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Abstract. State-of-the-art algorithms implementing the ‘extended
transformation approach’ to propositionalization use backtrack depth
first search for the construction of relational features (first order atom
conjunctions) complying to user’s mode/type declarations and a few ba-
sic syntactic conditions. As such they incur a complexity factor exponen-
tial in the maximum allowed feature size. Here I present an alternative
based on an efficient reduction of the feature construction problem on the
propositional satisfiability (SAT) problem, such that the latter involves
only Horn clauses and is therefore tractable: a model to a propositional
Horn theory can be found without backtracking in time linear in the
number of literals contained. This reduction allows to either efficiently
enumerate the complete set of correct features (if their total number is
polynomial in the maximum feature size), or otherwise efficiently obtain
a random sample from the uniform distribution on the feature space.
The proposed sampling method can also efficiently provide an unbiased
estimate of the total number of correct features entailed by the user
language declaration.

1 Introduction

A major stream of approaches to propositionalization [6] is based on constructing
relational features in the form of Datalog queries, such as the one below

car(C) ∧ load(C,L) ∧ small(L) ∧ triangle(L)

from the well-known Michalski’s east-west trains domain, querying whether there
is car carrying a small, triangle shaped load (in a train). In this paper I con-
strain myself to expressions that are conjunctions of non-negated atoms without
constants (thus avoiding atoms such as numOfWheels(Car, 2) and rather con-
sidering an atom has2Wheels(Car)). Much like traditional ILP systems suffer
from two sources of computational complexity–the size of the hypothesis space
and the complexity of proving examples from a hypothesis–the burden of this
propositionalization approach is also twofold, represented by these factors:

1. the complexity of constructing a syntactically well-formed feature definition
2. the complexity of finding the extension of a feature, ie. the subset of data

instances for which the feature holds true.
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A lot of research has been conducted to make subsumption check based proving
(ie. the problem underlying Item 2) more efficient. This includes both enhance-
ments preserving completeness and correctness [2] as well as those representing
tractable approximations to the subsumption check [11]. In contrast, Item 1 is
in state-of-the-art propositionalization systems approached through an exhaus-
tive, usually depth-first search, which of course becomes quickly intractable once
language bounds (eg. the maximum number of atoms in a feature) are softened.

Note the complexity trade-off between Items 1 and 2. The finer conditions
are stipulated on the acceptable syntactical form of a feature, the fewer correct
features exist in the search space, decreasing the effort needed to exert in Item
2, but the more difficult it may be to find a correct feature if one resorts to a
naive backtrack search.

Correct Feature. In this paper, I constrain the notion of a well-formed fea-
ture1 in a natural way, by combining two popular language-bias specification
techniques. First, as in many successful ILP systems (such as Progol [8]), I as-
sume the user to pre-specify the set of predicates which can be employed in a
feature, as well as types and modes of each argument place therein. In a correct
feature, no variable appears at two, differently typed arguments. For each argu-
ment, the mode is either ‘+’, or ‘-’ and a variable occurrence at that argument is
called an input, or output, respectively. Furthermore, the maximum branching
factor (maximum number of occurrences of a given predicate in a feature with
the same input variables2), and the maximum size of a feature (maximum num-
ber of atoms contained), are pre-set. Second, I impose the provisos suggested
in the Extended Transformation Approach propositionalization framework [7],
namely that (i) each variable in a feature is used exactly once as an output and
at least once as an input, (ii) no correct feature is an atom-wise union of two or
more correct features.

Conditions (i) and (ii) actually distinguish the feature construction process
from the clause-enumeration procedures at the heart of most ILP systems. While
(i) is motivated primarily by the ease of human interpretation of a relational
feature, (ii) prevents the assembly of features by simply conjoining simpler ones–
an excess expressivity given that propositional algorithms, to which the resulting
features are subjected, are themselves able to construct conjunctions.

Assume the user declaration is specified, including n, β representing the
bounds on the feature size and branching-factor, respectively. Here I mainly
show that if the declaration obeys certain easily acceptable restrictions, one can
either efficiently (in time polynomial in n and β) enumerate the complete set of
correct features (if the number N of actually existing correct features is poly-
nomial in n), or efficiently obtain a polynomial-size random sample of correct
features (if N is exponential in n) from a uniform probability distribution on the
set of all correct features. Although it is not known beforehand, whether or not N
is polynomial in n given a declaration and varying n, running the two respective

1 I will use interchangeably the terms ‘feature’, ‘correct feature’ and ‘well-formed fea-
ture’.

2 This parameter is called recall in Progol.
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algorithms in parallel would of course result in obtaining one of the two results
efficiently. The fundamental technique I exploit is a polynomial-time reduction
of the feature-construction problem onto an instance of HORN-SAT, ie. finding
a model of a propositional Horn theory. It is interesting to note that HORN-
SAT is the only non-trivial tractable subclass of the generally NP-complete SAT
problem [10]. A model to a propositional Horn theory can be found without
backtracking, in time linear in the number of literals in the theory [5].

Let me now present three specific reasons why the method here presented
is an important contribution to both propositionalization and state-of-the-art
relational learning in general.

1. The first reason is practical. Even if a user requires to obtain the complete
set of correct features rather than a sample, and thus resorts to an exhaustive
enumerative method, there is presently no way of efficiently determining how
large a set of correct features is entailed by the current language declaration.
Thus the typical propositionalization modus operandi consists of repeated
executions of the feature construction process stopped after a long run time
and an unacceptable number of features generated, followed by iterative re-
tuning of the declaration.3 A consequence of my sampling method is that the
total number of correct features can be efficiently and accurately estimated
prior to enumerating all features.

2. Recent research [14,4,1] indicates the possibility that rather than using an
exhaustive set of features enumerated from a small space of simple expres-
sions, it may be beneficial to uniformly sample (eg. the same number of)
features from a larger space (for which an exhaustive method is intractable),
allowing for more descriptive complexity as well as variability between the
features. My method provides the necessary bits for this sake.

3. A recent, very interesting paper [13] shows the advantages of constructing
random-forest classifiers based on relational features. A random sample of
features provided by the method presented here can be used as an input to
construct a randomized decision tree, as a component of a random forest.4

Experimental evaluation of this idea is however out of the scope of this paper.

2 Correct Features as HORN-SAT Solutions

Before exposing details, here is a brief outline of my strategy. Recall the definition
of a correct feature from the introduction. Let me call a finite set of constant-
free Datalog atoms5 an expression and, given a mode/type declaration, let every
expression be called proper if all its variables have exactly one output and at least
one input occurrence, and connected if it all its atoms are pairwise connected.

3 This argument of course follows solely from my subjective experience.
4 My method only generates one of two types of features considered in the mentioned

paper, there called selective features.
5 For simplicity I work with sets, although examples of such expressions will be shown

as conjunctions of the elements.
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Two atoms a and b in an expression are connected if they share a variable or
both a and b are connected with another atom c in the expression. Clearly, any
correct feature is connected (remind the requirement of the undecomposability
of a feature into two or more features). In this section, the adjective polynomial
(exponential) will stand for polynomial (exponential) in n (the maximum feature
size). By definition of the branching factor β, it must hold β ≤ n, so for simplicity
of analysis, I will use the upper-bound β := n and then make sure that the time
complexity of the algorithm is polynomial in n implying it is also polynomial
in β.

I first construct a ‘bottom feature’ ⊥ – a proper expression complying to the
type/mode declaration, which is an atom-wise superset (up to variable renaming)
of all correct features. Slight restrictions on the user declaration will guarantee
that ⊥ exists, has a polynomial number of atoms, and can be constructed in
polynomial time. As ⊥ complies to typing and moding constraints, so do all its
subsets. What remains to do then is to find all proper, connected subexpressions
of ⊥ of size ≤ n, A straightforward verification of all subexpression of size ≤ n
would obviously require exponential time, however, I show that this problem may
be efficiently reduced onto a polynomial-size HORN-SAT instance, for which an
efficient solving algorithm exists.

2.1 Bottom Feature Construction

I now regard the first step, ie. constructing the bottom feature ⊥ given a type/
mode declaration and n, the maximum feature size. To encode a declaration,
I employ a simple form used with slight variations in numerous ILP systems.
Here, available predicates are listed with mode and type indicators plugged into
the argument places. An example declaration follows

car(-c), hasRoof(+c), load(+c,-l), triangle(+l), box(+l)

The modes -/+ denote outputs/inputs, respectively, and c, l represent the re-
spective car and load argument types. I now impose two natural, yet important
restrictions on declarations. First, a declaration has a finite size and each de-
clared predicate has a finite arity. Second, there exists a partial irreflexive order
≺ on types, such that for any two types t1, t2 it holds t1 ≺ t2 whenever t1 occurs
at an input position of a declared predicate and t2 appears at an output position
in the same predicate. This assumption is trivially met by the example declara-
tion above (here c ≺ l). The declaration would remain valid if eg. tows(+c,+c)
was added to it, but not if tows(+c,-c) was added. Finally, for clarity of ex-
planation I will only consider predicates with at most one output argument,
although the further presented principles do not require that condition.

To demonstrate the construction of ⊥, I will distinguish two cases: (SI) any
declared predicate has at most one input, (MI) some have two or more inputs. I
will first exemplify the former case, using the sample declaration above. Due to
the ≺ existence and the assumption (SI), every correct feature can be represented
as a tree, where vertices correspond to atoms and edges connect pairs of atoms
where one contains a variable as an output and the other contains the same
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β ≤ n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

car(C) −hasRoof(C)
−load(C, L1) −box(L1)

−triangle(L1)
−load(C, L2) −box(L2)

−triangle(L2)
...

...

−load(C, Ln)
...

︸ ︷︷ ︸
∆≤∆max

Fig. 1. A tree graph representing the bottom feature ⊥ whose size is a polynomial
function of n. Vertices correspond to atoms in ⊥. β denotes the branching factor, ∆
stands for the tree depth, bounded by some constant ∆max.

variable as an input. Similarly, ⊥ also corresponds to a tree, which must contain
all correct features as root-sharing subtrees. The tree form of ⊥, whose size
depends on n, is sketched in Fig. 1.

Due to the feature connectivity requirement and assumption (SI), no correct
feature may regard two or more cars: such an expression would necessarily be
disconnected.6 Therefore, only one car/1 atom is present in ⊥, as the root. Due
to the assumed partial ordering of types ≺ and the finiteness of the declaration,
the depth of the tree is bounded by some constant ∆max. Also its branching
factor can be upper-bounded by n (eg. no feature of size at most n can address
more loads than n; this upper bound may of course be quite easily improved).
The number of nodes, ie. the size of the bottom set is thus of order n∆max , ie.
polynomial.

Consider now the more general (MI) case where a declaration contains a
predicate with multiple inputs. This is a natural case in domains where a feature
may relate two substructures of the individual. An example declaration follows
capturing a simplified version of the Mutagenesis problem [12].

atm(-a), crb(+a), nit(+a), oxy(+a), hyd(+a),
bond(+a,+a,-b), single(+b), double(+b)

With respect to the graph representation I introduced in the previous paragraph,
due to the presence of the bond/3 predicate with 2 inputs, correct features no
longer form a tree and neither does ⊥.7 The proof of ⊥ still having a polynomial
size now relies on the fact that ⊥’s atoms can still be organized in ‘layers’
(corresponding to the columns in Fig. 2 on Page 404), using the assumed partial
type order ≺. Up to n atoms are in the first layer, so the first layer generates
O(n) output variables. The cardinality of the second layer is thus O(nI), where

6 I ignore the case when the declaration has more than one predicate with only out-
put variables (such as car/1), while assuming (SI): again due to the connectivity
requirement, this case can be treated as two separate feature construction problems.

7 Also, the atm/1 predicate will need to be placed n times in ⊥ with distinct output
variables, unlike the car/1 predicate in the (SI) case.
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I is the maximum number of input arguments in an atom, among atoms in the
declaration. The third layer may use O(nI) variables, so its cardinality is at
most O(nI×I). Thus in general, O(|⊥|) may be upper bounded by nI∆max . Since
the exponential factor is a constant, I accept this as a polynomial bound as I
intended to achieve in this section.8

2.2 Avoiding Improperness

Having constructed ⊥, I now proceed to the problem of how to efficiently extract
⊥’s proper subexpressions of size ≤ n. The basic idea is to assign a propositional
variable to each atom of ⊥ and use the variables to construct a clause set,
encoding the properness requirements, so that every solution of the clause set
corresponds to a proper expression. Interestingly, encoding the constraints turns
out to require only Horn clauses. Again, I will illustrate the procedure by way of
example in the East-West train domain, continuing with its previous predicate
declaration. Let n = 3. Then ⊥ =

car(C)∧hasRoof(C)∧load(C,L)∧triangle(L)∧box(L)
P1 P2 P3 P4 P5

is a correct bottom feature. Note that using the branching-factor upper-bound
β := n used above for bounding |⊥|, I would include three load/2 atoms into ⊥
(refer to the corresponding branches in Fig. 1), however, in this case all correct
features of length up to 3 atoms are clearly subsets (up to variable renaming)
of this shorter ⊥. As the lower line indicates, I assign one propositional variable
(P1 to P5) to each atom. A truth assignment to these variables will represent
a ⊥’s subexpression as follows: if and only if a variable has the false value,
the corresponding atom belongs to the subexpression.9 As the reader will easily
verify, the following set of clauses is satisfied if and only if each variable present
in the subexpression has at least one input occurrence (the first clause relating
to C, the second to L).

¬P2 ∨ ¬P3 ∨ P1 (1)
¬P4 ∨ ¬P5 ∨ P3 (2)

In each clause, I introduced a negative literal corresponding to each atom con-
taining the respective variable as an input, and the positive literal in each clause
corresponds to the atom with an output appearance of the respective variable.
Since I assume each variable to have exactly one output occurrence, I necessar-
ily obtain Horn clauses. It of course remains to make sure that the mentioned
8 This, in general rapid polynomial growth of |⊥| may be reduced by imposing a small

branching factor bound β.
9 With this choise the dual propositional problem will acquire a HORNSAT form. I

may equally have assigned the true value to denote the membership thus arriving
instead at a NON-HORNSAT problem, ie. one with at most one negative literal in
each clause.
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assumption is indeed satisfied. Note first that by construction of ⊥ (refer to Fig.
1), each output argument is assigned a distinct variable and therefore each vari-
able in any subexpression of ⊥ appears as an output at most once. I now need to
make sure that it appears as an output at least once. Evidently, this is the case
if and only if the following four clauses, which I add to the constructed clause
set, are satisfied (the upper two for C, the lower two for L).

¬P1 ∨ P2 ¬P1 ∨ P3 (3)
¬P3 ∨ P4 ¬P3 ∨ P5 (4)

Here the negative (positive) literals correspond to input (output) occurrences of
the respective variables in ⊥. Since, as the reader has already seen, there is at
most one output occurrence of each variable, also these clauses are necessarily
Horn. Let me now determine the total number of Horn clauses obtained in gen-
eral by the procedure so far. A simple insight yields that I get one clause per
every output argument in ⊥ (such as the two clauses 1 - 2) and one clause per
every input in ⊥ (such as the four clauses 3 - 4). Due to assigning a single propo-
sitional variable to every atom in ⊥, the number of literals in each clause is at
most |⊥|. As I have constructed a polynomial size ⊥, the resulting HORN-SAT
instance (consisting of all clauses 1 - 4) has a polynomial number of clauses with
a polynomial number of literals in each. A trivial solution simply makes true
all involved propositional variables (note the omnipresence of a positive literal).
To avoid this useless solution–corresponding to the empty feature–I append one
more Horn clause

¬P1 ∨ ¬P2 ∨ . . . ∨ ¬P5 (5)

2.3 Avoiding Disconnected Features

At this stage, whenever a solution satisfying all clauses constructed so far makes
false n or fewer of the propositional variables, it corresponds to a correct fea-
ture. Although I constructed no dedicated clauses guaranteeing connectedness
of extracted expressions, due to the (SI) character of the particular example at
hand, this property is satisfied automatically: from Fig. 1 it is easy to see that
any disconnected subgraph of the tree would represent an expression with an
input variable with no output occurrence. Such a non-proper expression would
be eliminated by the so-far constructed clauses. However, the (MI) setting allows
for proper yet disconnected expressions such as

atm(A) ∧ crb(A) ∧ atm(B) ∧ oxy(B)

–an example taken from the Mutagenesis domain. The method to avoid obtaining
disconnected expressions such as the above, is based on a polynomial extension
of the generated Horn set. Let a primary predicate (atom) be a declared predicate
(atom based thereon) with no input argument (ie. one relating directly to the
individual, such as atm/1 or car/1). I will distinguish two (MI) subcases: (MI-
S) only one primary predicate is declared, and (MI-M) more than one primary
predicates are declared.
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atm(A2)

atm(A1) bond(A1,A2,B1)
bond(A2,A1,B2)

bond(A3,A1,B4)
bond(A1,A3,B3)

bond(A2,A3,B5)
bond(A3,A2,B6)

nit(A1)
crb(A1)

single(B1)
double(B1)
single(B2)

oxy(A3)
hyd(A3)

{1}

{2}

atm(A3)
{3}

{3}

{3}

{1}

{1}

{1,2}

{1,2}

{1,3}

{1,3}

{2,3}

{2,3}

{1,2}

{1,2}

{1,2}

P

P
P

P

Pi

j

k

l

m

Fig. 2. A fraction of the ⊥ graph representation in a (MI) setting. Chemical bonds are
not oriented so half of the shown bond/3 atoms are semantically superfluous, however,
I am not concerned here with feature semantics.

I first regard (MI-S). In the layer-wise construction of ⊥ (enabled again by
assuming the ≺ order, refer to Fig. 2), I assign a distinct integer singleton label to
each (necessarily primary) atom in the first layer. Then the label of every vertex
in layer l (l ≥ 2) is the union of the labels of its parents in layer l− 1. Now I am
able to identify atoms (‘joints’), which are simultaneously descendants of more
than one primary atoms. The idea now is to allow the inclusion of a second or
further primary atom in a feature, only if there is a joint for it with another
primary atom in the feature. For example, for the primary atom atm(A3), I can
facilitate that by adding the following Horn clause into the HORN-SAT instance
(refer to the Pm . . . Pl variables assigned to vertices in the figure)

Pm ∨ ¬Pi ∨ ¬Pj ∨ ¬Pk ∨ ¬Pl (6)

In general, assume that P1 . . . P|⊥| are variables assigned to atoms in ⊥, and let
L(Ps) (1 ≤ s ≤ |⊥|) be a function yielding the label of the vertex corresponding
to the to variable Ps. For each primary atom, corresponding to variable Pr and
having the label {λ} = L(Pr), the following Horn clause will be added to the
HORN-SAT instance:

Pr

∨

1≤s≤|⊥|, {λ}⊂L(Ps), ∀ρ∈L(Ps): ρ≤λ

¬Ps (7)

This extension has a polynomial size since it generates at most |⊥| additional
clauses each with at most |⊥| literals. The ρ ≤ λ inequality in the selector line
exploits the order imposed on primary atoms by the vertex labelling (I reflect
here the order also in output-variable naming). It prevents the construction of
disconnected expressions such as

atm(A1)∧atm(A2)∧bond(A1,A2,B1)∧single(B1)
∧atm(A3)∧atm(A4)∧bond(A3,A4,B2)∧single(B2)
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This expression is disqualified since atm(A3) has no joint with with atm(A1) or
atm(A2) (although it has one with atm(A4)). At first sight it seems incorrect
that this technique thus also disqualifies connected expressions such as

atm(A1)∧atm(A2)∧atm(A3)∧bond(A1,A3,B1)
∧bond(A2,A3,B2)∧single(B1)∧single(B2)

since atm(A2) has no joint with atm(A1). This expression, however, is equivalent
to the non-discarded counterpart where A1 and A3 are mutually exchanged. In
can be shown also generally that no connected proper feature will be discarded
by this technique, as long as one adheres to the (MI-S) assumption, that is, only
one primary predicate is declared.

Unfortunately, I cannot provide any efficient feature connectivity verification
technique for the remaining, most general (MI-M) case (multiple input arity
+ multiple primary predicates). I do not believe that one can be implemented
without solving the general intractable graph connectivity testing problem. The
(MI-M) case would correspond to a problem where individuals would be struc-
tured by two or more different manners, and it would be required to mutually
relate such multiple kinds of substructures. This fortunately does not seem to
be a typical case in applied propositionalization.

2.4 Avoiding Multiple Equivalent Features

The reader has certainly noticed an evident deficiency of the feature set corre-
sponding to the set of all solutions to the dual HORN-SAT problem. The set may
contain classes of equivalent features, only differing in variable naming. Indeed, if
⊥ contains eg. multiple occurrences of the load/2 predicate, as necessary for large
enough n (refer to Fig. 1), two distinct solutions to the corresponding HORN-SAT
instance will represent for instance the following, equivalent features:

car(C)∧load(C,L1)∧triangle(L1)
car(C)∧load(C,L2)∧triangle(L2)

Such cases may however be remedied by an extension of the generated HORN-
SAT instance in the following way. Let Pb1 , Pb2 , . . . Pbn be the propositional vari-
ables corresponding the (up to) n roots of the branches stemming from an atom
in ⊥ (again, refer to Fig. 1 for quicker insight). I add the following polynomial
number (again due to the bounded branching factor and depth) of Horn clauses

¬Pb1 ∨ Pb2 , ¬Pb2 ∨ Pb3 , . . . ¬Pbn−1 ∨ Pbn (8)

In the continuing example, Pb1 , Pb2 , . . . Pbn correspond to the multiple hasLoad/2
atoms contained and the clauses above will guarantee that load(C,Li+1) (i ≥ 1)
will appear in a feature only if it also includes load(C,Li). To see that this
technique does not eliminate features that are not redundant, realize that in the
⊥ graph representation all children vertices of a given parent vertex have the
same (up to variable naming) descendant subgraph, so any feature containing
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load(C,Li+1) and not load(C,Li) has its equivalent containing load(C,Li) and
not load(C,Li+1).

Still, the technique just explained does guarantee syntactic uniqueness of ev-
ery feature in the resulting set. A thorough discussion of redundancy elimination
is out of the scope of this paper; I just note here that the residual redundancy,
exemplified by the following two equivalent features

car(C)∧load(C,L1)∧load(C,L2)∧triangle(L1)∧box(L2)
car(C)∧load(C,L1)∧load(C,L2)∧triangle(L2)∧box(L1)

manifests itself as well in the standard backtrack-search based feature construc-
tion systems and in neither framework there seems to be an apparent syntac-
tic redundancy removal method not resorting to the NP-complete subsumption
check.

2.5 Extracting Correct Features from the Bottom Feature

I am now in the position to extract correct features from ⊥ by finding a satisfying
assignment to a polynomial-size set of propositional Horn clauses. Horn satisfi-
ability was identified as a tractable problem as early as in the 1970’s [10] and
later, efficient algorithms have been designed [5] able to find a maximal (mini-
mal) solution, that is, one that assigns the true value to the greatest (smallest)
possible number of variables, or determine that no solution exists. In this paper’s
context, a maximal solution corresponds to the smallest connected proper subex-
pression of ⊥ (remind that a ⊥’s atom belongs to the extracted subexpression if
its corresponding propositional variable is false). Consequently, if the efficiently
found maximal solution makes false n or fewer variables, I have found a correct
feature. Otherwise, I can conclude that the declaration allows for no correct fea-
ture. In the continuing example, a maximal solution to the clauses constructed
above makes true P3, P4 and P5 (the reader will check that all seven clauses 1 –
5 are indeed satisfied), thus P1 and P2 are false. This corresponds to the correct
feature car(C)∧hasRoof(C).

So far I have merely shown how to efficiently decide the feature existence
problem by finding a correct feature if one exists. In practice though, one will
need to enumerate the entire set of correct features. For this purpose, fortunately,
one can accommodate the algorithm proposed in [3] able to produce the set of all
HORN-SAT instance solutions by iterative executions of the core procedure for
finding a single solution. The input clause set is at each call modified in a way
guaranteeing that the successive solutions form the entire (lexicographically or-
dered) set of solutions to the original HORN-SAT instance. A favorable property
of the algorithm is that the total number of calls to the core procedure is polyno-
mial in (i) the total number of literals in the original clause set, (ii) the number
of existing solutions, that is, the algorithm does not introduce an exponential
complexity factor when upgrading a single solution finding onto finding of all
solutions. I refer the reader to [3] for further details. By employing this algorithm
(in the way described in Fig. 3) to find all solutions to the HORN-SAT instance
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EnumerationOfFeatures(D, n) : Given a correct user predicate declaration D and
a number n ≥ 0, produces the set of all proper connected features of size ≤ n,
satisfying D.
1. Construct bottom feature ⊥ = ⊥(D, n).
2. Construct HORN-SAT instance H from ⊥.
3. S := AllModels(H).
4. For all s ∈ S with at most n false assignments, convert s into the corresponding

feature f and output f .

Fig. 3. Enumeration of all correct features through the HORN-SAT reduction strategy.
Steps 1 and 2 are detailed in Section 2. Step 3, ie. procedure AllModels implements [3]:
it terminates in polynomial time if the number of all models is polynomial. A correct
declaration D complies to assumptions described in Section 2 (finiteness, ≺ order on
types) and one of the (SI) or (MI-S) assumptions.

corresponding to the feature construction problem instance, I do not conduct
significant ‘excess computation’ (corresponding to exploring exponentially large
search subspaces containing no solution in the case of standard backtrack fea-
ture construction approaches), and specifically, if the actual number of correct
features is polynomial, they are all enumerated in polynomial time.

3 Sampling the Feature Space

For the case when the total number of correct features allowed by the user declara-
tion is exponential in n (maximal feature size) and complete feature enumeration
is intractable, I offer two algorithms for feature sampling. Both of them approach
the task by sampling in the space of models for the dual HORN-SAT problem.

The first algorithm described in Fig. 4 simply generates random truth as-
signments with at most n false-valued variables (corresponding to the maximal
feature size n) to the dual HORN-SAT instance and checks (through a linear
time algorithm) if they are models. To obtain a uniform sample of features, care
must be taken to generate the truth assignments equiprobably, given the max-
imal feature length (n) constraint. The corresponding technique is explained in
the Figure. Due to the uniformity, this algorithm is also able to produce an unbi-
ased estimate of the total number of existing features. The number of iterations
(truth assignments made) in the algorithm is linear in s (the required sample
size) and 1/p, where p is the actual proportion of the number of all models to the
number of all possible truth assignments, which grows exponentially in n. There-
fore, if the number of all correct features, ie. the number of all models of the dual
problem is also exponential in n, the number of iterations is at most polynomial.

The second, locally deterministic algorithm shown in Fig. 6 can be viewed as
a middle-ground between complete enumerative search and sampling. At each
iteration it generates a random partition of the search space by assigning the
true value to at least |V| − n randomly chosen variables in the dual HORN-
SAT instance with |V| variables, thereby guaranteeing that any found model
will convert to a feature of at most n atoms. The completion to a total truth



408 F. Železný

SampleFeatures(D,n, s) : Given a correct user predicate declaration D and a number
n ≥ 0, produces a set F of s random features of size ≤ n, satisfying D and an
estimate e of the total number of such features.

1. Construct bottom feature ⊥ = ⊥(D, n).
2. H = ConvertToHornSAT (⊥, n); V := the set of propositional variables in H.
3. t := 0; f := 0;F := {}
4. T := RandomTruthAssignment(V, n); t := t + 1
5. if ModelCheck(H, T ) then F := F ∪ {ConvertToFeature(⊥,T )}; f := f + 1

6. if f = s then return F and e = f/t ∗
∑n

i=0

(
|V|
i

)

, else go to 4

Fig. 4. Sampling features by generating random truth assignments to the dual
HORN-SAT problem and checking whether they are models thereof. Procedures
ConvertToHornSAT and ConvertToFeature implement reduction principles de-
scribed in Section 2. Procedure ModelCheck implements a linear time HORN-SAT
model checking algorithm. Proc. RandomTruthAssignment is described in Fig. 5.

RandomTruthAssignment(V,n) : Given a set of propositional variables V and a num-
ber n ≤ |V|, produces a random truth assignment to V with at most n false as-
signments, with equal probability among all such assignments.

1. Choose a random number 0 ≤ r ≤ n with probability

P (r) =

(
|V|
r

)

∑n
i=0

(
|V|
i

) (9)

2. Choose a random combination Cr of r variables from V with equal probability
among all such combinations.

3. Output the assignment {false← vi|vi ∈ Cr} ∪ {vj ← true|vj /∈ Cr}.

Fig. 5. Procedure RandomTruthAssignment ensures equiprobability by first selecting
the number r ≤ n of false valued variables in the selected assignment with probability
proportional to the number of all assignments with r false valued variables, and then
drawing a random combination of r variables to be falsified

assignment is then done by formally adding the instantiated variables as positive
singletons to the Horn clause set and then using a simple linear time-algorithm [5]
for finding a minimal HORN-SAT model (instantiating the rest of the variables).
Unlike the previous sampling algorithm, this locally deterministic algorithm does
not guarantee that resulting features form a sample from a uniform distribution
on all correct features, and thus it cannot provide an unbiased estimate of the
total number of correct clauses. The non-uniformity is a consequence of both
the bias toward the minimal model in each search space partition as well as the
possible overlaps between individual partitions.

Although I formally use the name ModelCheck in Fig. 4 and HornModel
in Fig. 6, I implemented the two procedures naturally by a single binary Prolog
predicate, where the model carrying argument may or may not be instantiated



Efficient Sampling in Relational Feature Spaces 409

LocalSearchOfFeatures(D, n, s) : Given a correct user predicate declaration D and
a number n ≥ 0, produces a set F of s random features of size ≤ n, satisfying D.

1. Construct bottom feature ⊥ = ⊥(D, n).
2. H = ConvertToHornSAT (⊥, n); V := the set of propositional variables in H.
3. f := 0;F := {}
4. Choose a random number |V| − n ≤ r ≤ |V| with probability

P (r) =

(
|V|
r

)

∑|V|
i=|V|−n

(
|V|
i

) (10)

5. Choose a random combination Cr of r variables from V with equal probability
among all such combinations.

6. Hext := H ∪ {vi ← true|vi ∈ Cr}
7. if T := HornModel(Hext) succeeds then
F := F ∪ {ConvertToFeature(⊥,T )}; f := f + 1

8. if f = s then return F , else go to 4

Fig. 6. Sampling features by generating a random, partial truth assignment to variables
in the dual HORN-SAT theory, and then verifying if the assignment can be completed
to a model of the theory. Procedure HornModel terminates in linear time [5].

when calling the predicate. The total number of calls to this predicate will rep-
resent a parameter used in comparing the two methods.

4 Implementation and Experiments

The algorithms presented in this paper have been implemented in SWI Prolog.
The implementation is available for download from http://labe.felk.cvut.
cz/~zelezny/feature_sampling.pl .

Let me now consider the following mode/type declaration

car(-c), connected(+c, +c), load(+c,-l), big(+l), small(+l)

and set the maximum branching factor β = 2 and maximum feature size n = 10.
The bottom feature for this declaration has 18 atoms, and consequently there

exist
∑10

i=0

(
18
i

)

= 199140 possible truth assignments in the dual HORN-SAT

instance (out of which 567 are models to the corresponding Horn theory).
I have two goals in this exercise. First, I want to verify that the estimate e of

the total number of correct features provided by the algorithm SampleFeatures
in Fig. 4 converges sufficiently rapidly to the correct value with growing sample
size, in comparison to an estimate based on enumerating subsets of the bot-
tom feature in systematic manners, either top-down or bottom-up. Second, I
want to compare the efficiency of algorithms SampleFeatures in Fig. 4 and
LocalSearchOfFeatures in Fig. 6 to see whether abandoning the distributional
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uniformity in LocalSearchOfFeatures trades off for a significant speedup of
the feature sample construction, with respect to SampleFeatures.

Figure 7 answers the first question by demonstrating that the uniform sam-
pling method (unlike the systematic top-down or bottom-up procedures) pro-
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vides a stable estimate, which remains in a 15% error margin once about 5,000
truth assignments (about 2.5% of the search space) are sampled.

The second question is addressed in Fig. 8, showing that the rate at which
the algorithm runtime increases with the growing number of feature sampled
is reduced by LocalSearchOfFeatures to about 1/100 of that invested by
SampleFeatures.

5 Related Work

Similarly to the work of Pfahringer and Holmes [9], my approach aims at gen-
erating randomized features, viewable as extracting some constrained random
subgraphs of some graph G. While in my approach, G (the bottom feature) is
derived from a user’s syntactic declaration, in [9], G is a structural representation
of a chosen example of a class for which the features are generated. This difference
has two fundamental consequences. First, unlike [9], my approach is class-blind
and as such it is not apriori biased towards constructing features with discrimi-
native power, which needs to be assessed (and possibly used for posterior feature
selection) after the feature syntax has been generated. Second, Pfahringer’s and
Holmes’ features are, to my best understanding, less expressive than my features.
Assuming ground descriptions of examples, their feature graphs correspond to
ground logic formulas, so unlike in my approach, they eg. cannot express the fea-
ture ‘there are two carbon atoms c1, c2 both connected to some other atom A.

My method includes a number of ingredients, whose application in relational
machine learning is not original. Namely, the concept of a bottom feature derived
on the basis of user moding and typing declarations deliberately adopts the ideas
of the mode directed inverse entailment [8] technique popular in ILP, where a
bottom clause is constructed to constrain the search space. To my best knowledge
though, there is no previous approach exploiting the ‘bottom’ concept for feature
construction. The crucial point where I diverge from the traditional approach is
in the utilization of the bottom feature: rather than using it as a constraint for
a backtrack search, I translate it into a propositional Horn theory whose models
represent correct features.

Furthermore, the basic idea of estimating the number of features by sampling
in the feature space was inspired by an analogous technique implemented by
Ashwin Srinivasan in the ILP system Aleph for estimating the number of existing
legal clauses (see eg. [14]). Again, the principal difference of my materialization of
that idea from the one in Aleph stems from the conversion of feature construction
onto a propositional satisfiability problem enabling to carry out the sampling in
the ‘easily conquerable’ space of propositional truth assignments.

6 Conclusion, Future Work

I have presented an approach to relational feature construction based on its
poly-time reduction to the tractable HORN-SAT problem. Under acceptable re-
strictions on user language declarations, I am able to either efficiently enumerate
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the complete set of proper, connected, declaration compliant relational features
(if their total number is polynomial in the maximum feature size), or other-
wise efficiently obtain their random sample from the uniform distribution on the
feature space.

The assumptions I imposed on the user declarations to achieve the results
were its finite size, existing partial irreflexive order on types, which ‘agrees’ with
the input-output order of types in any declared predicate (see Section 2 for
details), and the ‘non (MI-M)’ condition which stipulates that either no two
different declared predicates are primary (without input arguments), or no de-
clared predicate has more than one input. Dropping the ‘non (MI-M)’ condition
has the consequence that solutions arising from the dual HORN-SAT problem
may correspond to disconnected features, which may be decomposed into two or
more correct features and therefore are redundant.

Intuition suggests that the efficient technique used for solving the dual, sat-
isfiability problem in linear time without backtracking, should have its ‘mirror’
procedure applicable directly on the primary problem of correct feature search.
I have not yet been able to exactly determine what form such search procedure
would acquire and this is a goal of my future work.

The approach admittedly needs more experimental evaluation. Also, the pre-
sented method for estimating the number of correct features (or, equivalently,
their relative frequency 0 ≤ p ≤ 1 in the search space) calls for a statistical anal-
ysis to determine the required size of the sample which, with a given probability,
leads to an estimate p̂ of p in a given error bound. Altough simple statistical
techniques are available for calculating the error bound, they assume p not too
close to 0 or 1. Unfortunately, p is typically very close to zero in the expression
spaces in question. An alternative way, suggested by a reviewer, is to approach
the estimate-reliability analysis empirically, eg. by repeated sampling.
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ported by the Czech Ministry of Education through the project 1ET101210513
“Relational Machine Learning for Biomedical Data Analysis” in the “Informa-
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