubA microarray chip, containing probes for 16,063 genes. The data set
contains 198 class-labeled samples.
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To access the annotation data for every gene considered, it was necessary to
obtain unique gene identifiers from the microarray probe identifiers available in
the original data. We achieved this by querying Affymetrix site2 for translating
probe ID’s into unique gene ID’s. Knowing the gene identifiers, information about
gene annotations and gene interactions can be extracted from Entrez gene infor-
mation database3. We developed a program script in the Python language, which
extracts gene annotations and gene interactions from this database, and produces
their structured, relational logic representations which can be used as input to
RSD. This script is available on request to the first author.

In both data sets, for each class c we first extracted a set of discriminative
genes GC(c). In our experiments we used a measure of correlation, P (g, c), that
emphasizes the ”signal-to-noise” ratio in using the gene g as predictor for class c.
P (g, c) is computed by the following procedure:

Let [µ1(g), σ1(g)] and [µ2(g), σ2(g)] denote the means and standard deviations
of log of the expression levels of gene g for the samples in class c and samples in
all other classes, respectively.

Let P (g, c) = µ1(g)−µ1(g)
σ1(g)−σ2(g) , which reflects the difference between the classes

relative to the standard deviation within the classes. Large values of |P (g, c)|
indicate a strong correlation between the gene expression and the class distinc-
tion, while the sign of P (g, c) being positive or negative correspond to g being
more highly expressed in class c or in other classes. Unlike a standard Pearson
correlation coefficient, P (g, c) is not confined to the range [−1, +1]. The set of
informative genes for class c, GC(c) of size n, consist of the n genes having the
highest |P (g, c)| value. If we have only two classes, then GC(c1) consist of genes
having the highes P (g, c1) values, and GC(c2) consist of genes having the highest
P (g, c2).

For the first problem we selected 50 discriminative genes for ALL and 50 for
AML class. In the second problem we selected 35 discriminative genes for each
class. The average value of correlation coefficient, |P (g, c)|, of selected discrim-
inatory genes for each class/problem are listed in Table 1. The usage of the
gene correlation coefficient is twofold. In the first part of the analysis, for a given
class it is used for selection of discriminative genes, and in the second part as
initial weight of the example-genes for the meta-mining procedure where we try
to describe these discriminative genes. In the second mining task RSD will prefer
to group genes with large weights, so these genes will have enough weight to be
grouped in several groups with different descriptions.

After the selection of sets of discriminatory genes, GC(c) for each c ∈ C, these
sets were merged and every gene coming from GC(c) was class labeled as c. Now
RSD was run on these data, with aim to find as big as possible and as clear (in
terms of class labels) as possible subgroups of this population of example-genes,
described by relational features constructed from GO and gene interaction data.

3.2. Results

The discovered regularities have a very interesting biological interpretation.

2www.affymetrix.com/analysis/netaffx/
3ftp://ftp.ncbi.nlm.nih.gov/gene/
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Table 1. Average(AVG), maximal(MAX) and minimal(MIN) value of {|P (g, c)|g ∈ GC(c)} for
each task and class c.

TASK CLASS AVG MAX MIN

ALL-AML ALL 0.75 1.25 0.61

AML 0.76 1.44 0.59

MULTI BREAST 1.06 1.30 0.98

CLASS PROSTATE 0.91 1.23 0.80

LUNG 0.70 0.99 0.60

COLORECTAL 0.98 1.87 0.73

LYMPHOMA 1.14 2.52 0.87

BLADDER 0.88 1.15 0.81

MELANOMA 1.00 2.60 2.60

UTERUS 0.82 1.32 0.71

LEUKEMIA 1.35 1.75 1.18

RENAL 0.81 1.20 0.70

PANCREAS 0.75 1.08 0.67

OVARY 0.70 1.04 0.60

MESOTHELIOMA 0.90 1.91 0.74

CNS 1.38 2.17 1.21

In breast cancer, RSD has identified a group of genes (described as pro-
cess(G,’regulation of transcription’), function(G,’zinc ion binding’)) containing
five genes (Entrez Gene id’s: 4297, 51592, 91612, 92379, 115426) whose under ex-
pression is a good predictor for that class. These genes are simultaneously involved
in regulation of transcription and in zinc ion binding. Zinc is a cofactor in protein-
DNA binding, via a ”zinc finger” domain (id 92379). This property is shared by
many transcription factors, which are major regulators of normal and abnormal
(e.g., malignant) cell proliferation. Second, zinc is an essential growth factor and
a zinc transporter associated with metastatic potential of estrogen positive breast
cancer, termed LIV-1, has been described [7]. Less than optimal expression of
the factors involved in zinc metabolism can therefore represent either a cause
or effect (biomarker) of dysregulated cellular proliferation in breast cancer. A
separate group of genes involved in ubiquitin cycle (process(G,’ubiquitin cycle’))
was identified in breast cancer, (Entrez id’s: 3093, 10910, 23014, 23032, 25831,
51592, 115426). The role of ubiquitin in a cell is to recycle proteins. This is of a
paramount importance to the overall cellular homeostasis, since inappropriately
active proteins can cause cancer. Subnormal expression of ubiquitin components
(id’s 3093 and 23032) resulting in subnormal inactivation of proteins active in cell
cycle could thus represent a functional equivalent of ectopic oncogene expression
[11]. This is the example where one gene, id: 115426, was included in two groups
with different descriptions.

In CNS (central nervous system) cancer, we discovered two important groups
concerning neurodevelopment (description: process(G,’nervous system develop-
ment’), Entrez Gene id’s: 333, 1400, 2173, 2596, 2824, 3785, 4440, 6664, 7545,
10439, 50861), and immune surveillance (Entrez Gene id’s: 199, 1675, 3001, 3108,
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Table 2. Precision-recall figures and average size of found subgroups, for the ALL/AML and
multi-class classification task obtained through 10-fold cross-validation.

TASK DATA PRE(st.dev.) REC(st.dev.) AVG. SIZE

ALL-AML Train 0.96(0.01) 0.18(0.02) 12.07

Test 0.71(0.12) 0.12(0.04)

MULTI-CLASS Train 0.51(0.03) 0.15(0.01) 8.35

Test 0.42(0.10) 0.10(0.02)

3507, 3543, 3561, 3588, 3683, 4046, 5698, 5699, 5721, 6352, 9111, 28299, 50848,
59307). The genes in the first/second group are over/under-expressed (respec-
tively) in CNS. As for the former, reactivation of genes relevant to early devel-
opment (i. e., ineffective recapitulation of embryonal or fetal neural growth at
a wrong time) is a hallmark of the most rapidly growing tumors (id’s 3785 and
10439 specific to neuroblastoma). The latter illustrates the common clinical ob-
servation that immune deficiency (subnormal expression of genes active in im-
mune response shown in this work) creates a permissive environment for cancer
persistence. Thus, both major themes of malignant growth are represented in this
example: active unregulated growth and passive inability to clear the abnormal
cells.

In ALL, RSD has identified a group of 23 genes, described as: component(G,
’nucleus’) AND interaction(G,B),process(B,’regulation of transcription, DNA-
dependent’). The products of these genes, proteins, are located in the nucleus of
the cell, and they interact with genes that are included in the process of regula-
tion of transcription. In AML, RSD has identified several groups of overexpressed
genes, located in the membrane, that interact with genes that have ’metal ion
transport’ as one of their function.

In addition, we subjected the RSD algorithm to a 10-fold stratified cross-
validation on both classification tasks. Table 2 show the PRE and REC values
(with standard deviation figures) results for the two respective classification tasks.
Overall, the results show only a small drop from the training to the testing set
in terms of both PRE and REC, suggesting that the number of discriminant
genes selected (Table 1) was sufficient to prevent overfitting. In terms of total
coverage, RSD covered more then 2

3 of the preselected discriminative genes (in
both problems), while 1

3 of the preselected gene were not included in any group.
One interpretation of that is that they are not functionally connected with the
other genes, but were selected by chance. This information can be used in the
first phase of the classification problem, feature selection, by choosing genes that
were covered by some subgroup. That will be the next step in our future work,
using the proposed methodology as feature (gene) selection mechanism.

4. Discussion

In this paper we presented a method that uses gene ontologies, together with
the paradigm of relational subgroup discovery, to help find patterns of expression
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for genes with a common biological function that correlate with the underlying

biology responsible for class differentiation. Our methodology proposes to first
select set important discriminative genes for all classes and then finding compact,
relational descriptions of subgroups among these genes.

It is noteworthy that the ’post-processing’ step is also a machine learning task,
in which the curse of dimensionality (the number of attributes - gene expressions
measured) usually ascribed to the type of classification problem considered, actu-
ally turns into an advantage. The high number of attributes (important genes),
incurring the risk of overfitting, turns into a high number of examples, which on

the contrary works against overfitting in the subsequent subgroup discovery task.
Furthermore, the dimensionality of the secondary attributes (relational features
of genes extracted from gene annotations) can be conveniently controlled via suit-
able constraints of the language grammar used for the automatic construction of
the gene features.

Furthermore, since genes frequently have multiple functions that they may
be involved in, they may under some of the conditions exhibit the behavior of

genes with one function and in other conditions exhibit the behavior of genes with
a different function. Here subgroup discovery is effective at selecting a specific
function. The same gene can be selected by multiple subgroups (gene id: 115426
in breast cancer), each emphasizing the different biological process critical to the
explanation of the underlying biology responsible for observed experimental re-
sults. Unlike other tools for analyzing gene expression data that use gene ontolo-
gies, which report statistically significant single GO terms and don’t use gene
interaction data, we are able to find set of GO terms (the first reported group of

genes, for breast cancer, is described with two GO terms), that cover the same set
of genes, and we use available gene interaction data to describe features of genes
that can not be represented with other approaches (the third reported group, for
ALL).

However, this approach of translating a list of differentially expressed genes
into subgroups of functional categories using annotation databases suffers from
a few important limitations. The existing annotations databases are incomplete,

only a subset of known genes is functionally annotated and most annotation
databases are built by curators who manually review the existing literature. Al-
though unlikely, it is possible that certain known facts might get temporarily over-
looked. For instance, [9] found references in literature published in the early 90s,
for 65 functional annotations that are yet not included in the current functional
annotation databases. In the GO, associations more then half of the terms are
inferred exclusively from electronic annotations (i.e. without any expert human
involvement). The vast majority of such electronic annotations are reasonably

accurate [2]. However, many such annotations are often made at very high-level
GO terms, which limit their usefulness.

Despite the current imperfectness of the available ontological background
knowledge, the presented methodology was able to discover and compactly de-
scribe several gene groups, associated to specific cancer types, with highly plausi-
ble biological interpretation. We thus strongly believe the presented approach will
significantly contribute to the application of relational machine learning to gene
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expression analysis, given the expected increase in both the quality and quantity
of gene/protein annotations in the near future.
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