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ABSTRACT

Estimation-of-distribution algorithm using Cauchy sampling
distribution is compared with the iterative prototype opti-
mization algorithm with evolved improvement steps. While
Cauchy EDA is better on unimodal functions, iterative pro-
totype optimization is more suitable for multimodal func-
tions. This paper compares the results for both algorithms
in more detail and adds to the understanding of their key
features and differences.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, unconstrained optimization; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Al-
gorithms and Problems

General Terms

Algorithms

Keywords

Benchmarking, Black-box optimization, Estimation-of-dist-
ribution algorithm, Cauchy distribution, POEMS, Iterative
prototype optimization with evolved improvement steps

1. INTRODUCTION
The black-box optimization benchmarking (BBOB) work-

shop in 2009 introduced well-prepared set of benchmark
functions suitable for a systematic comparison of black-box
optimization algorithms. As an important part of the work-
shop framework, the whole comparison methodology was
created. The 2010 issue of the BBOB methodology [2] al-
lows for a detailed comparison of 2 algorithms on the BBOB
functions testbed.
The two algorithms selected for the comparison in this

article are:
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• The estimation-of-distribution algorithm (EDA) with
Cauchy sampling distribution (Cauchy EDA) [7]. The
data for this algorithm are taken from the 2009 bench-
marking.

• The iterative prototype optimization with evolved im-
provement steps (POEMS) [4], particularly, one of its
variants: POEMS with a pool of candidate prototypes
(pPOEMS) described in Sec. 2.1. The data for this
algorithm were generated using the 2010 framework.1

The comparison is made using the new BBOB 2010 post-
processing scripts and templates. Both algorithms fall into
the class of evolutionary optimization algorithms, yet they
perform in some sense a kind of local search. Their under-
lying principles are, however, different and it is valueable to
look for the effect of their similarities and differences.

In the next section, both algorithms are shortly described
and their differences are emphasized. Sec. 3 contains all
the results used to compare the algorithms and their discus-
sions. After the presentation of the time demands of both
algorithms in Sec. 4, Sec. 5 concludes the paper.

2. ALGORITHM PRESENTATION
The exact description of the Cauchy EDA algorithm along

with the parameter settings can be found in [7]. The pPO-
EMS algorithm is described in the next section.

2.1 pPOEMS
Prototype Optimization with Evolved Improvement Steps

(POEMS) optimization algorithm is a stochastic local search
algorithm that uses an evolutionary algorithm for searching
the neighborhood of the current best solution. The moves in
the search space can be thought of as so-called evolved hy-
permutations. The concept of the evolved hypermutations
has been shown to outperform other mutation-based evolu-
tionary algorithms that use pure random hypermutations for
generating new points in the search space on several combi-
natorial optimization problems [5, 6].

A description of the original version of the POEMS al-
gorithm for real-valued optimization can be found in [4].
The inner EA evolves hypermutations which are composed

1Despite the fact that the algorithms used different versions
of the BBOB framework, the results are still comparable.
The set of benchmark functions is the same, the only differ-
ence is that in 2009 the algorithms were run on 5 instances
of each function with 3 repetitions, while in 2010 the algo-
rithms were tested using 15 different instances of the func-
tions.
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of simple actions of adding a normally distributed real num-
ber to each of the coordinates of the prototypes (the length
of the action sequence is the same as the search-space di-
mensionality). The distribution of each single modification
is N(0, σ2

i ), i.e. the expected step length in each direction
is different.
The variant, denoted as pPOEMS, uses a pool of candi-

date prototypes of size PoolSize from which one prototype
is chosen in each iteration. Each candidate prototype main-
tains its own σ2

i values. Thus, the size of the neighborhood
to be searched is different for each candidate prototype. The
best modification of the current prototype is sought by an
evolutionary algorithm and the resulting solution replaces
one of the candidate prototypes in the pool according to the
following rules:

1. If the modified prototype is better than the current
prototype then the modified prototype replaces the
current prototype in the pool of prototypes (option
A in 1). The values of σ2

i of the current prototype are
adapted as weighted average of their old values and
of the differences between the modified and the cur-
rent prototype variable values. Finally, this prototype
remains the current prototype for the next iteration.

2. If the modified prototype is equally good as the current
prototype then it replaces the current prototype in the
pool of prototypes (option B in 1) and the values of σ2

i

of the current prototype are adapted in the same way
as in the rule nb. 1. However, since no improvement
to the current prototype has been achieved in this it-
eration the next prototype from the prototype pool
(meaning the prototype with index (i+ 1)%PoolSize,
where i is the index of the current prototype) becomes
the current prototype for the next iteration.

3. If the modified prototype is worse than the current
prototype then the most similar (according to the Eu-
clidean distance) candidate prototype out of the pro-
totypes that have worse fitness than the modified pro-
totype is sought in the pool. If such a prototype exists
then it is replaced (option C in 1) by the modified pro-
totype. The values of σ2

i of the replacement prototype
are adapted according to differences between the mod-
ified and the replacement prototype variable values.

If such a replacement does not exist then the modi-
fied prototype is thrown away and the values of σ2

i of
the current prototype are shrinked as if the differences
between the modified and the replacement prototypes
were zero. Thus, the values of σ2

i are maximally de-
creased.

In both cases next prototype from the pool of pro-
totypes becomes the current prototype for the next
iteration.

In all cases 1–3, if for some candidate prototype all its σ2
i

values drop below 10−11 then they are reinitialized to 0.25 ∗
(ubound−lbound). The prototype itself remains unchanged.

2.2 Algorithm Differences
As already stated, we can look at both algorithms as on

quite different instances of local search. The algorithms dif-
fer foremost in the following aspects:

Figure 1: Schema of the pool of prototypes used in
pPOEMS.

• In Cauchy EDA, the neighborhood is given by the
shape of the Cauchy distribution, which is used to sam-
ple new candidate solutions. In pPOEMS, the search is
conducted in the neighborhood of the prototype; the
neighborhood is given implicitely by the sequence of
actions that are evolved to modify the prototype.

• The Cauchy EDA uses population of tens or hundreds
of individuals; after its evaluation, the best solution
found so far is updated (and the Cauchy-distribution
parameters as well). In pPOEMS, the prototype is
updated after certain number of generations spent in
the inner EA which evolves the improving sequence
of actions. The inner EA run is longer (it runs for
200×D fitness evaluations) and the updates of proto-
types are therefore less frequent, especially for higher
dimensions.

• Both algorithms can get stuck in local optima. The
Cauchy EDA prevents this situation by independent
restarts, as suggested in the BBOB methodology. The
pPOEMS algorithm is not restarted; instead it main-
tains a pool of candidate prototypes which can be used
in situations when the inner EA is not able to evolve
an improving sequence from the current prototype.

For both algorithms, the crafting effort CrE= 0.

3. RESULTS
Results from experiments according to [2] on the bench-

mark functions given in [1, 3] are presented in Figures 2,
3 and 4 and in Table 1. The expected running time
(ERT), used in the figures and table, depends on a given
target function value, ft = fopt +∆f , and is computed over
all relevant trials as the number of function evaluations exe-
cuted during each trial while the best function value did not
reach ft, summed over all trials and divided by the number
of trials that actually reached ft [2, 8]. Statistical signif-
icance is tested with the rank-sum test for a given target
∆ft (10

−8 in Figure 2) using, for each trial, either the num-
ber of needed function evaluations to reach ∆ft (inverted
and multiplied by −1), or, if the target was not reached, the
best ∆f -value achieved, measured only up to the smallest
number of overall function evaluations for any unsuccessful
trial under consideration.

Cauchy EDA outperforms the pPOEMS algorithm on func-
tions 1, 2, 5, 7, 9, 10, 11, 12, 13, 14, 17, 18 for the tight target
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17 Schaffer F7, condition 10
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18 Schaffer F7, condition 1000
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23 Katsuuras
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Figure 2: ERT ratio of CauchyEDA divided by pPOEMS versus log10(∆f) for f1–f24 in 2, 3, 5, 10, 20, 40-D.
Ratios < 100 indicate an advantage of CauchyEDA, smaller values are always better. The line gets dashed
when for any algorithm the ERT exceeds thrice the median of the trial-wise overall number of f-evaluations
for the same algorithm on this function. Symbols indicate the best achieved ∆f-value of one algorithm
(ERT gets undefined to the right). The dashed line continues as the fraction of successful trials of the other
algorithm, where 0 means 0% and the y-axis limits mean 100%, values below zero for CauchyEDA. The line
ends when no algorithm reaches ∆f anymore. The number of successful trials is given, only if it was in {1 . . . 9}
for CauchyEDA (1st number) and non-zero for pPOEMS (2nd number). Results are significant with p = 0.05
for one star and p = 10−#⋆ otherwise, with Bonferroni correction within each figure.
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Figure 3: Expected running time (ERT in log10 of number of function evaluations) of CauchyEDA versus
pPOEMS for 46 target values ∆f ∈ [10−8, 10] in each dimension for functions f1–f24. Markers on the upper
or right egde indicate that the target value was never reached by CauchyEDA or pPOEMS respectively.
Markers represent dimension: 2:+, 3:▽, 5:⋆, 10:◦, 20:2, 40:3.
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Figure 4: Empirical cumulative distributions (ECDF) of run lengths and speed-up ratios in 5-D (left) and 20-
D (right). Left sub-columns: ECDF of the number of function evaluations divided by dimension D (FEvals/D)
to reach a target value fopt + ∆f with ∆f = 10k, where k ∈ {1,−1,−4,−8} is given by the first value in the
legend, for CauchyEDA (solid) and pPOEMS (dashed). Light beige lines show the ECDF of FEvals for target
value ∆f = 10−8 of algorithms benchmarked during BBOB-2009. Right sub-columns: ECDF of FEval ratios
of CauchyEDA divided by pPOEMS, all trial pairs for each function. Pairs where both trials failed are
disregarded, pairs where one trial failed are visible in the limits being > 0 or < 1. The legends indicate the
number of functions that were solved in at least one trial (CauchyEDA first).

1707



5-D 20-D
∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 11 12 12 12 12 12 15/15
0: pPO 97 130 610 5.8e3 1.2e4 1.8e4 15/15

1: Cau 41
⋆2 90 170

⋆2
310

⋆3
460

⋆3
600

⋆3 15/15

f2 83 87 88 90 92 94 15/15
0: pPO 1.2e3 1.3e3 1.7e3 2.5e3 3.1e3 3.9e3 15/15

1: Cau 42
⋆3

49
⋆3

58
⋆3

80
⋆3

100
⋆3

120
⋆3 15/15

f3 720 1600 1600 1600 1700 1700 15/15

0: pPO 4.8 30
⋆3

64
⋆3

120
⋆3

160
⋆3

200
⋆3 15/15

1: Cau 6.7 2.2e3 ∞ ∞ ∞ ∞2.5e5 0/15

f4 810 1600 1700 1800 1900 1900 15/15

0: pPO 6.8⋆3
36

⋆3
79

⋆3
120

⋆3
160

⋆3
200

⋆3 15/15
1: Cau 85 ∞ ∞ ∞ ∞ ∞2.5e5 0/15

f5 10 10 10 10 10 10 15/15
0: pPO 150 200 210 220 220 220 15/15

1: Cau 39
⋆3

41
⋆3

41
⋆3

41
⋆3

41
⋆3

41
⋆3 15/15

f6 110 210 280 580 1000 1300 15/15

0: pPO 31
⋆2 200 310 310 270 280 15/15

1: Cau 92 69
⋆3

68
⋆3

47
⋆3

35
⋆3

34
⋆3 15/15

f7 24 320 1200 1600 1600 1600 15/15
0: pPO 89 26 43 76 76 79 15/15

1: Cau 33
⋆3

4.9⋆3
2.4⋆3

2.9⋆3
2.9⋆3

3.4⋆3 15/15

f8 73 270 340 390 410 420 15/15
0: pPO 84 260 370 580 800 1.1e3 15/15

1: Cau 49 31
⋆3

33
⋆3

34
⋆3

37
⋆3

40
⋆3 15/15

f9 35 130 210 300 340 370 15/15
0: pPO 290 560 600 720 990 1.2e3 15/15

1: Cau 71
⋆2

54
⋆3

45
⋆3

41
⋆3

42
⋆3

43
⋆3 15/15

f10 350 500 570 630 830 880 15/15
0: pPO 550 640 740 1.0e3 1.0e3 1.2e3 11/15

1: Cau 11
⋆3

9
⋆3

9.4⋆3
12

⋆3
11

⋆3
13

⋆3 15/15

f11 140 200 760 1200 1500 1700 15/15
0: pPO 95 390 200 250 290 340 15/15

1: Cau 18
⋆2

17
⋆3

6
⋆3

5.3⋆3
5.6⋆3

5.9⋆3 15/15

f12 110 270 370 460 1300 1500 15/15
0: pPO 2.1e3 1.4e3 1.4e3 1.9e3 1.0e3 1.4e3 8/15

1: Cau 79
⋆3

41
⋆3

35
⋆3

38
⋆3

17
⋆3

17
⋆3 15/15

f13 130 190 250 1300 1800 2300 15/15
0: pPO 450 790 1.1e3 390 1.3e3 1.0e4 0/15

1: Cau 21
⋆3

24
⋆3

25
⋆3

7.4⋆3
7.3⋆3

7.3⋆3 15/15

f14 9.8 41 58 140 250 480 15/15
0: pPO 61 47 140 800 1.1e3 2.1e3 3/15

1: Cau 23 29
⋆

40
⋆

33
⋆3

28
⋆3

19
⋆3 15/15

f15 510 9300 1.9e4 2.0e4 2.1e4 2.1e4 14/15

0: pPO 57 29
⋆

60
⋆2

62
⋆2

64
⋆2

66
⋆2 9/15

1: Cau 12
⋆2 190 ∞ ∞ ∞ ∞2.5e5 0/15

f16 120 610 2700 1.0e4 1.2e4 1.2e4 15/15

0: pPO 9.6 52
⋆

40
⋆3

120
⋆3

110
⋆3

120
⋆3 9/15

1: Cau 5.6 1.2e3 ∞ ∞ ∞ ∞2.5e5 0/15

f17 5.2 210 900 3700 6400 7900 15/15
0: pPO 170 22 88 71 73 82 15/15

1: Cau 44 13 7
⋆3

4.3⋆3
5.3⋆3

13
⋆3 14/15

f18 100 380 4000 9300 1.1e4 1.2e4 15/15
0: pPO 18 95 34 39 55 69 15/15

1: Cau 13 12
⋆3

2.4⋆3
2.7⋆3

3.7⋆3
8.6⋆3 14/15

f19 1 1 240 1.2e5 1.2e5 1.2e5 15/15

0: pPO 980 1.8e4 1.6e3
⋆3

27
⋆3

27
⋆3

27
⋆3 5/15

1: Cau 300
⋆ 2.1e4 ∞ ∞ ∞ ∞2.5e5 0/15

f20 16 850 3.8e4 5.4e4 5.5e4 5.5e4 14/15

0: pPO 81 17
⋆2

17
⋆3

13
⋆3

14
⋆3

15
⋆3 11/15

1: Cau 48
⋆ 460 ∞ ∞ ∞ ∞2.5e5 0/15

f21 41 1200 1700 1700 1700 1800 14/15
0: pPO 28 11 210 240 260 280 12/15
1: Cau 20 27 190 420 420 410 4/15

f22 71 390 940 1000 1000 1100 14/15
0: pPO 29 24 270 280 330 360 13/15
1: Cau 11

⋆ 280 780 3.5e3 3.4e3 3.3e3 1/15

f23 3 520 1.4e4 3.2e4 3.3e4 3.4e4 15/15

0: pPO 3.4 71 29
⋆3

42
⋆3

47
⋆3

53
⋆3 8/15

1: Cau 2.2 230 ∞ ∞ ∞ ∞2.5e5 0/15

f24 1600 2.2e5 6.4e6 9.6e6 1.3e7 1.3e7 3/15

0: pPO 39 7.2⋆3
∞ ∞ ∞ ∞1.5e6 0/15

1: Cau 30 ∞ ∞ ∞ ∞ ∞2.5e5 0/15

∆f 1e+1 1e+0 1e-1 1e-3 1e-5 1e-7 #succ

f1 43 43 43 43 43 43 15/15

0: pPO200
⋆3

470
⋆3

1.1e3
⋆3

2.6e3
⋆ 4.5e3 7.1e3 15/15

1: Cau 730 1.6e3 2.5e3 4.3e3 6.1e3 7.8e3 15/15

f2 380 390 390 390 390 390 15/15

0: pPO310
⋆2 420 510 740 1.2e3 1.4e3 15/15

1: Cau 410 510 610 800 990 1.2e3 15/15

f3 5100 7600 7600 7600 7600 7700 15/15

0: pPO 13
⋆3

57
⋆3

100
⋆3

110
⋆3

120
⋆3

130
⋆3 15/15

1: Cau ∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f4 4700 7600 7700 7700 7800 1.4e5 9/15

0: pPO 31
⋆3

250
⋆3

1.0e3
⋆3

1.1e3
⋆3

1.1e3
⋆3

59
⋆3 7/15

1: Cau ∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f5 41 41 41 41 41 41 15/15
0: pPO 250 310 340 350 360 360 15/15

1: Cau 160
⋆2

170
⋆3

170
⋆3

170
⋆3

170
⋆3

170
⋆3 15/15

f6 1300 2300 3400 5200 6700 8400 15/15

0: pPO 36
⋆3

32
⋆3

32
⋆3

34
⋆3

35
⋆3

38
⋆3 15/15

1: Cau 1.0e3 1.3e3 ∞ ∞ ∞ ∞1.0e6 0/15

f7 1400 4300 9500 1.7e4 1.7e4 1.7e4 15/15

0: pPO 22
⋆2 280 1.8e3 2.4e3 2.4e3 2.3e3 2/15

1: Cau 44 29
⋆

18
⋆2

14
⋆3

14
⋆3

14
⋆3 15/15

f8 2000 3900 4000 4200 4400 4500 15/15

0: pPO100
⋆2

97
⋆3

110
⋆3

120
⋆3

150
⋆2 190 15/15

1: Cau 190 180 210 260 360 540 4/15

f9 1700 3100 3300 3500 3600 3700 15/15
0: pPO 210 330 440 970 2.5e3 2.4e4 0/15
1: Cau 190 270 290 310 470 630 6/15

f10 7400 8700 1.1e4 1.5e4 1.7e4 1.7e4 15/15
0: pPO ∞ ∞ ∞ ∞ ∞ ∞6.0e6 0/15

1: Cau 20
⋆3

22
⋆3

20
⋆3

20
⋆3

21
⋆3

25
⋆3 15/15

f11 1000 2200 6300 9800 1.2e4 1.5e4 15/15
0: pPO 110 110 84 360 7.1e3 ∞6.0e6 0/15

1: Cau 64
⋆3

44
⋆3

22
⋆3

22
⋆3

25
⋆3

26
⋆3 15/15

f12 1000 1900 2700 4100 1.2e4 1.4e4 15/15
0: pPO 3.4e3 3.9e3 9.3e3 ∞ ∞ ∞6.0e6 0/15
1: Cau 510 440 420 380 390 1.1e3 0/15

f13 650 2000 2800 1.9e4 2.4e4 3.0e4 15/15
0: pPO 940 2.2e3 6.2e3 4.6e3 ∞ ∞6.0e6 0/15

1: Cau 210 100
⋆

100
⋆3

23
⋆3

23
⋆3

23
⋆3 15/15

f14 75 240 300 930 1600 1.6e4 15/15

0: pPO100
⋆3

72
⋆3

140
⋆3 350 4.5e3 ∞6.0e6 0/15

1: Cau 280 270 350 210
⋆2

180
⋆3

25
⋆3 15/15

f15 3.0e4 1.5e5 3.1e5 3.2e5 4.5e5 4.6e5 15/15
0: pPO ∞ ∞ ∞ ∞ ∞ ∞6.0e6 0/15
1: Cau ∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f16 1400 2.7e4 7.7e4 1.9e5 2.0e5 2.2e5 15/15

0: pPO 26
⋆3

24
⋆3

1.1e3
⋆3

∞ ∞ ∞6.0e6 0/15
1: Cau ∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f17 63 1000 4000 3.1e4 5.6e4 8.0e4 15/15

0: pPO 98 31
⋆3 54 310 ∞ ∞6.0e6 0/15

1: Cau 260 120 62 16
⋆

23
⋆3

∞1.0e6 0/15

f18 620 4000 2.0e4 6.8e4 1.3e5 1.5e5 15/15

0: pPO 21
⋆3 51 110 ∞ ∞ ∞6.0e6 0/15

1: Cau 96 42 15
⋆3

12
⋆3

38
⋆3

∞1.0e6 0/15

f19 1 1 3.4e5 6.2e6 6.7e6 6.7e6 15/15

0: pPO 6.3e3 1.4e6
⋆3

∞ ∞ ∞ ∞6.0e6 0/15
1: Cau 8.4e3 ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f20 82 4.6e4 3.1e6 5.5e6 5.6e6 5.6e6 14/15

0: pPO130
⋆3

1.8⋆3
∞ ∞ ∞ ∞6.0e6 0/15

1: Cau 340 ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f21 560 6500 1.4e4 1.5e4 1.6e4 1.8e4 15/15
0: pPO 140 1.2e3 960 1.2e3 1.1e3 970 4/15
1: Cau 1.0e3 ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f22 470 5600 2.3e4 2.5e4 2.7e4 1.3e5 12/15
0: pPO 2.0e3 1.4e3 1.7e3 1.6e3 1.5e3 290 2/15
1: Cau 470 1.2e3 ∞ ∞ ∞ ∞1.0e6 0/15

f23 3.2 1600 6.7e4 4.9e5 8.1e5 8.4e5 15/15

0: pPO 4.9 320
⋆3

36
⋆3

∞ ∞ ∞6.0e6 0/15
1: Cau 1.9 ∞ ∞ ∞ ∞ ∞1.0e6 0/15

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 3/15

0: pPO 64
⋆3

∞ ∞ ∞ ∞ ∞6.0e6 0/15
1: Cau ∞ ∞ ∞ ∞ ∞ ∞1.0e6 0/15

Table 1: Expected running time (ERT in number of function evaluations) divided by the best ERT measured
during BBOB-2009 (given in the respective first row) for different ∆f values for functions f1–f24. The median
number of conducted function evaluations is additionally given in italics, if ERT(10−7) = ∞. #succ is the
number of trials that reached the final target fopt+10−8. 0: pPO is pPOEMS and 1: Cau is CauchyEDA. Bold
entries are statistically significantly better compared to the other algorithm, with p = 0.05 or p = 10−k where
k > 1 is the number following the ⋆ symbol, with Bonferroni correction of 48.
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Table 2: The average time demands per function
evaluation (in microseconds) of the two compared
algorithms.

Dim 2 3 5 10 20

pPOEMS 2.4 2.7 4 8.5 13
CauchyEDA 51 17 9 9 11

values, while pPOEMS beats Cauchy EDA on functions 3,
4, 15, 16, 19, 20, 22. (The results on the other functions are
mixed, or neither algorithm solved the problem successfully.)
In this small competition the Cauchy EDA wins 12:7. It can
be stated that Cauchy EDA beats pPOEMS mainly on the
unimodal functions, while pPOEMS is better on multimodal
ones.
The pPOEMS algorithm is not invariant with respect to

the rotation of the search space. The evolved actions oper-
ate on 1 dimension only (making axis-parallel modifications
only), nevertheless, the whole action sequences (hypermuta-
tions) result in non-axis-paralel steps. However, it is easier
for this algorithm to optimize separable functions. As an
example, we can look at function pair 2-10 in Fig. 2: the
non-rotated version of the ellipsoid function is much easier
for pPOEMS, while it cannot solve the rotated version in
higher dimensions at all. And even though the Rosenbrock
function (8) is not separable, its rotated version (9) is for
pPOEMS much harder as well.
In lower dimensions, Cauchy EDA is often orders of mag-

nitude faster than pPOEMS. With increasing dimensionality
this gap reduces, and the speed of both algorithms becomes
almost equal (e.g. for 20D versions of sphere and ellipsoid
functions). It may be anticipated that for larger dimensions
pPOEMS would overtake the Cauchy EDA.
Looking at Fig. 4, it can be stated that pPOEMS beats

CauchyEDA clearly on separable functions. It is better also
for multimodal and weak-structure functions, but neither
algorithm is really successful on these (especially in 20D).
Cauchy EDA is a clear winner for ill-conditioned functions
and for moderate functions in lower dimensions.

4. CPU TIMING EXPERIMENTS
The time requirements of Cauchy EDA are taken from [7].

The multistart algorithm was run with the maximal number
of evaluations set to 105, the basic algorithm was restarted
for at least 30 seconds. These experiments have been con-
ducted on Intel Core 2 CPU, T5600, 1.83 GHz, 1 GB RAM
with Windows XP SP3 in MATLAB R2007b for Cauchy
EDA and on Intel Pentium-M 1400 MHz with Windows XP
SP3 using the implementation in C for pPOEMS. The com-
parison of the average time demands per function evaluation
are shown in Table 2.
The differences in the average time needed for function

evaluation are caused by the fact that CauchyEDA was im-
plemented in MATLAB while pPOEMS in C. The MAT-
LAB implementation becomes more efficient for larger pop-
ulations.

5. CONCLUSIONS
Cauchy EDA and POEMS algorithm with a pool of can-

didate prototypes were compared using the BBOB 2010 me-
thodology. The results confirm that pPOEMS searches much

broader neighborhood than Cauchy EDA. The pPOEMS al-
gorithm is able to solve certain percentage of multimodal
functions, while the performace of Cauchy EDA is for them
rather weak (and the restarting does not help much).

The pPOEMS algorithm is rather slow (compared to Cau-
chy EDA and other algorithms taking part in BBOB 2009)
which showed up especially on unimodal functions. The
pPOEMS greatly suffers from the fact that the individual
actions in the improving sequence operate over axis-parallel
directions. For non-separable functions, this renders the
crossover operator used in the inner EA of POEMS rather
useless since the individual actions are correlated. To incor-
porate a method that would decorrelate the actions between
the individual inner-EA launches remains as future work.
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