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ABSTRACT

Several population-based methods (with origins in the world
of evolutionary strategies and estimation-of-distribution al-
gorithms) for black-box optimization in continuous domains
are surveyed in this article. The similarities and differences
among them are emphasized and it is shown that they all
can be described in a common framework of stochastic lo-
cal search—a class of methods previously defined mainly
for combinatorial problems. Based on the lessons learned
from the surveyed algorithms, a set of algorithm features
(or, questions to be answered) is extracted. An algorithm
designer can take advantage of these features and by decid-
ing on each of them, she can construct a novel algorithm. A
few examples in this direction are shown.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of

Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Algorithms

Keywords

Black-box optimization, Estimation-of-distribution algorithm,
Evolutionary strategy, Covariance matrix adaptation, Pre-
mature convergence, Probabilistic modeling, Gaussian dis-
tribution, Cauchy distribution

1. INTRODUCTION
Estimation-of-distribution algorithms (EDAs) [25, 32] are

established among the most successful optimization algo-
rithms for discrete and combinatorial problems. They allow
to reasonably balance the global view of the search space (ex-
ploration) with the local view (exploitation) by decompos-
ing the optimization problem, by modeling the dependencies
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among the design variables. Bayesian networks (BN) [20]
are de-facto standard model used to encode the joint prob-
ability density function (p.d.f.), allowing the user to apply
some apriori structural constraints. The basic method of
BN fitting is the maximum likelihood estimation (MLE). In
discrete domains, MLE esentially works, although it is of-
ten complemented with simple remedies ensuring that the
right model can be found even when the population is not
large enough, or when the initialization happens to create
the initial finite population not properly.

In real-valued optimization, the situation is more complex.
The probability density functions can have many different
forms and the dependencies among variables may be hard to
find. It is very hard to find a general model, that would en-
compass all possible density functions, and in the same time
would be sufficiently simple allowing for easy parametriza-
tion and learning. A direct analogy to Bayesian network
from discrete domain is the Gaussian network (GN) [24, 7];
GN has similar structure and similar parametrization as BN,
yet it describes a single-peak Gaussian distribution only. De-
spite that, there are several attempts to transfer the princi-
ples of EDAs from discrete to continuous domains [5, 24, 30,
31, 1, 33, 22, 26]. But many of these approaches use some
kind of MLE learning and have huge problems to find the so-
lution if it lies beyond the convex envelope of the population
members when it is needed to shift the whole population to-
wards the optimum. Results of several benchmark studies
(see e.g. the Black-box Optimization Benchmarking work-
shop at GECCO) suggest that for a broad range of functions
it is better to have a fast local optimizer and restart it of-
ten than to have an EDA algorithm with a sophisticated
probabilistic model.

This article is an updated version of the author’s previ-
ously published work [36] and deals with certain class of evo-
lutionary algorithms that lie on the boundary of EDAs and
evolutionary strategies (ES) that use unimodal probabilistic
models and thus exhibit a kind of local search behaviour.

Stochastic local search (SLS) methods originated in the
field of combinatorial optimization and they are claimed to
be among the most efficient optimizers. In [18] they are in-
formally described as ‘local search algorithms that make use
of randomized choices in generating or selecting candidate
solutions for a given combinatorial problem instance.’ As
noted in [42], ‘once randomized and appended or hybridized
with a local search component, these (SLS techniques) in-
clude a wealth of methods such as simulated annealing, iter-
ated local search, greedy randomized adaptive search, vari-
able neighbourhood search, ant colony optimization, among
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others,’ which are usually classified as global search heuris-
tics. The locality is usually induced by the perturbation
operators used to generate new solutions.
In this paper, the term stochastic local search is used to

describe algorithms for continuous optimization as well. The
local neighborhood is often not given by a perturbation op-
erator, but rather by a single-peak probability distribution
function (p.d.f.) with decaying tails (very often Gaussian).
Even though generally the value of p.d.f. is non-zero for
any point in the feasible space, the offspring are concen-
trated ‘near’ the distribution center. Due to this fact, many
of these algorithms exhibit a kind of hill-climber behaviour,
which is, according to the author, sufficient to describe them
as SLS.
The algorithms discussed in this article arised mainly from

two sources: evolutionary strategies and estimation of distri-
bution algorithms. Evolution strategies (ES) (see e.g. [3] for
recent introduction) were among the first algorithms for con-
tinuous black-box optimization which employed a stochastic
component. Their first versions were purely mutative and
used (1 + 1), or (1 +, λ) selection operators. The individ-
ual solutions were coupled with the distribution parame-
ters which underwent the evolution along with the candi-
date solutions. Later, they were generalized to (µ +, λ)-ES
which were still only mutative, but allowed the search to
take place in several places of the search space in paral-
lel. With µ parents, it became possible to introduce the
crossover operator which is considered to be the main evo-
lutionary search operator in the field of genetic algorithms
(GA) [8], and the multi-recombinant ES were born [38]. The
notation (µ/ρ +, λ)-ES means that out of the µ parents,
ρ of them were recombined to become a center for one of
the λ generated offspring. After another two decades of
research, the state-of-the-art evolutionary strategy with co-
variance matrix adaptation (CMA-ES) was developed [17].
Rather surprisingly, it is a kind of (µ/µ, λ)-ES—the compu-
tation of the center of thenormal distribution is based on all
selected parents, i.e. the same distribution is used to gen-
erate all candidate solutions. Even though the CMA-ES is
a multi-recombinant ES, in each generation it searches the
neighborhood of 1 point and thus exhibits local search be-
haviour (given the step size is small compared to the size of
the search space which is often the case).
The second source of SLS lies in estimation-of-distribution

algorithms (EDAs) [25]. There are many variants that use
multimodal distributions, but here we are concerned with
unimodal ones. The first continuous EDAs modeled all vari-
ables independently (e.g. [39, 23]). EDAs using full co-
variance matrix [24] and EDAs using Bayesian factorization
of the normal distribution [5] emerged shortly thereafter.
These EDAs used almost exclusively maximum-likelihood
estimation (MLE) of the distribution parameters—a method
that was very successful in case of discrete EDAs. However,
it turned out very soon [7, 46, 29, 11, 9] that MLE leads in
case of normal distribution to premature convergence even
if the population is situated on the slope of the fitness func-
tion! Various remedies of this problem emerged [10, 6, 34,
37, 4].
In both areas, ES and EDAs, articles discussing the use

of solutions discarded by the selection can be found. The
discarded solutions can be used to speed up the adaptation
of covariance matrix [19, 2], or a completely novel method
of learning the distribution can be constructed [37].

Algorithm 1: Continuous Stochastic Local Search

input : The type of modelM
output: The best solution found do far

1 begin

2 M(0) ← InitializeModel()

3 X(0) ← Sample(M(0))

4 f (0) ← Evaluate(X(0))

5 g ← 1
6 while not TerminationCondition() do

7 {S,D} ← Select(X(g−1), f (g−1))

8 M(g) ← Update(g,M(g−1), X(g−1), f (g−1), S,
D)

9 X ′ ← Sample(M(g))

10 f ′ ← Evaluate (X ′)

11 {X(g), f (g)} ← Replace(X(g−1), X ′, f (g−1), f ′)

12 g ← g + 1

As already stated, all the above mentioned algorithms can
be described as instances of stochastic local search. In the
next section, these key works in this field are surveyed in
greater detail. In section 3 the taxonomy of these methods
is constructed based on their commonalities and differences.
Section 4 proposes a few new possibilities offered by the
taxonomy and section 5 concludes the paper.

2. OVERVIEW OF SLS TECHNIQUES
A detailed, thorough, and in-depth comparison of some

algorithms relevant to this paper can be found in [21]. This
article, on the other hand, is aimed especially at describing
the main distinguishing features of more recent algorithms.

A general continuous SLS algorithm with single-peak dis-
tribution can be described in high-level as Alg. 1. This for-
mulation can accommodate

• comma (generational) and plus (steady-state) evolu-
tionary schemes,

• use of selected and/or discarded solutions in the model
adaptation phase (thanks to the Selection operator
that returns indices of selected individuals, S, as well
as indices of discarded individuals, D),

• model adaptation (the previous model,M(g−1), enters
the Update phase),

• self-adaptation (the model parameters can be part of

the population X(g−1)),

• deterministic model adaptation (a predefined schedule
depending on the generation counter g can be used for
the model parameters), and

• feedback model adaptation (the information on the cur-
rent population state can be used to adapt the model).

Individual algorithms mentioned in the introduction can
all be described in this framework. They will generally differ
in the definition of the model, M, and in the operations
Update and Sample.
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Stochastic hill-climbing with learning by vectors of

normal distributions (SHCLVND) [39] uses normal dis-
tribution for sampling. The model has the form of M =
{µ,σ}. In the update phase, it uses a Hebbian learning

rule to adapt the center of the distribution, µ(g) = µ(g−1) +
µmove(X̄S − µ(g−1)), so that the new center is between the
old center and the mean of the selected individuals, X̄S ,
or possibly behind the mean. The spread of the distri-
bution is adapted using deterministic schedule as σ(g) =
creduceσ

(g−1), creduce ∈ (0, 1).

Univariate marginal distribution algorithm for con-

tinuous domains (UMDAC) [23] also does not take into
account any dependencies among variables. This algorithm
performs some statistical tests in order to determine which
of the theoretical density functions fits the particular vari-
able best.

Maximum-likelihood Gaussian EDA (ML-G-EDA) uses
a Gaussian distribution with full covariance matrix Σ to
generate new candidate solutions. Its model has the form
of M = {µ,Σ}. Model is not adapted, it is created from
scratch as ML estimate based on the selected individuals
only. The update step is thus µ(g) = X̄S and Σ(g) =
covmat(XS).
This algorithm is highly prone to premature convergence

[7, 46, 29, 11, 9]. To improve the algorithm, several ap-
proaches were suggested.

Variance scaling (VS) [46] is the most simple approach for
ML-G-EDA improvement. The change is in the sampling
phase: the covariance matrix Σ is substituted with enlarged
one, cΣ, c ≥ 1. In [35] it was shown that this approach with
multivariate normal distribution leads in higher-dimensional
spaces either to premature convergence on the slopes of the
fitness function, or to the divergence of the distribution in
the neighborhood of the optimum.

Adaptive variance scaling (AVS) [10] is also a method
to enlarge the covariance matrix in ML-G-EDA. It uses the
model in the following form: M = {µ,Σ, cAVS, fBSF}. The
covariance matrix enlargement factor cAVS becomes part of
the model and is adapted on the basis if the best-so-far
(BSF) solution was improved. In the update phase, cAVS

is increased (c
(g)
AVS = η · c

(g−1)
AVS ) if the best solution in XS is

of better quality than fBSF, or decreased (c
(g)
AVS = c

(g−1)
AVS /η),

otherwise.

Correlation trigger (CT) was introduced in the same arti-
cle [10] as AVS. It was observed that the AVS slows down the
algorithm convergence in situations when the distribution is
centerd around the optimum of the fitness function. In that
cases, the cAVS multiplier is too high and it takes several
generations to decrease it to reasonable values. A better ap-
proach is to trigger the AVS only when the population is on
the slope, otherwise pure MLE of variance is used. The rank
correlation between the values of probability density func-
tion (p.d.f.) and fitness values was used as the AVS trigger.
If the population is on the slope, the correlation will be low,
while in the valley the absolute value of correlation will be
high (assuming minimization, with decreasing value of p.d.f.
the fitness increases).
It is important to note, that this approach can be in prin-

ciple used to scale individual main axes (instead the whole
distribution) which would effectively change the shape of the

distribution learned by MLE. However, difficulties in higher-
dimensional spaces can be expected.

Standard-deviation ratio (SDR) [6] was later used in-
stead of CT which fails in higher-dimensional spaces. SDR
triggers AVS in cases when the improvements are found far
away from the distribution center (if the distance of the av-
erage of all improving solutions in the current generation is
larger than a threshold).

Anticipated mean shift (AMS) [4] is another scheme for
fighting the premature convergence. In fact, it belongs to
this article only partially: the parameters of the distribution
are estimated as in the case of single-peak Gaussian, how-
ever, in the sampling phase 2-peak distribution is used (with
the same shape parameters, but different means). This way,
part of the offspring is artificially moved in the direction of
estimated gradient (anticipated mean shift). It is assumed
that if this prediction was right, then the shifted solutions
will be selected along with some of the non-shifted solutions
which in turn increases the variance in the direction of the
gradient.

Reweighting is another simple modification of the Gaus-
sian EDA introduced in [41]. It is aimed at the fact that
when population shift towards the optimum is needed, its
estimated position (given as the average of selected points)
is biased towards the center of the distribution used to sam-
ple the points. The reweighting ensures that the selected
points with lower values of p.d.f.have higher weight in the
estimation of position of the optimum. This way the algo-
rithm is able to make larger steps.

Other than normal distributions were explored in sev-
eral works. In [45], anisotropic Cauchy distribution was used
to fasten ES, but the algorithm actually exploits separability
of the problem as shown in [28, 16]. In [34], the Gaussian,
isotropic Gaussian, and isotropic Cauchy distributions were
compared from the point of view if non-adaptive variance
scaling (VS) is sufficient to preserve the needed diversity.
The isotropic Cauchy distribution was the most promising.
The shape and the center of the distribution were estimated
using MLE for the Gaussian distribution in all cases. In sub-
sequent experiments it turned out that this approach fails
e.g. on ridge functions.

Evolutionary strategy with covariance matrix adap-

tation (CMA-ES) [17] is currently considered the state-
of-the-art technique in numerical optimization. This algo-
rithm nowadays exists in several variants, but all have some
common features. Detailed description of CMA-ES is be-
yond the scope of this paper; note that its model is given
by M = {µ,Σ, c,pc,pσ}. CMA-ES differs from other ap-
proaches

1. by using a kind of aggregated memory, the so called
evolution paths pc and pσ, which are cumulated over
generations and used to adapt Σ and c, and

2. by estimating the distribution of selected mutation
steps, rather than distribution of selected individuals.

CMA-ES using also the discarded individuals was
proposed in [19], and further discussed in [2]. The covari-
ance matrix adaptation mechanism uses also the discarded
individuals with negative weights. The covariance matrix Σ

might lose its positive definiteness, but in practice it does
not happen. Speedups of the order of 2 were observed using

1939



this strategy in high-dimensional spaces with large popula-
tions.

Natural Evolution Strategies (NES) were suggested in
[43] and later improved to efficient NES (eNES) in [40]. This
algorithm uses the Gaussian distribution as the model. Its
unique feature is the learning algorithm that uses the so-
called natural gradient, i.e. gradient in the space of the dis-
tribution parameters, and follows it towards better expected
fitness. The authors claim that this approach is more princi-
pled and needs lower number of parameters than the update
step in CMA-ES.

Optimization via classification was explored in the con-
text of single-Gaussian-based SLS in [37]. Both the selected
and the discarded individuals are used to train a classifier
that distinguishes between them. If the classifier has a suit-
able structure (quadratic discriminant function), it can be
transformed into a probabilistic model (Gaussian). Similar
idea was used before in discrete space [27], or in continuous
spaces [44], but the classifier in that case was not trans-
formable to a single peak distribution and is thus out of the
scope of this article.

Adaptive encoding (AE) [12] is not directly an optimiza-
tion algorithm. In continuous domain, the ability to find
the right rotation of the search space is crucial. AE decou-
ples the space transformation part from the CMA-ES and
makes it available for any search algorithm, especially for
the single-peak SLS. To decouple the transformation part
from the optimization algorithm was proposed also in other
works, e.g. in [33].

3. QUESTIONS FOR CONTINUOUS SLS
The algorithms that were just described can be catego-

rized from many points of view which are (to some extent)
independent of each other. These points of view can be rep-
resented as a set of questions and novel algorithms can be
constructed just by answering them.

3.1 Model Sampling
One of the most important aspects of any algorithm is the

choice of the sampling distribution P. The sampling process
then reads

zi ∼ P, (1)

xi = µ+R× diag(σ)× (c · zi). (2)

Here it is assumed that single-peak origin-centered base
distributions P (non-parametric, or with fixed parameters)
is used to sample new raw candidate solutions, zi. The dis-
tribution is enlarged as a whole by multiplying it with a
global step size c and elongated along the coordinate axes
by multiplying each dth coordinate with the respective mul-
tiplicator σd (diag(σ) is a diagonal matrix with entries σd on
the diagonal). The sampled points are rotated by using the
rotation matrix R with orthonormal columns. The origin
of the distribution is then changed by adding the position
vector µ. The model parameters µ, c, R, and σ are cre-
ated in the model building phase. The base distribution P
is usually fixed during the whole evolution.
Regarding the model sampling, the individual algorithms

can differ in the following aspects:

Question 1. What kind of base distribution P is used for
sampling?

The majority of algorithms use standard Gaussian distri-
bution. In [34], scaled versions of isotropic Gaussian and
isotropic Cauchy distributions1 were analyzed. The distri-
butions were scaled by a constant so that if the distribution
was centered around the optimum of a sphere function, then
after selecting τN best individuals, the distance of the fur-
thest is expected to be 1. This is done by dividing the points
sampled from the base distribution by the critical point of
the inverse cumulative distribution function, e.g. in case of
isotropic Cauchy distribution the sampling was modified as
follows: x ∼ Ciso, xm = x/CDF−1

C
( 1+τ

2
).

Question 2. Is the type of distribution fixed during the
whole evolution?

Switching the types of probabilistic models is not quite
common, but was already employed on the basis of individ-
ual axes [23]. It is also possible to change the type of model
as a whole.

3.2 Model Building
In the phase of model building, there are two main tasks

1. set the model parameters µ, c, R, and σ directly used
in sampling, and

2. set the auxiliary strategy-specific parameters (cumu-
lation paths, best-so-far solution, or other statistics
describing the past evolution).

Again, several distinctive features can be observed:

Question 3. Is the model re-estimated from scratch each
generation? Or is it updated incrementaly?

The model parameters can be set only on the basis of
the individuals in the current population (like in ML-EDA)
which is usually the simpler choice. On the other hand,
if one knows an efficient method for updating the model
incrementaly, it usually results in more stable behaviour of
the algorithm.

Question 4. Does the model-building phase use selected
and/or discarded individuals?

The discarded individuals are used in only a few works
even though they offer various possibilities.

Question 5. Where do you place the sampling distribution
in the next generation?

Answer to this question amounts to defining the equation
for setting µ(g). The next sample can be centered around
the best individual in the current population, around the
best-so-far individual, around the mean of the selected indi-
viduals (ML-EDA), around the weighted mean of the best
individuals (CMA-ES), around a place where we anticipate
that the mean should move (AMS), etc.

Question 6. How much should the distribution be enlarged?
In other words, what should the global step-size setting

be? The global step-size c can be 1 (ML-EDA), a constant
(VS), or it can be adapted (AVS), or eventually used only
sometimes (CT, SDR).

Question 7. What should the shape of the distribution be?
The answer lies in the way of computing the rotation ma-

trix R and scaling factors σ. These are usually closely re-

1These isotropic distributions are sampled so that (1) a di-
rection vector is selected uniformly by selecting a point on
hypesphere, and (2) this direction vector is multiplied by a
radius sampled from 1D Gaussian or Cauchy distribution,
respectively.
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lated. They can be set e.g. by eigendecomposition of the
covariance matrix of the selected data points (ML-EDA). In
that case the σ is a vector of standard deviations in the main
axes and R is a matrix of vectors pointing in directions of
the main axes. AE offers an alternative way of estimating
the σ and R.

Question 8. What should the reference point2 be?
Closely related to the previous feature, it has a crucial

impact on the algorithm behaviour. If we take the selected
data points XS , subtract their mean X̄S , and perform the
eigendecomposition

[σ2,R]← eig(XS , X̄S)

where

eig(X,xr)
def
= eig

(

1

N − 1
(X − xr)(X − xr)

T

)

we arive at the approach ML-EDAs are using. If we change
the reference point xr from X̄S to µ(g−1) (so that [σ2,R]←

eig(XS ,µ
(g−1))), then we get the principle behind CMA-

ES—we estimate the distribution of selected mutation steps.

4. DESIGNING NOVEL SLS
Since many of the features are independent of each other,

it makes sense to create new algorithms by combining previ-
ously unexplored combinations, and asses the quality of the
newly constructed algorithms. Let us briefly discuss some
possibilities for the reference point of the distribution shape
estimate (question 8, Q8) if we allow the model building
phase to use the selected as well as discarded solutions (Q4).
In the following, the Gaussian distribution is used (Q1) in all
generations (Q2). The model is re-estimated from scratch
each generation with the exception of CMA-ES-like config-
uration where µ(g−1) is used as the reference point (Q3). A
conservative setting was chosen for the distribution center
in this article: X̄S is used similarly to ML-EDA (Q5). The
distribution is not enlarged, c = 1 (F6), and the shape is
estimated by eigendecomposition of XXT matrix of certain
vectors in X (Q7).
Interesting configurations can be envisioned in setting the

reference point for estimation of the distribution shape. Let
X̄B and X̄W be (possibly weighted) averages of several best
selected and several best discarded solutions in the current
population, respectively. XS and XD are solutions selected
and discarded, respectively, by the selection operator. Fur-
thermore, XB ⊂ XS and XW ⊂ XD. Instead of using
eig(XS , X̄S) (which is ML-EDA and converges prematurely,

see Fig. 1, upper left) or eig(XS ,µ
(g−1)) (which is successful

CMA-ES-like approach, see Fig. 1, upper right), we can use
eig(XS , X̄B) (see Fig. 1, lower left). Compared to ML-EDA,
this might result in greater spread in the gradient direction
on the slope, but as a whole the estimates are still too low
and the algorithm converges prematurely. In the neighbor-
hood of the optimum, the MLE is recovered since X̄B is
expected to be the same as X̄S .
Another option is to use eig(XW , X̄B) (see Fig. 1, lower

right). As can be seen, it might give the algorithm addi-

2Note the difference between the model center (see feature 5)
and the reference point. We can e.g. estimate the shape of
the distribution based on selected points when the worst
point is taken as the reference, and then center the learned
distribution around the best point.

tional burst, since it located the optimum after 50 genera-
tions which is not the case for any other configuration.

4.1 BBOB: Stage for Algorithm Comparisons
It is, of course, impossible to draw some far-reaching con-

clusions based on the pictures presented in Fig. 1. Statistical
analysis on broad class of problems and dimensionalities is
needed and it is questionable if some of these methods can
beat the finely tuned CMA-ES.

At GECCO 2010, the black-box optimization benchmark-
ing workshop (BBOB) is held for the second time. It pro-
vides a well-thought methodology [13] of comparing various
algorithms for numerical optimization on a reasonably cho-
sen set of noise-free [14] and noisy [15] fitness functions. It
also provides post-processing scripts (which produce a bunch
of tables and graphs) and LATEX article templates, so that
everything that is left to the experimenter is the descrip-
tion of the algorithm and the discussion of the results. The
experimenter can also freely choose among the algorithms
that were benchmarked in the past and use any of them for
comparison with her own algorithm.

The BBOB methodology has high chances to become a
standard algorithm comparison tool. Constructing various
algorithms suggested in this paper and comparing them with
others using BBOB is a valuable direction for future work.

5. CONCLUSIONS
This paper surveyed recent contributions in the area of

SLS techniques using single-peak search distribution. A
broad set of methods and tweaks exist in this field—various
similarities and differences were pointed out. Based on the
lessons learned from these methods, a set of rather inde-
pendent features was compiled; these features can be used
to categorize various SLS techniques from many points of
view. This schema offers also many previously unexplored
feature combinations that can result in potentialy successful
algorithms. Exploring these various possibilities remains as
a future work.
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[18] H. H. Hoos and T. Stützle. Stochastic Local Search :

Foundations & Applications. The Morgan Kaufmann
Series in Artificial Intelligence. Morgan Kaufmann,
2004.

[19] G. A. Jastrebski and D. V. Arnold. Improving
evolution strategies through active covariance matrix
adaptation. In IEEE Congress on Evolutionary
Computation – CEC 2006, pages 2814–2821, 2006.

[20] F. B. Jensen. Bayesian Networks and Decision
Graphs. Springer New York, December 2009.

[21] S. Kern, S. D. Müller, N. Hansen, D. Büche,
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[35] P. Poš́ık. Truncation selection and Gaussian EDA:
Bounds for sustainable progress in high-dimensional
spaces. In M. Giacobini, editor, EvoWorkshops 2008,
volume 4974 of LNCS, pages 525–534. Springer, 2008.
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